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The closed shell structure atN ­ Z ­ 28 is studied by a large-scale shell model calculation
by the quantum Monte Carlo diagonalization method. Latest crucial improvements of the method
are described. The doubly closed shell probability of56Ni is shown to be only 49% in a full
pf shell calculation, in contrast to the corresponding probability of48Ca which reaches 86%.
[S0031-9007(98)06895-1]
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Quantum Monte Carlo approaches to many-body pro
lems have been developed recently in various forms. F
the nuclear shell model, the shell model Monte Car
(SMMC) [1] and the quantum Monte Carlo diagonaliza
tion (QMCD) [2–4] methods have been proposed and d
veloped so that they have practical applications. In th
Letter we report the latest crucial improvements of th
QMCD method and then discuss its application to th
structure of56Ni. The nucleus56Ni is one of the un-
stableN ­ Z nuclei. Its doubly magic structure has bee
expected [5], while the closed shell is evidently one o
the key dominating structures of nuclei, which is of muc
general interest. Also, features of yrast states of56Ni are
discussed up to121, presenting intriguing irregularities.

We first briefly sketch the QMCD method [2–4]. We
consider the imaginary time evolution operatore2bH

for the HamiltonianH, and divide b into Nt slices:
e2bH ­

QNt
n­1 e2DbH , whereDb ­ byNt . By applying

the Hubbard-Stratonovich (HS) transformation [6], w
can expresse2bH as the integration of an operatorQNt

n­1 e2Dbhs $snd, whereH is the shell model Hamiltonian
consisting of single-particle energies and a two-bod
interaction, hs $sd is a one-body operator, and the$s
denotes a set of auxiliary fields, i.e., integral variable
The hs $sd contains parameters determined byH and
includes each component of$s linearly. In the QMCD
method, we generates ; h $s1, . . . , $sNt j stochastically
and obtain many-body basis states of the form [2]

jFssdl ~

NtY
n­1

e2Dbhs $sndjCs0dl , (1)

where jCs0dl is an initial state. These states are calle
QMCD bases. The Hamiltonian is diagonalized withi
the Hilbert subspace spanned by the QMCD bases. Th
number is called the QMCD basis dimension.

It is convenient to adopt QMCD bases in the form
of Slater determinants:jFl ­

QN
a­1 ay

aj2l, where N
denotes the number of valence nucleons,j2l is an inert
spherical core, anday

a represents the nucleon creation
operator for a canonical single-particle statea, which is
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a linear combination of the spherical bases. Note that
form of a Slater determinant is kept in Eq. (1).

The formulation of the QMCD method is divided into
three phases. In the first stage, i.e., phase I, the QMC
bases are generated according to Eq. (1) [2]. Phase I
been shown to be good for simple systems [2]. It w
realized, however, that phase I is not efficient enough f
handling realistic shell model systems [4].

We then introduced several improvements, moving
phase II [4], so as to enhance the efficiency of the QMC
calculations. Since, in practice, the number of managea
bases is finite, we should first select bases of high
importance. Thus, we rewritehs $sd so that the sampling
of the bases is made around a mean-field solution,
instance, a Hartree-Fock (HF) local minimum.

The other improvement made concerned the restorat
of symmetries [3,4]. The nucleus is an isolated syste
and conserves several symmetries. Their restoration
practically impossible in stochastic processes, except
extremely simple cases, as treated in [2], and one has
enforce the restoration. Rotational symmetry is restor
by the J drive [4] and theM projection [3], where the
angular momentum is represented by its magnitudeJ and
z componentM. The isospin is conserved properly [4].

Phase II means the combination of all of the abov
improvements and enabled us to perform various full on
major-shell calculations with realistic effective interaction
[4]. Although decent solutions have then been obtain
for most cases, it turned out that the calculation cannot
achieved with tractable QMCD dimensions in some cas
We, therefore, improve the method, resulting in phase I
We first recall the basis generation in phase II: The QMC
basesjF1l, jF2l, . . . , jFnl are assumed to be already fixed
We then assume that, as the calculation proceeds, state
generated by Eq. (1), andjf1l, jf2l, . . . , jFkl are adopted
as bases, because they lower the energy sufficiently [2
The eigenstate is then expanded asjcl ,

P
i cijFil 1P

i di jfil, where thec’s andd’s are amplitudes. This is
how phase II proceeds. It has been noted that the ba
jf1l, . . . , jFkl are usually quite redundant, and the valu
of k becomes too large in some cases, before a reason
© 1998 The American Physical Society
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convergence is achieved. This is partly because a ba
jfil may have rather poor overlap withjcl, and partly
becausejfil may contain components absent injcl to be
canceled by other bases.

