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Structure of the N = Z = 28 Closed Shell Studied by Monte Carlo Shell Model Calculation
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The closed shell structure af = Z = 28 is studied by a large-scale shell model calculation
by the quantum Monte Carlo diagonalization method. Latest crucial improvements of the method
are described. The doubly closed shell probability 8Ki is shown to be only 49% in a full
pf shell calculation, in contrast to the corresponding probability “@®a which reaches 86%.
[S0031-9007(98)06895-1]
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Quantum Monte Carlo approaches to many-body proba linear combination of the spherical bases. Note that the
lems have been developed recently in various forms. Fdiorm of a Slater determinant is kept in Eq. (1).
the nuclear shell model, the shell model Monte Carlo The formulation of the QMCD method is divided into
(SMMC) [1] and the quantum Monte Carlo diagonaliza-three phases. In the first stage, i.e., phase |, the QMCD
tion (QMCD) [2—-4] methods have been proposed and debases are generated according to Eq. (1) [2]. Phase | has
veloped so that they have practical applications. In thiveen shown to be good for simple systems [2]. It was
Letter we report the latest crucial improvements of therealized, however, that phase | is not efficient enough for
QMCD method and then discuss its application to thehandling realistic shell model systems [4].
structure of°Ni. The nucleus®®Ni is one of the un- We then introduced several improvements, moving to
stableN = Z nuclei. Its doubly magic structure has beenphase Il [4], so as to enhance the efficiency of the QMCD
expected [5], while the closed shell is evidently one ofcalculations. Since, in practice, the number of manageable
the key dominating structures of nuclei, which is of muchbases is finite, we should first select bases of higher
general interest. Also, features of yrast state¥Mi are  importance. Thus, we rewrite(c) so that the sampling
discussed up td2*, presenting intriguing irregularities.  of the bases is made around a mean-field solution, for
We first briefly sketch the QMCD method [2—4]. We instance, a Hartree-Fock (HF) local minimum.
consider the imaginary time evolution operater?? The other improvement made concerned the restoration

for the HamiltonianH, and divide 8 into N, slices: ©Of symmetries [3,4]. The nucleus is an isolated system
e PH =V, ¢~2BH whereAB = B/N,. By applying and conserves several symmetries. Their restoration is
the Hubbard-Stratonovich (HS) transformation [6], wePractically impossible in stochastic processes, except for
can expresse #H as the integration of an operator, €xtremely simple cases, as treated in [2], and one has to
l—[N, | e~DBRG) \whereH is the shell model Hamiltonian enforce the restoration. Rotational symmetry is restored
n= 1 . . .
consisting of single-particle energies and a two-bodyPY the/ drive [4] and theM projection [3], where the
interaction, k(o) is a one-body operator, and the angular momentum IS reprgsgnted by its magnittidad
denotes a set of auxiliary fields, i.e., integral variables? COmponent. The isospin is conserved properly [4].

The h(&) contains parameters determined By and Phase Il means the combination of all of the above
includes each component &f linearly. In the QMCD improvements and enabled us to perform various full one-

method, we generater = {1, ..., o} Stochastically major-shell calculations with realistic effective interacti(_)ns
and obtain many-body basis states of the form [2] [4]. Although dgcent solutions have then bgen obtained
for most cases, it turned out that the calculation cannot be
achieved with tractable QMCD dimensions in some cases.
We, therefore, improve the method, resulting in phase IlI.
We first recall the basis generation in phase Il: The QMCD
where |[?©) is an initial state. These states are calledbased®,), |P,),...,|d,) are assumed to be already fixed.
QMCD bases. The Hamiltonian is diagonalized within\we then assume that, as the calculation proceeds, states are
the Hilbert subspace spanned by the QMCD bases. Thejfenerated by Eq. (1), afje,), |¢-),...,|®;) are adopted
number is called the QMCD basis dimension. as bases, because they lower the energy sufficiently [2,4].
It is convenient to adopt QMCD bases in the formThe eigenstate is then expanded |a$ ~ >, c;|®;) +
of Slater determinants{®) = [1V_,al|-), where N Y, d;|¢;), where thec's andd’s are amplitudes. This is
denotes the number of valence nucleons) is an inert how phase Il proceeds. It has been noted that the bases
spherical core, anah;[ represents the nucleon creation|¢),...,|®,) are usually quite redundant, and the value
operator for a canonical single-particle statewhich is  of kK becomes too large in some cases, before a reasonable

