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Unified Theory of Lattice Boltzmann Models for Nonideal Gases
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A nonideal gas lattice Boltzmann model is directly derived, inagpriori fashion, from the Enskog
equation for dense gases. The model is rigorously obtained by a systematic procedure to discretize
the Enskog equation (in the presence of an external force) in both phase space and time. The lattice
Boltzmann model derived here is thermodynamically consistent and is free of the defects which exist
in previous lattice Boltzmann models for nonideal gases. The existing lattice Boltzmann models for
nonideal gases are analyzed and compared with the model derived here. [S0031-9007(98)06759-3]

PACS numbers: 47.11.+j, 05.20.Dd, 47.55.Kf, 51.30. +i

In recent years, there has been significant progress in It has been recently demonstrated [9] that the lattice
the development of the lattice Boltzmann equation (LBE)Boltzmann equation can be directly derived from the con-
method [1-4], a novel technique developed for modelinginuous Boltzmann equation. The method of Ref. [9] is a
complex systems. One particular application of the latgeneral procedure to construct the lattice Boltzmann mod-
tice Boltzmann method which has attracted considerablels in a systematic aral priori fashion. Through this pro-
attention is the modeling of inhomogeneous fluids, such asedure we can better understand the approximation made
multiphase or multicomponent fluids [5—7]. These flowsin the lattice Boltzmann equation. In this paper, we apply
are important, but are difficult to simulate by conventionalthe method of Ref. [9] to analyze the lattice Boltzmann
techniques of solving the Navier-Stokes equations. Thequation for multiphase fluids with nonideal gas equation
main difficulty conventional techniques face is the exis-of state. We derive the lattice Boltzmann equation from
tence of interfaces in inhomogeneous flow. There is ampléhe Enskog equation for dense gas in the presence of an
evidence that the lattice Boltzmann models based on mesexternal force. We obtain a lattice Boltzmann equation
scopic theory are particularly suitable for these system$or isothermal multiphase fluids which has the required
[5-7]. There are fundamental reasons for the success tfiermodynamic consistency. In addition, we compare our
the LBE models. Besides their broad applicability, themodel with the existing ones.

LBE models can also serve as new paradigms in nonequi- It is well known that the original Boltzmann equation
librium statistical mechanics, much like the Ising modeldescribes only rarefied gases; it does not describe dense
in equilibrium statistical mechanics. Many hydrodynamicgases or liquids. In the Boltzmann gas limit (BGRh),—
systems far from equilibrium are difficult to simulate by «, m — 0, andr — 0, whereN, m, andr are the par-
using the Boltzmann equation directly. The LBE methodticle number, particle mass, and interaction range, re-
provides a novel and efficient means to simulate systemspectively, andvim — finite, Nr> — finite, andNr3 — 0.

far from equilibrium. The LBE models do not start at Thus, in the BGL, the mean free path~ 1/Nr? remains
the macroscopic level; instead, they start at the mesaonstant, while the total interaction volumé&> goes to
scopic level at which one can freely use @otential to  zero. Therefore, in the strict thermodynamic sense, the
model interactions in the system. Macroscopic or hydroBoltzmann equation retains only the thermodynamic prop-
dynamic effects naturally emerge from mesoscopic dynamerties of aperfectgas—there is no contribution to the
ics, provided that the mesoscopic dynamics possess thiensport of molecular properties from interparticle forces,
correct and necessary conservation laws and associatatthough collisions influenced by interparticle interaction
symmetries. are considered. In order to properly describe nonideal

Historically, the lattice Boltzmann equation was first dense gases, the effect of finite particle size must be ex-
developed empirically [1,2] from its predecessor—theplicitly considered. It was Enskog who first extended the
lattice-gas automata [8]. This empiricism influences everBoltzmann equation to dense gases by including the vol-
the most recent lattice Boltzmann models [5—7]. Empiri-ume exclusion effect [10], which leads to a nonideal gas
cal lattice Boltzmann models usually have some inheren¢quation of state. The Enskog equation [10—-&3jlicitly
artifacts which are not yet fully understood. One particu-includes the radius of colliding particles;, in the colli-
lar problem with multiphase or multicomponent lattice sion integral:

Boltzmann models is the thermodynamic inconsistency: of +€&-Vf+a- -Vef =17, (1a)
the equilibrium state in these models cannot be described

by thermodynamics [6]. Although this issue has been/ = | dui[g(x + rof)f(x, &)f(x + 2rof, &)

raised previously [6], no progress has been made in solving

this problem, despite its paramount importance. —glx — rof)f(x, &) f(x — 2rof, &)], (1b)
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wheref is the single particle (mass) distribution function, whereA is the relaxation time anfl® is the local Maxwell