This deficiency is inherent to the stochastic proce
due to unavoidable fluctuations. Hence, we revised
basis-generation method. Again, suppose that the ba
jF1l, . . . , jFnl are fixed already. One then generates t
next basis. In the above discussion on phase II, it isjf1l.
In phase III, for a candidate of the next basisjx1l, states
jx2l, . . . , jxll are generated by Eq. (1) in the vicinity o
jx1l. We then calculate the energy eigenvalues with d
ferent sets of bases,hjF1l, . . . , jFnl, jxilj by changingi
from 1 to l, and findjxal giving the lowest value. We
repeat this process: basesjx

s1d
2 l, . . . , jx

s1d
l0 l are generated

in the vicinity of jxal s; jx
s1d
1 ld similarly, andjx

s1d
b l giv-

ing the lowest energy is selected, etc. After reaching re
sonable saturation, one ends up with a statejj1l, which
should serve as the QMCD basisjFn11l. Compared to
jf1l, jj1l should be improved as a single basis in th
sense that it contains more relevant components lower
the energy and less irrelevant components to be cance
by other bases. To be intuitive, these relevant comp
nents scattered injf1l, jf2l, . . . are gathered to a good
extent intojj1l. By proceeding with this quasivariationa
process, the basesjj1l, jj2l, . . . are obtained asjFn11l,
jFn12l, . . . , respectively, instead ofjf1l, jf2l, . . . . Natu-
rally, the number of the abovejjl’s is much smaller
than that of the abovejfl’s for the same accuracy.
This means that the Hilbert space used for the Ham
tonian diagonalization can be greatly compressed. T
usage of such compressed bases enables us to carry
some QMCD calculations which are otherwise practica
infeasible.

For jx1l created by Eq. (1) withs1, the other states
jxil’s (i ­ 2, . . . , l) are generated, respectively, wit
s1 1 dsi, by still using Eq. (1) but introducing certain
shifts dsi’s. Each dsi is a set of vectors with many
components. Generally, individual components a
shifted independently. Since thes’s can be considered
to specify the path in the path integral interpretation
Eq. (1), the path is diffused in this revision, and the mo
favorable path is selected. This path diffusing meth
is easily incorporated into the calculation and turns o
to be extremely useful. There are various flexibilities
the concrete manner of the path diffusing, for instanc
how much the path is diffused. What is important is th
basis selected. We have confirmed that the final resu
are insensitive to such details, if the calculation comes
reasonable saturation. The path diffusing is carried o
already for the first basis.

The HS transformed imaginary-time evolution operat
[see Eq. (4) of [2] ] with Monte Carlo (MC) sampling
is not used as the projection operator in the QMC
method. Instead, we utilize the property that it shou
produce states comprised mainly of dominant compone
sis
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of low-lying eigenstates with larger relative probabilitie
or higher redundancies with different sets of thes’s, both
of which yield larger net probabilities of the dominan
components. On the other hand, it is unlikely that th
MC sampling hits precisely one of the favorable states
the QMCD bases. In phase III, therefore, thes’s are first
produced by the original MC sampling, but the candida
state is refined as stated above. Since only favora
states are then selected, one can compress the basis s
This compression process is one of the characteris
differences of the QMCD method from other quantu
Monte Carlo approaches, where a much larger numbe
states in the form of Eq. (1) are taken so as to evaluate
effects of their proper superposition.

We now move on to the other major improvement, i.e
the restoration of the angular momentum,J. TheJ drive
introduced in [4] is useful, but is sometimes unable
go beyond accuracyksJ ? Jdl , 0.1 for the 01 ground
state in full pf-shell calculations. In order to remove
uncertainties associated with this, all QMCD basis vecto
are projected onto goodJ and M, when their matrix
elements are calculated. TheK-mixing amplitudes are
evaluated, for instance, so as to minimize the ener
when the basis is added. Thus, the uncertainty concern
angular momentum is completely removed in practic
Note that the rotation about the Euler axes is actua
performed by numerical integration with sufficiently larg
numbers of mesh points.

The bases are varied and selected in the most nat
way by monitoring the energy obtained from matri
elements projected onto goodJ and M, denoted asJ-
compressedbases. This process, however, requires
longer computation time. Instead, we can use the ene
obtained by projecting onto onlyM (usually with M ­
J), resulting inM-compressedbases. TheM-compressed
bases are generated much faster, and yet appear to be
good. We use them unless otherwise stated. When
M-compressed basis is fixed and added to the basis
the Hamiltonian matrix is computed with the projectio
onto goodJ andM and is diagonalized. Isospin is treate
exactly by utilizing the method in [1].

