
VOLUME 81, NUMBER 8 P H Y S I C A L R E V I E W L E T T E R S 24 AUGUST 1998

ysics,
9

159
Extracting Classical Trajectories from Atomic Spectra
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We describe how to reconstruct individual classical trajectories from spectroscopic data. The ac
dipole moment of a trajectory can be found from the effect of an oscillating field on the spectrum.
The inverse Fourier transform of such data yields the component of the electron trajectory along the
direction of the oscillating field. We demonstrate the method by experimentally extractingzstd for two
electron trajectories that influence the Stark spectrum of Rydberg lithium. Within the experimental
resolution, the reconstructed orbits agree well with classical predictions. [S0031-9007(98)06988-9]
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The classical behavior of a dynamical system is e
pected to be derivable from its underlying quantu
structure, and new methods of connecting classical a
quantum approaches continue to be developed. Perio
orbit theory [1] and its variants allow one to learn abou
the actions and stabilities of classical orbits from a sy
tem’s quantum density of states (though it is typical
used the other way around). There are only a few me
ods that can be used to find the trajectories themselves
their position as a function of time—and the methods a
either indirect [2] or require knowledge of the quantum
wave functions in addition to the spectrum [3,4]. W
present here the results of a new study in which sem
classical methods are used to reconstruct a trajectory fr
experimental spectroscopic data.

When we speak of the “classical trajectory of an ele
tron,” we mean, of course, the path the electron wou
follow if it obeyed the laws of classical mechanics. I
quantum mechanics an electron is not a localized obj
moving along a path. Nevertheless, a classical path is s
nificant even in the quantum world—in semiclassical the
ries we use classical paths to construct wave functions a
spectra. We demonstrate here that the process is inv
ible: under appropriate conditions such classical paths c
be reconstructed from observed quantum spectra.

Rydberg atoms in external fields are an excellent lab
ratory for studying semiclassical methods experimental
Their spectra can be interpreted with a variation of th
periodic orbit theory known as closed orbit theory [5,6
Closed orbit theory relates fluctuations in the atomic ph
toabsorption spectrum to the system’s classical closed
bits (orbits that begin and end at the nucleus). A spectru
taken under conditions obeying classical scaling laws c
be Fourier transformed to yield a “recurrence spectrum
in which each closed orbit appears as a peak in a plot
intensity vs action [7]. This procedure establishes the e
istence and action of the closed orbits, and provides so
information about their stabilities and initial directions
From the change in peak positions when experimental p
2 0031-9007y98y81(8)y1592(4)$15.00
x-
m
nd
dic
t

s-
ly
th-
—

re

e
i-

om

c-
ld
n
ect
ig-
o-
nd

ert-
an

o-
ly.
e

].
o-
or-
m
an
,”
of
x-
me
.
a-

rameters are changed, it is also possible to learn about t
periods and average electric dipole moments of the orbi
[8]. However, the orbits themselves (the electron positio
as a function of time) have hitherto been experimentall
inaccessible.

The idea that the shape of an orbit could be deduce
from spectroscopic data arose from a study of recurren
spectra of Rydberg atoms in a static electric field, pe
turbed by an additional weak time-dependent electric fiel
[9]. The oscillating field was observed to reduce the
strengths of recurrences systematically. The effect wa
explained by generalizing closed orbit theory to time
dependent systems. Most intriguingly, the pattern of th
weakening depends on the Fourier transform of the class
cal orbits of the electron in thestaticsystem. But suppose
the static part of the Hamiltonian (e.g., the configuratio
of electric and/or magnetic fields) was not known. Would
it be possible to use oscillating field experiments to mea
sure the Fourier transform of the motion for a range of fre
quencies, take the inverse Fourier transform, and there
learn about the shape of the orbit?

We present here the results of a new study which show
that this is indeed possible. By doing spectroscopy in a
oscillating field, we gain new information that allows us to
reconstruct a trajectory directly—without measuring the
wave function and without relying on detailed knowledge
of the static Hamiltonian. We describe this new metho
and use it to reconstruct two electron orbits important t
the Stark spectrum of lithium. Within the limits of the ex-
periment, the measured orbits are in excellent agreeme
with the orbits predicted by classical simulation.