& anda are, respectively, particle velocity and accelera-equilibrium distribution function given by

tion, g is the radial distribution functiorf, is the unit vec-

tor in the direction from the center of the second parti- 1O =pQ@mo) Plexd—(£ — w?/20],  (3)

cle of f(x, &) to the center of the first particle gf(x, &) ) , )

at the instant of contact during a collision, apd is the ~Where D is the dimension of theg space;p, u, and
collision space of the second particle pfx, &). If we 0 = _kBT/m are, respectively, th_e mass density, the macro-
expand the collision operator in a Taylor series about SCOPIC velocity, and the normalized temperature (per unit

x, use the Bhatnager-Grass-Krook (BGK) approximatiod@ss); ands andT are, respectively, the Boltzmann con-
stant and temperature. The additional collision term in

12-14], and assume the fluid to be isothermal and incom= ; .
[ ; ] Egs. (2),J/, describes the volume exclusion effect [15],
pressible [15], we have ) o o
whereg = g(bp), andb is the second virial coefficient in
oaf +&-Vf+a- -Vef = —i[f - fO1+ 7, the virial expansion of the equation of state. Itis assumed
A that the acceleration is due to an external potenti&l(x)
(2a)  (per unit mass)z = —VU.
J = —fOpg[é — u] - Vin(pg) (2b) A formal solution of Egs. (2) can be obtained by inte-
’ | grating along a characteristic ligeover a time interval,:

o
f(x n §51,§ + a6,,t + 81) _ ei5‘g/)‘f(x,§,t) + %efﬁfg/)\f etg/)\fw)(x + fl‘/,f + al‘/,f + t/)dt/
0
Os
+ e—ﬁzg//\f "N (x + &1 E + at',t + 1) dr. (4)
0

If we assume thaé, is small enough and bot” and f are smooth enough in phase space, we can neglect the terms of
order® (8?) or smaller in the Taylor expansion of Eq. (4), and obtain [9,15]

f(x + fat, §’t + at) - f(x’ §’ t) = _é[f(x’ §’t) - f(O)(x’ §’t):| + J/(x’ §’t)6t —a: fo(x’ §’t)5t’ (5)

wherer = A/§, is the dimensionless relaxation time. It is where

obvious that the accuracy of the above equation is only first 4/9 @ =0
order in time [0 (5,)]. Consequently, the accuracy of the . ’ _
: ! : Wa 1/9, a=1,2,34, 9
lattice Boltzmann models derived from the above equation _
) ) S 1/36, a =5,6,7,8,
is also first order in time at best.
For isothermal fluids, the equilibrium distribution func- (0,0), a=0,
tion can be obtained by truncation of the Taylor expansion e, = 1 (C0S¢,,Sind,)c, a=1,23,4, (10)
of f© up to second order in: (COShg,siNPINV2e, a =5,6,7,8.

(& u)? u? o = (@ — )7r/2 for a=1-4, and ¢, = (a —
Y R %} 6)  35)7/2 + w/4fora = 5-8,andc = 8./8, = /30, and
o, is the lattice constant. Note thétis a constant here.

7 = po@) 1+ E1

where The forcing term,a - V4f, is unknown but it can be
— (276) D2 —£2/20). 7 written in terms of an expansion i# as follows:
w(§) = m0) " exp(—£7/20) 7) ! AR
) L ) a-Vef =pw(&)[c™” +c; &+ cf &+ -]
The phase space discretization has to be done in such a (11)

way that not only all the hydrodynamic moments, but also

their fluxes, are preservezkactly This is accomplished If the above expansion is truncated, the first few coeffi-

by using Gaussian quadrature to compute the moments [QdientSC,(»l"i)T,.,»n can be easily obtained by using the following
Following the procedure described in Ref. [9], we canmoment constraints:

obtain the LBE models in both 2D and 3D lattice space [9].

We use the 2D nine-bit model as a concrete example here. [ déa-Vef =0, (12a)

In this case, we have the following equilibrium distribution

function [9]:

3eq - u) | eq - u?  3u? fdffa Vef = —pa, (12b)
c? * 2c4 B ﬁ]

fla) = wap[l +
®) [ ag i Ve = —pla; + aj). (120)
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Therefore, up to the order @ (1) andO(£?), we have the nine-bit model
a - Vef = —pw(@07'[(E —u) + 07 (£ -wE]-a. 1 (e, - 1)
(13) Fo = —3wap[§(ea —u)+3 “64 ea} a

Note that in the above expansion, only terms up to first 14
order inu have been retained, because there is a overall (14)

factor of 6, in the forcing term, as indicated in Eq. (5), The above forcing term satisfies the discrete counterpart
and bothé, andu are small parameters of the same ordersf Egs. (12). If only the first two moment equations in
in the Chapman-Enskog analysis of the lattice Boltzmanitqs. (12) are satisfied, and the third constraint of Eq. (12c)

equation [15-17]. There are other methods to compute thg repjaced by, eq.i€a;Fo = 0inthe discrete case, then

forcing term [15]. It should be stressed that every term inpe forcing term reduces 6, = —3wqpc 2e, - a. This
the Enskog equation must be treated equally to maintaify the forcing term often used in the literature [16,17].