N,
| (o)) o= [ e 2PMO 9Oy, 1)

n=1
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convergence is achieved. This is partly because a basid low-lying eigenstates with larger relative probabilities
|¢;) may have rather poor overlap willfy), and partly or higher redundancies with different sets of th's, both
becausd ;) may contain components absentif) to be  of which yield larger net probabilities of the dominant
canceled by other bases. components. On the other hand, it is unlikely that this

This deficiency is inherent to the stochastic processMC sampling hits precisely one of the favorable states as
due to unavoidable fluctuations. Hence, we revised théhe QMCD bases. In phase IlI, therefore, this are first
basis-generation method. Again, suppose that the baspgoduced by the original MC sampling, but the candidate
|Dy),...,|®,) are fixed already. One then generates thestate is refined as stated above. Since only favorable
next basis. In the above discussion on phase Il,|ipi9.  States are then selected, one can compress the basis space.
In phase I, for a candidate of the next bakis), states This compression process is one of the characteristic
Ix2),...,|x:) are generated by Eq. (1) in the vicinity of differences of the QMCD method from other quantum
|x1). We then calculate the energy eigenvalues with dif-Monte Carlo approaches, where a much larger number of
ferent sets of base$|®,),...,|®,), |y;)} by changingi  states in the form of Eq. (1) are taken so as to evaluate the
from 1 to 7, and find|y.) giving the lowest value. We effects of their proper superposition.

repeat this process: basbgﬁ”}, L |Xl(’1)> are generated We now move on to the other major improvement, ie.,
. . O R Dy _. the restoration of the angular momentuim, TheJ drive
in the vicinity of | x.) (= |x; ) similarly, and|x ;") giv-

ing the lowest energy is selected, etc. After reaching re introduced in [4] is useful, but is sometimes unable to
1 . ~ . — +
sonable saturation, one ends up with a stgte, which ago beyond accuracy(J - J)) ~ 0.1 for the 0% ground

. state in full pf-shell calculations. In order to remove
|s£o>ulc|j §s>e Zﬁoﬁiﬂtgz ?m'\g(rzot\)/e%aif";1g'in;gnggzirgdintotheuncertainties associated with this, all QMCD basis vectors
1/1 1

. X ._are projected onto good and M, when their matrix
sense that it contains more relevant components Iowermglemems are calculated. The-mixing amplitudes are

the energy and less irrelevant components to be Cancel%q/aluated, for instance, so as to minimize the energy

by ?ther k;;asez._ To ble Intuitive, the?ﬁ rei;a\;ant ComEOWhen the basis is added. Thus, the uncertainty concerning
nents scattere i), ¢2>’."‘ are gathered 1o a goo angular momentum is completely removed in practice.
extent into|¢y). By proceeding with this quasivariational Note that the rotation about the Euler axes is actually

process, the bas@gy), [£2).... are obtained a§®,+1), performed by numerical integration with sufficiently large
|®,+5), ..., respectively, instead ¢tb1>,_ |$5),.... Natu- numbers of mesh paints.

rﬁlly, trr:e nL;mEer og the a}bolybﬁﬁ is much smaller e hases are varied and selected in the most natural
than that of the abovde)'s for the same accuracy. v by monitoring the energy obtained from matrix

This means that the Hilbert space used for the Hamilyiements projected onto goot and M, denoted as/-

tonian diagonalization can be greatly compressed. Th@ompressecbases. This process, however, requires a
usage of such compressed bases enables us to carry gyiger computation time. Instead, we can use the energy
some QMCD calculations which are otherwise practicallyypiained by projecting onto onlyf (usually with M =

infeasible. _ J), resulting inM-compressethases. Theé/-compressed

For [x1) created by Eq. (1) withry, the other states paqeq gre generated much faster, and yet appear to be quite
lxiy's (i =2,....1) are generated, respectively, with go04. We use them unless otherwise stated. When an
o1 + oy, by still using Eq. (1) but introducing certain 37_compressed basis is fixed and added to the basis set,
shifts 607’s. Eachéo; is a set of vectors with many he Hamiltonian matrix is computed with the projection

components. ~ Generally, individual components argnto good/ andM and is diagonalized. Isospin is treated
shifted independently. Since the's can be considered exactly by utilizing the method in [1].

