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Unified Theory of Lattice Boltzmann Models for Nonideal Gases
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A nonideal gas lattice Boltzmann model is directly derived, in ana priori fashion, from the Enskog
equation for dense gases. The model is rigorously obtained by a systematic procedure to disc
the Enskog equation (in the presence of an external force) in both phase space and time. The
Boltzmann model derived here is thermodynamically consistent and is free of the defects which
in previous lattice Boltzmann models for nonideal gases. The existing lattice Boltzmann models
nonideal gases are analyzed and compared with the model derived here. [S0031-9007(98)06759
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In recent years, there has been significant progress
the development of the lattice Boltzmann equation (LBE
method [1–4], a novel technique developed for modelin
complex systems. One particular application of the la
tice Boltzmann method which has attracted considerab
attention is the modeling of inhomogeneous fluids, such
multiphase or multicomponent fluids [5–7]. These flow
are important, but are difficult to simulate by conventiona
techniques of solving the Navier-Stokes equations. Th
main difficulty conventional techniques face is the exis
tence of interfaces in inhomogeneous flow. There is amp
evidence that the lattice Boltzmann models based on me
scopic theory are particularly suitable for these system
[5–7]. There are fundamental reasons for the success
the LBE models. Besides their broad applicability, th
LBE models can also serve as new paradigms in noneq
librium statistical mechanics, much like the Ising mode
in equilibrium statistical mechanics. Many hydrodynami
systems far from equilibrium are difficult to simulate by
using the Boltzmann equation directly. The LBE metho
provides a novel and efficient means to simulate system
far from equilibrium. The LBE models do not start a
the macroscopic level; instead, they start at the mes
scopic level at which one can freely use a “potential” to
model interactions in the system. Macroscopic or hydro
dynamic effects naturally emerge from mesoscopic dynam
ics, provided that the mesoscopic dynamics possess
correct and necessary conservation laws and associa
symmetries.

Historically, the lattice Boltzmann equation was firs
developed empirically [1,2] from its predecessor—th
lattice-gas automata [8]. This empiricism influences eve
the most recent lattice Boltzmann models [5–7]. Empir
cal lattice Boltzmann models usually have some inhere
artifacts which are not yet fully understood. One particu
lar problem with multiphase or multicomponent lattice
Boltzmann models is the thermodynamic inconsistenc
the equilibrium state in these models cannot be describ
by thermodynamics [6]. Although this issue has bee
raised previously [6], no progress has been made in solvi
this problem, despite its paramount importance.
0031-9007y98y81(8)y1618(4)$15.00
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It has been recently demonstrated [9] that the lattic
Boltzmann equation can be directly derived from the con
tinuous Boltzmann equation. The method of Ref. [9] is a
general procedure to construct the lattice Boltzmann mod
els in a systematic anda priori fashion. Through this pro-
cedure we can better understand the approximation ma
in the lattice Boltzmann equation. In this paper, we appl
the method of Ref. [9] to analyze the lattice Boltzmann
equation for multiphase fluids with nonideal gas equatio
of state. We derive the lattice Boltzmann equation from
the Enskog equation for dense gas in the presence of
external force. We obtain a lattice Boltzmann equation
for isothermal multiphase fluids which has the required
thermodynamic consistency. In addition, we compare ou
model with the existing ones.

It is well known that the original Boltzmann equation
describes only rarefied gases; it does not describe den
gases or liquids. In the Boltzmann gas limit (BGL),N !
`, m ! 0, and r ! 0, whereN , m, and r are the par-
ticle number, particle mass, and interaction range, re
spectively, andNm ! finite, Nr2 ! finite, andNr3 ! 0.
Thus, in the BGL, the mean free pathl , 1yNr2 remains
constant, while the total interaction volumeNr3 goes to
zero. Therefore, in the strict thermodynamic sense, th
Boltzmann equation retains only the thermodynamic prop
erties of aperfect gas—there is no contribution to the
transport of molecular properties from interparticle forces
although collisions influenced by interparticle interaction
are considered. In order to properly describe nonidea
dense gases, the effect of finite particle size must be e
plicitly considered. It was Enskog who first extended the
Boltzmann equation to dense gases by including the vo
ume exclusion effect [10], which leads to a nonideal ga
equation of state. The Enskog equation [10–12]explicitly
includes the radius of colliding particles,r0, in the colli-
sion integral:

≠tf 1 j ? =f 1 a ? =jf ­ J , (1a)

J ­
Z

dm1fgsx 1 r0r̂dfsx, j 0dfsx 1 2r0r̂, j 0
1d

2 gsx 2 r0r̂dfsx, j dfsx 2 2r0r̂, j1dg , (1b)
© 1998 The American Physical Society
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wheref is the single particle (mass) distribution function
j and a are, respectively, particle velocity and accelera
tion, g is the radial distribution function,̂r is the unit vec-
tor in the direction from the center of the second part
cle of fsx, j1d to the center of the first particle offsx, j d
at the instant of contact during a collision, andm1 is the
collision space of the second particle offsx, j1d. If we
expand the collision operatorJ in a Taylor series about
x, use the Bhatnager-Grass-Krook (BGK) approximatio
[12–14], and assume the fluid to be isothermal and inco
pressible [15], we have

≠tf 1 j ? =f 1 a ? =jf ­ 2
g
l

f f 2 f s0dg 1 J 0,

(2a)

J 0 ­ 2f s0dbrgfj 2 ug ? = lnsr2gd , (2b)
,
-

i-

n
m-

wherel is the relaxation time andf s0d is the local Maxwell
equilibrium distribution function given by

f s0d ­ rs2pud2Dy2 expf2sj 2 ud2y2ug , (3)

where D is the dimension of thej space;r, u, and
u ­ kBTym are, respectively, the mass density, the macro
scopic velocity, and the normalized temperature (per un
mass); andkB andT are, respectively, the Boltzmann con-
stant and temperature. The additional collision term i
Eqs. (2),J 0, describes the volume exclusion effect [15]
whereg ­ gsbrd, andb is the second virial coefficient in
the virial expansion of the equation of state. It is assume
that the accelerationa is due to an external potentialUsxd
(per unit mass):a ­ 2=U.

A formal solution of Eqs. (2) can be obtained by inte
grating along a characteristic linej over a time intervaldt:
s of
fsx 1 jdt, j 1 adt, t 1 dtd ­ e2dtgylfsx, j , td 1
g
l

e2dtgyl
Z dt

0
et0gylf s0dsx 1 j t0, j 1 at0, t 1 t0d dt0

1 e2dtgyl
Z dt

0
et0gylJ 0sx 1 j t0, j 1 at0, t 1 t0d dt0. (4)

If we assume thatdt is small enough and bothf s0d andf are smooth enough in phase space, we can neglect the term
orderO sd2

t d or smaller in the Taylor expansion of Eq. (4), and obtain [9,15]

fsx 1 jdt, j , t 1 dtd 2 fsx, j , td ­ 2
g
t

f fsx, j , td 2 f s0dsx, j , tdg 1 J 0sx, j , tddt 2 a ? =jfsx, j , tddt , (5)
fi-
g

wheret ; lydt is the dimensionless relaxation time. It is
obvious that the accuracy of the above equation is only fi
order in time [O sdtd]. Consequently, the accuracy of the
lattice Boltzmann models derived from the above equatio
is also first order in time at best.

For isothermal fluids, the equilibrium distribution func
tion can be obtained by truncation of the Taylor expansio
of f s0d up to second order inu:

f seqd ­ rvsj d
∑

1 1
sj ? ud

u
1

sj ? ud2

2u2 2
u2

2u

∏
, (6)

where

vsj d ­ s2pud2Dy2 exps2j2y2ud . (7)

The phase space discretization has to be done in suc
way that not only all the hydrodynamic moments, but als
their fluxes, are preservedexactly. This is accomplished
by using Gaussian quadrature to compute the moments

Following the procedure described in Ref. [9], we ca
obtain the LBE models in both 2D and 3D lattice space [9
We use the 2D nine-bit model as a concrete example he
In this case, we have the following equilibrium distribution
function [9]:

f seqd
a ­ war

∑
1 1

3sea ? ud
c2 1

9sea ? ud2

2c4 2
3u2

2c2

∏
,

(8)
rst

n

-
n

h a
o

[9].
n
].
re.

where

wa ­

8<: 4y9, a ­ 0 ,
1y9, a ­ 1, 2, 3, 4 ,
1y36, a ­ 5, 6, 7, 8 ,

(9)

ea ­

8<: s0, 0d, a ­ 0 ,
scosfa, sinfadc, a ­ 1, 2, 3, 4 ,
scosfa, sinfad

p
2 c, a ­ 5, 6, 7, 8 .