We use cw laser spectroscopy to study the Rydbe
spectrum of lithium in a constant electric fieldF  Fẑ,
perturbed with a weak oscillating fieldF1  F1ẑ cossvtd.
The experimental setup is similar to that used in a
earlier study of recurrence spectra in a static field [10
The oscillating field is coupled through a static field
plate, and its strength is calibrated by measuring th
sideband structure on a low-lying Rydberg state. Whil
© 1998 The American Physical Society
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the atoms are in the combined fields, we measure t
laser photoexcitation rate from the3s state to final states
corresponding to the principal quantum numbers arou
n  125 andm  0.

The system can be described by the Hamiltonia
for hydrogen because the large-scale structure importa
to these experiments is unaffected by the lithium co
electrons [10]. The Hamiltonian obeys a classical scalin
law and can be written

H̃ 
p̃2

2
2

1
r̃

1 z̃f1 1 f̃ cossṽ t̃dg  F21y2Estd , (1)

where the tildes denote scaled quantities:r̃ ; F1y2r,
p̃ ; F21y4p, and t̃ ; F3y4t [9]. Because of the scaling
law, the unperturbed classical dynamics depends on
on the scaled energye ; E0F21y2, where E0 is the
initial energy of the electron, measured relative to th
field-free ionization threshold. The classical dynamic
of the perturbed system depends one and also on the
scaled parameters̃f ; F1yF and ṽ ; vF23y4 which
characterize the oscillating field.

We measure scaled spectra of this system by record
the photoabsorption spectrum as a function ofw ; F21y4

while the laser energy, the static and rf field amplitude
and the rf frequency are varied simultaneously so as
maintaine, f̃, and ṽ constant. The magnitude squared
of the Fourier transform of a scaled spectrum with respe
to w is called a recurrence spectrum. Such a spectru
exhibits a peak at the scaled actionS̃k ; F1y4Sk of each
classical closed orbitk of the electron. Examples of
recurrence spectra are shown in Fig. 1.

FIG. 1. A series of experimental recurrence spectra taken
e  22.05 and ṽ  1.4, with 19 different oscillating electric
field strengths. The recurrences atS̃  7.23 correspond to the
2y3 orbit, those atS̃  10.68 to the 3y4 orbit. The lines are
fits of the data to Eq. (2). The fits yield̃T2y3jZ̃2y3j  0.417
and T̃3y4jZ̃3y4j  0.221 (classical calculation gives0.437 and
0.219, respectively). The data were recorded from248.8 #
w # 260.6.
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References [9,11] investigate the effect of an oscillatin
field on a recurrence spectrum by considering how t
oscillating field perturbs the classical orbits of the stat
system. Based on general semiclassical arguments, it
be shown that the recurrence spectrum of a static syst
perturbed by a weak oscillating field is similar to that o
the static system alone, except that the recurrence stren
(i.e., the height of the peak) associated with orbitk is
reduced by the factor

aksF1d ; J2
0 fF1TkjZksvdjyh̄g . (2)

Tk is the period of theunperturbedorbit k, andZksvd is
its complex ac dipole moment. The combinationTkZk is
given by

TkZksvd ;
Z Tky2

2Tky2
zkstde2ivt dt , (3)

wherezkstd describes thez motion of the electron along
the unperturbed closed orbit as a function of time, leavi
the atom at time2Tky2 and returning at timeTky2. (The
z motion is singled out by the polarization of the os
cillating field.) Note that Eq. (2) applies even when th
frequency of the rf field is comparable to or exceeds t
frequencies of the classical orbits.