the same order of accuracy. Specifically, the expansion of The additional collision ternd’ given by Eq. (2b) can
the forcing term must be of second ordergrand of first  pe explicitly written in the discrete form:

order inu, in order to be consistent with the expansion of
the equilibrium distribution function given by Eq. (8). J= = pele, —ul- Vin(p?g).  (15)
Following the same discretization procedure for the

. o . .
equilibrium distribution function, we obtain the forcing fo|r Ionbctlau'ﬂler:c? _tShe discretized', the lattice Boltzmann equation
ined i

fax + eadit + 8,) — falx,t) = —§ [fale,t) = fV0,0)] — bpgfleP(x,1) (ea — u) - V(p?g)8; — Fud;.

(16)
The Navier-Stokes equations derived from the above LBE)otentiaI U(x) = U(p(x)) is explicitly given, and the
model are [15] change of velocity: due toU(x) is given by
d;p + V- (pu) =0, (17a)

Su = —-VU(x)76; = até;.

1
du +u-Vu = ~ VP + vV’u +a, (17b) By substitutingz with u + 6u into the equilibrium distri-

. ) bution function, we have
where the viscosity

(27 — g) 82
L _Qr—g &

(18)  fled) = wap[l e w) | Sea ) 3u2}

6g S, c2 2c4 2c2
and the pressure (or the equation of state) is given by 1 (eo - )
P =p6(1 + bpg). (19) - 3wap[§(ea —u) + 3“0—4%} - ard,
Obviously, the above is a nonideal gas equation of state. 5 5
For ideal gases such that= 0 andg = 1, P andv reduce L3 Wap[“_ + M}-ng_ (21)
to previous results for ideal gases. The dependence of the 2 2 ct

viscosityr ong can be removed by replaciggn the BGK
collision term by1. .

Given the equation of state, the Helmholtz free energ;?j's'[r
density can be obtained as .

In the above result, the first part is the usual equilibrium
ibution which has an ideal gas equation of state built
The second part is supposed to account for interac-
tion or nonideal gas effects, which leads to the identical
Y(p) = pf %dp — p9|:|np + bf gdp:|. (20)  forcing term given by Eq. (14). By combining the forc-
p ing term with the pressure in the Navier-Stokes equation,
That is, with eitherP or ¢ given, one can derive all the i.e.,Vp# + VU = V(p6 + U), the equation of state be-
relevant thermodynamic quantities from the free energgomesP = [p# + U(p)]. Thus, the nonideal gas effects
function . With the free energy and the equation of are effectivelymimicked by the potential/. Of course,
state defined, the Maxwell construction [18] to determinethe physical concept of this approach is incorrect and the
the coexistence curve becomes physically meaningful andnmediate shortcoming is that the heat flux, and hence the
consistent. The phenomenon of liquid-gas phase transitioenergy balance equation, is incorrect [15]. Furthermore,
can be simulated using this model by changing the value dhe third part in Eq. (21), which is proportional & and
b [ gdp (by adjustingb or g) in the free energy density nonlinear ina, is not consistent with what is obtained from
i relative to the temperatu as indicated by Eq. (20). Eq. (4).
A comparison with the existing models [5—7] is now We should also discuss a recent revision of the Shan and
in order. In the Shan and Chen model [5], an arbitraryChen model [7] in which a forcing term proportional to
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fff‘J)(ea — u) - F§, is derived with some crude approxi- correct starting point for nonideal gases. The model de-
mations: the forceF ~ —VV — bpgVIin(p2g), andV  rived here is free of the defects of the existing models. The
accounts for the attractive part in the interaction. Thisapproach is rigorous and systematic. Not only the equation
model produces a nonideal gas equation of stAtes  of state for nonideal gases is obtained, but also the required
p0(1 + bpg) + V,asexpected. However, the derivation thermodynamic consistency is achieved. Also, the proce-
of this model closely follows the derivation of the previ- dure illustrated here is general and can be easily extended
ous model. Therefore, these two models share the sante other lattice Boltzmann models for complex fluids, e.g.,
problems, such as incorrect heat transfer. binary mixtures or multicomponent fluids.

A comparison with the model proposed in [6] is slightly  The author thanks Dr. H. Chen, Dr. N. Martys, Profes-
more elaborate. Stressing the consistency of thermodysor R. Fox, and Professor J. Nuttall for helpful discus-
namics and being inspired by Cahn-Hilliard’s model [19], sions, and Dr. J. R. Ristorcelli and Dr. R. Rubinstein for
Swift et al. [6] start with a free energy functional, careful reading of the manuscript.
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