For a rotationally invariant Hamiltonian, energies a
M degenerate. This degeneracy makes the calcula
slower while it is removed by projecting ontoM. Thus,
M projection is crucial in basis generation.

The validity of phase III has been confirmed by compa
ing with the exact result for48Cr [7]. With the QMCD di-
mension 40, the ground-state energy has been reprodu
within 130 keV. Excitation energies have been reproduc
even better, e.g., within 30 keV up to101.

We apply the QMCD shell model in phase III to a
N ­ Z nucleus, 56Ni, where the N ­ Z ­ 28 closed
shell structure has been expected due to the spin-o
splitting [5]. Since this closed shell can be destroye
by mixing within the same major shell, the calcula
tion with the full pf-shell configurations is crucial.
Such calculations, however, have been limited to ligh
1589
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pf-shell nuclei. The QMCD calculation presented belo
is the first fullpf-shell calculation for56Ni.

The single-particle energies and two-body interacti
are those called FPD6 [8] and KB3 [9]. The FPD6 is a
empirical two-body interaction adjusted forA ­ 41 49
nuclei [8]. The KB3 is based upon theG matrix in [10]
with slight empirical improvement [9]. In both cases, th
single-particle energies are obtained from experimen
levels of nuclei around40Ca. We stress that both the
FPD6 and KB3 interactions have been designed for f
pf-shell calculations.

The KB3 has been shown to be quite good forpf-shell
nuclei withZ, N up to,26 [7,11]. On the other hand, the
FPD6 has certain advantages for heavier nuclei, includ
56Ni, owing to a better effective gap betweenf7y2 and the
other pf-shell orbits, produced by a somewhat differe
monopole component [11,12]. On the other hand, the
two interactions should have rather similar multipo
components [13]. Therefore, the following discussio
are only for the FPD6. Some results with the KB3 a
also shown, as specifically mentioned.

Figure 1 shows energy levels of56Ni up to 121. One
sees a good agreement between calculation and exp
ment [14]. Experimental yrast levels are well reproduc
including intriguing irregularities. This agreement sug
gests the validity of the present calculation. For stud
ing high-spin states, the method is improved by takin
the cranked HF scheme, instead of the normal one, in
basis generation process, so as to increase high-spin c
ponents in the bases. Note that this change is only for
basis generation and the original Hamiltonian is diagon
ized for calculating the energy eigenvalue.

We now turn toE2 transitions. RecentlyBsE2; 01
1 !

21
1 d ­ 600 6 120 e2 fm4 has been measured, which i

rather large [15]. The FPD6 effective charges [8] pr
duce a somewhat too large value, and the isoscalar cha
is readjusted by multiplying by a factor of 0.9, resul
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FIG. 1. Experimental (EXP) yrast levels of56Ni compared
with QMCD results with FPD6 and KB3 Hamiltonians. Th
BsssE2; sL 1 2d1

1 ! L1
1 ddd value is indicated by the width of the

arrow, which is so that the experimentalBsE2; 21
1 ! 01

1 d value
takes its mean value, i.e.,120 e2 fm4 [15].
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ing in ep ­ 1.23e and en ­ 0.54e. One then obtains
BsE2; 01

1 ! 21
1 d ­ 610 e2 fm4. The BsE2d’s are calcu-

lated also for the high-spin states with these charges,
shown in Fig. 1. Figure 1 also includes results obtain
with KB3.

One of the salient advantages of the QMCD metho
over other quantum Monte Carlo approaches, includi
the SMMC, is its capability of direct analysis of the wav
function. This is particularly important in the present cas
in clarifying theN ­ Z ­ 28 closed shell structure: We
compute the probability of theN ­ Z ­ 28 closed shell
component in the wave function of the56Ni ground state.
The result is only 49%. This is rather small compare
to what would be expected for a closed shell nucleu
The occupation probability off7y2 is 0.91 for the ground
state. This means that, in the nondoubly magic part
the wave function, about three nucleons are excited fro
f7y2 on the average. Thus, if a truncated shell mod
calculation were attempted, at least6p6h excitations from
f7y2 should be included. The difference in the nucleo
occupation number inf7y2 is 1.6 between the ground and
first 21 states, denying a simple1p1h excitation picture.