For the present case these formulas can be written
scaled variables, and the argument of the Bessel funct
becomesf f̃T̃kjZ̃ksṽdjw̄g, wherew̄ is the average value of
F21y4. We determinẽzkstd from experimental data with
the following procedure: (i) Measure recurrence spec
at a series of increasing values off̃, at a fixed frequency
ṽ (see Fig. 1). (ii) Select the recurrence peak correspon
ing to the classical orbit of interest, measure its height a
function of f̃, and from these results obtain experiment
values ofaks f̃d at that frequency. (iii) ObtaiñTkjZ̃ksṽdj
by fitting these data to the scaled version of Eq. (2
(iv) Repeat the entire process for successive values ofṽ.
(v) Insert the missing complex phase information to d
rive T̃kZ̃ksṽd from its modulus (this step is explained be
low). (vi) Fourier invert Eq. (3) to obtaiñzkstd. The x
andy components of the orbit could be reconstructed b
performing additional experiments with other oscillatin
field polarization directions [12].

A major difficulty is the loss of the complex phase
of Z̃ksvd. Physically, this phase indicates when a
electron must leave the atom (relative to the phase
the oscillating field) in order for the trajectory to be
maximally perturbed. That information is not availabl
because the experiment averages the absorption o
many cycles of the rf field.

Fortunately, in our system it is possible to recove
the phase. All of the closed orbits of hydrogen in
static electric field are time-reversal symmetric about the
midpoints—that is,̃zks2td  z̃kstd. For orbits with this
time-reversal symmetry,̃Zk is real, and we subsequently
denote itZ̃R

k sṽd.
1593
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It remains only to determine this real function from its
absolute value. We find its sign atṽ  0 by noting that
Z̃R

k s0d is the orbit’s static dipole moment, which can be
found from the unscaled relationTkZR

k s0d  2≠Sy≠F.
FromS  SsE, Fd  S̃sedF21y4, it can be shown that

T̃kZ̃R
k s0d 

1
2 eT̃k 1

1
4 S̃k . (4)

The periodT̃k can, in turn, be measured experimentall
by varying the scaled energy and using the relationT̃k 
≠S̃ky≠e. Note that the accuracy of this measurement
not critical because we use only Eq. (4) to get thesign of
T̃kZ̃R

k at ṽ  0.
Furthermore, sincẽZR

k sṽd comes from the finite-time
Fourier transform of a continuous function, it depend
continuously and smoothly oñv. Therefore, knowing
the sign ofZ̃R

k at ṽ  0, we can determine its sign for
increasingṽ by inverting the sign at each zero crossing
[Such zero crossings can be seen in Fig. 3 (below), ne
ṽ  1.65.]

ThusZ̃R
k sṽd, including its sign, is determined. We in-

vert Eq. (3) by expressing̃zkstd as a sum of smooth ba-
sis functions,

P
n anfnstd. ThenZ̃R

k sṽd 
P

n anFnstd,
where the basis functionsFnsṽd and fnstd are related
by a Fourier transform. We determine the coefficientsan

from a least squares fit of̃ZR
k sṽd to the signed experimen-

tal data.
We have studied two closed orbits of lithium, the “2y3”

and the “3y4” orbits. (The orbit label, described in [13],
identifies the bifurcation in which it was created from
the primitive closed orbit that exists along the positiv
z axis.) The exact classical orbits, computed numericall
are shown in Fig. 2. The chosen energy wase  22.05,
slightly below the saddle point of the potential surfac
at e  22. The orbits are both directed “downhill”
toward the saddle point. They were chosen becau
their relatively long periods enabled the limited frequenc

FIG. 2. Computed classical trajectories ate  22.05. Solid
line: 2y3 orbit; dotted line: 3y4 orbit. The vertical axis is the
distance along thẽz axis; horizontal axis is the radial distance
r̃ from the z̃ axis.
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range of the experiment to access a significant fraction
the total Fourier power withiñZksṽd.

Figure 1 shows the recurrences corresponding to the
orbits at a single value ofṽ and a range of values
of f̃. Such series of measurements were made f
17 different scaled frequencies in the range0.6 # ṽ #

4.0. The resulting values of̃TkjZ̃kj for the 2y3 and 3y4
orbits are shown in Fig. 3. It can be seen that, acro
the experimentally accessible frequency range, agreem
between data and theory is good—within about 10%.

The periods for the orbits were found to bẽT2y3 
3.75 6 0.31 and T̃3y4  4.4 6 0.3 (the true values are
3.720 and3.915, respectively). The accuracy is limited by
the calibration of the electric field. The uncertainty doe
not include possible systematic effects due to other orb
with similar actions, though these may be present in th
3y4 orbit. Inserting these numbers into Eq. (4) correctl
indicates that̃ZRs0d is negative for both orbits.