to specify the path in the path integral interpretation of Eora rotationally invariant Hamiltonian, energies are
Eg. (1), the path is diffused in this revision, and the mosty; gegenerate. This degeneracy makes the calculation
favorable path is selected. This path diffusing methodsjower while it is removed by projecting onfd. Thus,
is easily incorporated into the calculation and turns oufys projection is crucial in basis generation.
to be extremely useful. There are various flexibilities in - The validity of phase Il has been confirmed by compar-
the concrete manner of the path diffusing, for instancejng with the exact result fof¥Cr [7]. With the QMCD di-
how much the path is diffused. What is important is themension 40, the ground-state energy has been reproduced
basis selected. We have confirmed that the final resultgithin 130 keV. Excitation energies have been reproduced
are insensitive to such details, if the calculation comes t@ven better, e.g., within 30 keV up 10" .
reasonable saturation. The path diffusing is carried out We apply the QMCD shell model in phase Il to an
already for the first basis. N = Z nucleus,°Ni, where theN = Z = 28 closed
The HS transformed imaginary-time evolution operatorshell structure has been expected due to the spin-orbit
[see Eq. (4) of [2]] with Monte Carlo (MC) sampling splitting [5]. Since this closed shell can be destroyed
is not used as the projection operator in the QMCDby mixing within the same major shell, the calcula-
method. Instead, we utilize the property that it shouldtion with the full pf-shell configurations is crucial.
produce states comprised mainly of dominant componentSuch calculations, however, have been limited to lighter
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pf-shell nuclei. The QMCD calculation presented belowing in e, = 1.23¢ and e, = 0.54¢e. One then obtains
is the first full p f-shell calculation foP®Ni. B(E2;0{ — 2{) = 610 ¢2fm*. The B(E2)’s are calcu-

The single-particle energies and two-body interactioniated also for the high-spin states with these charges, as
are those called FPD6 [8] and KB3 [9]. The FPD6 is anshown in Fig. 1. Figure 1 also includes results obtained
empirical two-body interaction adjusted far= 41-49  with KB3.
nuclei [8]. The KB3 is based upon th& matrix in [10] One of the salient advantages of the QMCD method
with slight empirical improvement [9]. In both cases, theover other quantum Monte Carlo approaches, including
single-particle energies are obtained from experimentahe SMMC, is its capability of direct analysis of the wave
levels of nuclei around’Ca. We stress that both the function. This is particularly important in the present case
FPD6 and KB3 interactions have been designed for fulin clarifying theN = Z = 28 closed shell structure: We
pf-shell calculations. compute the probability of th&y = Z = 28 closed shell

The KB3 has been shown to be quite good fgi-shell  component in the wave function of ti&Ni ground state.
nuclei withZ, N up to~26 [7,11]. On the other hand, the The result is only 49%. This is rather small compared
FPD6 has certain advantages for heavier nuclei, includingp what would be expected for a closed shell nucleus.
5Ni, owing to a better effective gap betwegf), and the  The occupation probability of7/» is 0.91 for the ground
other pf-shell orbits, produced by a somewhat differentstate. This means that, in the nondoubly magic part of
monopole component [11,12]. On the other hand, thesthe wave function, about three nucleons are excited from
two interactions should have rather similar multipole f; , on the average. Thus, if a truncated shell model
components [13]. Therefore, the following discussionscalculation were attempted, at leagt6h excitations from
are only for the FPD6. Some results with the KB3 aref; , should be included. The difference in the nucleon
also shown, as specifically mentioned. occupation number irf;/, is 1.6 between the ground and

Figure 1 shows energy levels 8Ni up to 12*. One first2* states, denying a simplep 14 excitation picture.
sees a good agreement between calculation and experi-We now discuss the structure $fCa for comparison
ment [14]. Experimental yrast levels are well reproducedg]. The wave function of thé’*Ca ground state con-
including intriguing irregularities. This agreement sug-tains the N = 28 and Z = 20 closed shell component
gests the validity of the present calculation. For studywith 86% probability. This is much larger than the cor-
ing high-spin states, the method is improved by takingresponding value fof’Ni. Thus, a sizable breaking of
the cranked HF scheme, instead of the normal one, in thtye N = Z = 28 doubly magic is seen if°Ni, espe-
basis generation process, so as to increase high-spin coglally compared to**Ca. If the N = Z = 28 shell of
ponents in the bases. Note that this change is only for th®Nj were broken by the same mechanism asrhe- 28
basis generation and the original Hamiltonian is diagonalshell of “Ca, the closed shell probability 6fNi would
ized for calculating the energy eigenvalue. be given by the square of the corresponding valu& G&:

We now turn toE2 transitions. RecenthB(E2;0] —  (0.86)> = 0.74. Clearly, the actual value, 0.49, is much
2{) = 600 + 120 ¢*fm* has been measured, which is smaller. This is because the = Z = 28 shell of Ni
rather large [15]. The FPDG6 effective charges [8] pro-is proken largely due to interactions between a valence
duce a somewhat too large value, and the isoscalar char%ton and a valence neutron, particularly terms with a
is readjusted by multiplying by a factor of 0.9, result- quadrupole nature. This seems to be a consequence of

strong proton-neutron correlations characterizvig= Z
15 nuclei, where the proton-neutron pairing may arise [16].
12" On the other hand, the neutron-neutron pairing should be

, L — the major cause of breaking the = 28 shell in*8Ca.
. Figure 2 shows, as functions of the QMCD dimension,
10 N e 10 - the 2], 6,, and 10 levels. The angular momentum is
R 8 restored in phase Il as the QMCD dimension increases

and converges as the energy does [4]. In phase lll, each
basis is projected onto goodand M, and the change is
entirely due to the dynamical structure. Figure 2 indicates

Ex (MeV)

that excitation energies vary for small QMCD dimensions

W but become quite stable as the dimension becomes large
0F —— o" A enm:gh ?20).0I f'l;wo IinesI folr a givenh?inﬁparit)é mfan
results of two different calculations. THg, 8, and12;
KB3 EXP FPD6 levels show similar trends.
FIG. 1. Experimental (EXP) yrast levels &fNi compared We now compare energy levels of =2 ~ 38,
with QMCD results with FPD6 and KB3 Hamiltonians. The obtained by theV/-compressed bases, to those by fhe
B(E2;(L + 2){ — L{) value is indicated by the width of the compressed bases. The differences are found to be rather

arrow, which is so that the experimen®(£2;2 — 07) value  small:0.05 ~ 1%. Thus, the excitation energies can be
takes its mean value, i.€120 ¢? fm* [15].
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L significantly higher than the result of the full calculation,
10 [ - particularly for FPD6. Likewise, theB(E2) sum rule
10 becomes about half of the above value.

In summary, we have presented the latest major and
crucial revision of the QMCD formulation. This revision,
/f\ ---------- - - i.e., phase Ill, is characterized by the compression of

* the basis space and the precise treatment of the angular
/\ﬂ\M_ | momentum. Thus, in the QMCD calculation, favorable
|/ 2+ ] bases are generated based upon their contribution to the
s . energy eigenvalue, and quite naturally some of such bases
: : L or their seeds can be taken from mean-field solutions.
0 10 20 30 40 The lowest levels of°Ni are then well described with
. . the FPD6 interaction. It has been shown that the doubly
QMCD dimension closed shell structure is substantially broken’iili, in
FIG. 2. Excitation energies as functions of QMCD dimen-co.ntraSt to*"Ca. The_i_rregular level structure of high_er-
sions. Solid and dotted lines correspond to two independerPin yrast states dfNi is also reproduced, thus ensuring
calculations. the validity of the present conclusion. In view of this
study, the doubly closed shell structure '8tSn can be
evaluated to a good approximation with th&-  questioned and is becoming a more intriguing issue.
compressed bases. The differences are slightly larger for We thank Professor B.A. Brown and Professor
B(E2) values, because they are more sensitive to detail&. Poves for providing FPD6 and KB3 two-body matrix
of the wave functions. Theé(E2) values in Fig. 1 are elements, respectively. We acknowledge Professor
calculated with the abovd-compressed bases for the A. Gelberg and Professor B.R. Barrett for reading the
states below = 8, for the sake of higher precision. manuscript. This work was supported in part by a
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ground-state energy still goes lower at this dimension,
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