We now discuss the structure of48Ca for comparison
[8]. The wave function of the48Ca ground state con-
tains theN ­ 28 and Z ­ 20 closed shell component
with 86% probability. This is much larger than the cor
responding value for56Ni. Thus, a sizable breaking of
the N ­ Z ­ 28 doubly magic is seen in56Ni, espe-
cially compared to48Ca. If the N ­ Z ­ 28 shell of
56Ni were broken by the same mechanism as theN ­ 28
shell of 48Ca, the closed shell probability of56Ni would
be given by the square of the corresponding value of48Ca:
s0.86d2 ­ 0.74. Clearly, the actual value, 0.49, is muc
smaller. This is because theN ­ Z ­ 28 shell of 56Ni
is broken largely due to interactions between a valen
proton and a valence neutron, particularly terms with
quadrupole nature. This seems to be a consequence
strong proton-neutron correlations characterizingN ­ Z
nuclei, where the proton-neutron pairing may arise [16
On the other hand, the neutron-neutron pairing should
the major cause of breaking theN ­ 28 shell in 48Ca.

Figure 2 shows, as functions of the QMCD dimensio
the 21

1 , 61
1 , and 101

1 levels. The angular momentum is
restored in phase II as the QMCD dimension increas
and converges as the energy does [4]. In phase III, ea
basis is projected onto goodJ andM, and the change is
entirely due to the dynamical structure. Figure 2 indicat
that excitation energies vary for small QMCD dimension
but become quite stable as the dimension becomes la
enough (,20). Two lines for a given spin/parity mean
results of two different calculations. The41

1 , 81
1 , and121

1

levels show similar trends.
We now compare energy levels ofJ ­ 2 , 8,

obtained by theM-compressed bases, to those by theJ-
compressed bases. The differences are found to be ra
small: 0.05 , 1%. Thus, the excitation energies can b
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FIG. 2. Excitation energies as functions of QMCD dimen
sions. Solid and dotted lines correspond to two independ
calculations.

evaluated to a good approximation with theM-
compressed bases. The differences are slightly larger
BsE2d values, because they are more sensitive to deta
of the wave functions. TheBsE2d values in Fig. 1 are
calculated with the aboveJ-compressed bases for the
states belowJ ­ 8, for the sake of higher precision.

The ground-state energy becomes2203.100 MeV in
a calculation with 30J-compressed bases. This valu
is about 5.5 MeV below the HF energy. Although th
ground-state energy still goes lower at this dimensio
its gradient is rather small. TheM ­ 0 Hilbert space
has a dimension of,1.1 3 109 for 56Ni in the full pf
shell, whereas the dimension decreases to,25 3 106

in the truncation up to6p6h excitations from thef7y2
closed shell. In this truncation, the ground-state ener
has been computed as2203.063 MeV by conventional
methods [17,18]. In the QMCD, although the ground
state energy can be evaluated to a good extent, its ex
value may not be reached, in general, because of few
dimensions. On the other hand, certain physical quantit
such as excitation energies show (near) convergence
functions of the QMCD dimension. For instance, the21

1
state exhibits this feature in Fig. 2. In the above6p6h cal-
culation, the21

1 level remains,0.4 MeV higher than this.
The E2 sum rule is730 e2 fm4, ,85% of which is

exhausted by the21
1 state. The fact that the KB3 is

too stiff for 56Ni [11,19] can be confirmed by Fig. 1,
where the 21

1 level of KB3 appears,3 MeV above
the experimental one. TheBsE2d values are shown in
Fig. 1 also for the KB3 with effective chargesep ­ 1.5e
and en ­ 0.5e used in [7]. TheE2 sum rule is515 6

40 e2 fm4 in the SMMC using the KB3 withep ­ 1.35e
anden ­ 0.35e [19], in agreement with the QMCD value,
540 e2 fm4.

We will briefly discuss the results obtained by assumin
an N ­ Z ­ 28 closed shell. If we assume that the
21

1 state is comprised of a1p-1h excitation from the
N ­ Z ­ 28 shell, its excitation energy becomes 4.
(6.1) MeV for the FPD6 (KB3) interaction. This is
-
ent
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significantly higher than the result of the full calculation,
particularly for FPD6. Likewise, theBsE2d sum rule
becomes about half of the above value.

In summary, we have presented the latest major an
crucial revision of the QMCD formulation. This revision,
i.e., phase III, is characterized by the compression o
the basis space and the precise treatment of the angu
momentum. Thus, in the QMCD calculation, favorable
bases are generated based upon their contribution to t
energy eigenvalue, and quite naturally some of such bas
or their seeds can be taken from mean-field solution
The lowest levels of56Ni are then well described with
the FPD6 interaction. It has been shown that the doub
closed shell structure is substantially broken in56Ni, in
contrast to48Ca. The irregular level structure of higher-
spin yrast states of56Ni is also reproduced, thus ensuring
the validity of the present conclusion. In view of this
study, the doubly closed shell structure of100Sn can be
questioned and is becoming a more intriguing issue.
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