Figure 4 showsz̃std for the two trajectories. The
heavy solid lines show the orbits as reconstructed by th
experiment. The qualitative behavior of the trajectorie
can easily be discerned. The light lines are the exa
classical trajectories. Note that, as seen in Fig. 2, bo
orbits initially move from the nucleus in the2z direction
before they are turned back toward the nucleus by th
electric field. The 2y3 orbit loops back to the nucleus
once before closing while the 3y4 orbit loops back twice.

The time resolution of the reconstructed trajectories
limited by the experimental frequency range. This in
turn was limited by the difficulties in coupling the rf
power into the field plates, permitting an actual frequenc
range of 200–1260 MHz, and a scaled frequency ran
0.6 # ṽ # 4.0. Therefore, details with a time scale
shorter thanDt , 1yṽmax  0.25 are not probed by
this experiment. Expressed another way, atṽ  4, the
oscillating field goes through about2.5 cycles during the
time of an orbit—adequate to determine only three o

FIG. 3. Experimental measurement ofT̃ jZ̃sṽdj. The circles
are the results of fits to data like those in Fig. 1 to the form o
Eq. (2). The solid lines are classical calculation. (a) 2y3 orbit;
(b) 3y4 orbit. The points at̃v  0 are found using Eq. (4).
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FIG. 4. Reconstruction of classical orbits. The light sol
lines show the exact classical trajectories,z̃std. The heavy
solid lines show the experimental reconstructions. The das
lines show the exact trajectories, filtered through the exp
imental frequency window,0.6 # ṽ # 4.0. (a) 2y3 orbit;
(b) 3y4 orbit.

four coefficients in the orbit reconstruction. In order t
illustrate the severe effect of the finite frequency rang
Fig. 4 also shows the exact trajectories filtered throu
the experimental frequency window (dashed lines).

Our experiment produces accurate, albeit low
resolution, pictures of classical trajectories important
the Stark spectrum of lithium. Even the low-resolutio
reconstructions afforded by the experiment allow one
see the qualitative motion of each classical trajectory a
in particular, the different number of loops executed b
each orbit—information that is available from no othe
experiment.

When classical trajectories are extracted from a qua
tum system, the resolution is necessarily limited by Heise
berg’s uncertainty principle. How close is this experime
to that limit? Or put another way: To what extent cou
the resolution of the reconstructed trajectory be improv
by increasing the frequency range of the experiment?

The semiclassical analysis relies on the assumptions
the rf frequency is much lower than the laser frequenc
and that the classical orbits are large compared with
size of the atom. If either of these assumptions brea
down, then the fuzziness of the initial state would crea
fuzziness in the reconstructed trajectory. Considering t
the size of the initial state is only a few Bohr radi
whereas the smallest distance probed in this experim
is a few thousand Bohr radii, we are clearly orders
magnitude away from the uncertainty principle limits
Hence, the resolution in the current experiment is limite
by experimental, not fundamental, restrictions. Muc
more classical detail could be extracted by our method.

Our demonstration that it is possible to reconstruct cla
sical trajectories from spectral data relies on only a fe
properties of the system: (i) The initial state occupi
only a small region of space. (ii) Outside that region
semiclassical (short-wavelength) approximation is app
id
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priate. (iii) The time-dependent “probing” Hamiltonian is
known, and has the formF1z cossvtd. These assump-
tions are sufficient for the validity of Eq. (2), which al-
lows us to inferjZ̃svdj from experimental measurements.
In the present case, to obtainz̃st̃d we also used the facts
that the classical orbits are time-reversal symmetric (nec
essary because of the loss of phase information discuss
above), and that the complete Hamiltonian is scaling (thi
is convenient but not essential to the method). Althoug
we applied the method to the Stark spectrum of lithium—
a system whose classical and quantum dynamics were
ready well understood—the method does not depend o
the details of that system. It should be possible to appl
the technique to systems for which the classical or eve
quantum behavior is not known.
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