(10)

fa ­ sa 2 1dpy2 for a ­ 1 4, and fa ­ sa 2

5dpy2 1 py4 for a ­ 5 8, andc ­ dxydt ­
p

3u, and
dx is the lattice constant. Note thatu is a constant here.

The forcing term,a ? =jf, is unknown but it can be
written in terms of an expansion inj as follows:

a ? =jf ­ rvsj d fcs0d 1 c
s1d
i ji 1 c

s2d
ij jijj 1 · · ·g .

(11)

If the above expansion is truncated, the first few coef
cientsc

snd
i1i2···in

can be easily obtained by using the followin
moment constraints:Z

dj a ? =jf ­ 0 , (12a)

Z
dj ja ? =jf ­ 2ra , (12b)

Z
dj jijja ? =jf ­ 2rsaiuj 1 ajuid . (12c)
1619
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Therefore, up to the order ofOsud andOsj2d, we have

a ? =jf ­ 2rvsj du21fsj 2 ud 1 u21sj ? udj g ? a .
(13)

Note that in the above expansion, only terms up to fi
order in u have been retained, because there is a ove
factor of dt in the forcing term, as indicated in Eq. (5)
and bothdt andu are small parameters of the same ord
in the Chapman-Enskog analysis of the lattice Boltzma
equation [15–17]. There are other methods to compute
forcing term [15]. It should be stressed that every term
the Enskog equation must be treated equally to maint
the same order of accuracy. Specifically, the expansion
the forcing term must be of second order inj and of first
order inu, in order to be consistent with the expansion
the equilibrium distribution function given by Eq. (8).

Following the same discretization procedure for th
equilibrium distribution function, we obtain the forcing fo
1620
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the nine-bit model

Fa ­ 23war

∑
1
c2 sea 2 ud 1 3

sea ? ud
c4 ea

∏
? a .

(14)

The above forcing term satisfies the discrete counterp
of Eqs. (12). If only the first two moment equations
Eqs. (12) are satisfied, and the third constraint of Eq. (1
is replaced by

P
a ea,iea,jFa ­ 0 in the discrete case, the

the forcing term reduces toFa ­ 23warc22ea ? a. This
is the forcing term often used in the literature [16,17].

The additional collision termJ 0 given by Eq. (2b) can
be explicitly written in the discrete form:

J 0
a ­ 2fseqd

a brgfea 2 ug ? = lnsr2gd . (15)

Including the discretizedJ 0, the lattice Boltzmann equation
obtained is
fasx 1 eadt, t 1 dtd 2 fasx, td ­ 2
g
t

f fasx, td 2 fseqd
a sx, tdg 2 brgf seqd

a sx, td sea 2 ud ? =sr2gddt 2 Fadt .

(16)
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The Navier-Stokes equations derived from the above LB
model are [15]

≠tr 1 = ? srud ­ 0 , (17a)

≠tu 1 u ? =u ­ 2
1
r

=P 1 n=2u 1 a , (17b)

where the viscosity

n ­
s2t 2 gd

6g

d2
x

dt
(18)

and the pressure (or the equation of state) is given by
P ­ rus1 1 brgd . (19)

Obviously, the above is a nonideal gas equation of sta
For ideal gases such thatb ­ 0 andg ­ 1, P andn reduce
to previous results for ideal gases. The dependence of
viscosityn ong can be removed by replacingg in the BGK
collision term by1.

Given the equation of state, the Helmholtz free ener
density can be obtained as

csrd ­ r
Z P

r2 dr ­ ru

"
ln r 1 b

Z
g dr

#
. (20)

That is, with eitherP or c given, one can derive all the
relevant thermodynamic quantities from the free ener
function c. With the free energy and the equation o
state defined, the Maxwell construction [18] to determin
the coexistence curve becomes physically meaningful a
consistent. The phenomenon of liquid-gas phase transit
can be simulated using this model by changing the value
b

R
g dr (by adjustingb or g) in the free energy density

c relative to the temperatureu as indicated by Eq. (20).
A comparison with the existing models [5–7] is now

in order. In the Shan and Chen model [5], an arbitra
E
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potential Usxd ­ Usssrsxdddd is explicitly given, and the
change of velocityu due toUsxd is given by

du ­ 2=Usxdtdt ­ atdt .

By substitutingu with u 1 du into the equilibrium distri-
bution function, we have

f seqd
a ­ war

∑
1 1

3sea ? ud
c2 1

9sea ? ud2

2c4 2
3u2

2c2

∏
2 3war

∑
1
c2 sea 2 ud 1 3

sea ? ud
c4 ea

∏
? atdt

1
3
2

war

∑
a2

c2 1
sea ? ad2

c4

∏
t2d2

t . (21)

In the above result, the first part is the usual equilibriu
distribution which has an ideal gas equation of state bu
in. The second part is supposed to account for inter
tion or nonideal gas effects, which leads to the identic
forcing term given by Eq. (14). By combining the forc
ing term with the pressure in the Navier-Stokes equatio
i.e., =ru 1 =U ­ =sru 1 Ud, the equation of state be-
comesP ­ fru 1 Usrdg. Thus, the nonideal gas effect
are effectivelymimicked by the potentialU. Of course,
the physical concept of this approach is incorrect and
immediate shortcoming is that the heat flux, and hence
energy balance equation, is incorrect [15]. Furthermo
the third part in Eq. (21), which is proportional tod2

t and
nonlinear ina, is not consistent with what is obtained from
Eq. (4).

We should also discuss a recent revision of the Shan
Chen model [7] in which a forcing term proportional t
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f seqd
a sea 2 ud ? Fdt is derived with some crude approxi

mations: the forceF , 2=V 2 brug= lnsr2gd, andV
accounts for the attractive part in the interaction. Th
model produces a nonideal gas equation of state,P ­
rus1 1 brgd 1 V , as expected. However, the derivatio
of this model closely follows the derivation of the prev
ous model. Therefore, these two models share the sa
problems, such as incorrect heat transfer.

A comparison with the model proposed in [6] is slightl
more elaborate. Stressing the consistency of thermo
namics and being inspired by Cahn-Hilliard’s model [19
Swift et al. [6] start with a free energy functional,

C ­
Z

dx
∑

k

2
k=rk2 1 csrd

∏
, (22)

wherec is the bulk free energy density. The free energ
functional in turn determines the diagonal term of th
pressure tensor:

P ­ r
dC

dr
2 C ­ p 2 kr=2r 2

k

2
k=rk2, (23)

wherep ­ rc 0 2 c is the equation of state of the fluid
The full pressure tensor is given by

Pij ­ Pdij 1 k≠ir≠jr . (24)

With Pij given, the equilibrium distribution function,f seqd
a ,

is constructed by not only satisfying the conservatio
constraints, but also producing the above pressure ten
by forcing

P
a f seqd

a ea,iea,j ­ Pij.
It should be pointed out that in the context of Chapma

Enskog analysis, the presence of=r related terms inC
and Pij is not justified at all—the density gradient doe
not appear in the first order Chapman-Enskog solutio
Also, the model produces a number of unphysical effec
First, the term related to nonideal gas effect misses a fac
of sea 2 ud, and is therefore not Galilean invariant, a
previously noticed [6,7]. Second, the term related toeaea ,
denoted asGijea,iea,j in Ref. [6], is anisotropic, because
Gxx ­ 2Gyy. Third, the ratio between the number of th
rest particles and the number of moving particles depen
on the local density gradient. It can be shown that this ra
is directly related to temperature [20]. While the model
supposed to simulate an isothermal fluid, the temperat
in this model may vary locally depending on the densi
gradient. Also, the model cannot lead to the correct ene
balance equation. Furthermore, the pressure tensorPij

does not appear in the Navier-Stokes equation derived fr
the model [6]. Therefore, the approach in deriving th
model in Ref. [6] is not only mathematicallyad hocand
inconsistent, but also physically incorrect.

In summary, we have carried out a systematic deriv
tion of the lattice Boltzmann equation describing mu
tiphase flow from the Enskog equation—a physical
-
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correct starting point for nonideal gases. The model de
rived here is free of the defects of the existing models. Th
approach is rigorous and systematic. Not only the equatio
of state for nonideal gases is obtained, but also the requir
thermodynamic consistency is achieved. Also, the proc
dure illustrated here is general and can be easily extend
to other lattice Boltzmann models for complex fluids, e.g.
binary mixtures or multicomponent fluids.
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