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Neutron-3H and Proton-3He Zero Energy Scattering
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The Kohn variational principle and the (correlated) hyperspherical harmonics technique are app
to study then-3H andp-3He scattering at zero energy. Predictions for the singlet and triplet scatteri
lengths are obtained for nonrelativistic nuclear Hamiltonians including two- and three-body potenti
The calculatedn-3H total cross section agrees well with the measured value, while some small discr
ancy is found for the coherent scattering length. For thep-3He channel, the calculated scattering lengths
are in reasonable agreement with the values extrapolated from the measurements made above 1
[S0031-9007(98)06915-4]
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In the last few years the scattering of nucleons b
deuterons has been the subject of a large number of
vestigations. This scattering problem is in fact a very us
ful tool for testing the accuracy of our present knowledg
of the nucleon-nucleon (NN) and three nucleon (3N) in-
teractions. Noticeable progress has been achieved, bu
number of relevant disagreements between theoretical p
dictions and experimental results remains to be solv
[1,2].

It is therefore of interest to extend the above mentione
analysis to four nucleon scattering processes. In this ca
an important goal for both theoretical and experiment
analyses is to reach a precision comparable to th
achieved in theN-d case. This is particularly challenging
from the theoretical point of view, since the study ofA ­
4 systems is noticeably more complicated than theA ­ 3
one. Recently, accurate calculations of the alpha partic
binding energyB4 have been achieved [3–5]. It has
been shown that, withNN 1 3N potential models fitting
the 3H binding energy, no four-nucleon potential seem
necessary to reproduce the experimental value ofB4 [3].
Therefore, it is expected thatNN and 3N interactions
should be sufficient to describe the four nucleon scatteri
processes too. Thus, discrepancies between theory
experiment would be useful to gain further information
on the nuclear interaction. For example, the polarizatio
observables in the reactionp-3H are believed to be very
sensitive to the spin-orbit interactions [6]. Moreover
four nucleon reactions play an important role also i
astrophysics and other subfields of physics.

In this Letter, the problem ofn-3H and p-3He zero-
energy scattering is studied. The aim is to obtain accura
estimates of the corresponding scattering observables
using NN and 3N realistic interactions. The relevant
quantities inn-3H zero energy scattering are the single
as and tripletat scattering lengths. They can be obtaine
from the experimental values of the total cross sectionsT

and the coherent scattering lengthac,

sT ­ psjasj
2 1 3jatj

2d, ac ­
1
4 as 1

3
4 at . (1)
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Then-3H cross section has been accurately measured ov
a wide energy range and the extrapolation to zero ener
does not present any problems. The value obtained
sT ­ 1.70 6 0.03 b [7]. The coherent scattering length
has been measured by neutron-interferometry techniqu
The most recent values reported in the literature hav
been obtained by the same group; they areac ­ 3.82 6

0.07 fm [8] and ac ­ 3.59 6 0.02 fm [9], the latter
value being obtained with a more advanced experimen
arrangement. Recently, the estimation ofac ­ 3.607 6

0.017 fm has been obtained fromp-3He data by using an
approximate Coulomb-correctedR-matrix theory [10].

The corresponding quantities forp-3He scattering are
more difficult to evaluate. Approximate values have bee
determined from effective range extrapolations to zer
energy of data taken above 1 MeV, and therefore suff
large uncertainties [11,12].

From the theoretical point of view, the problem of
the scattering of four nucleons has been considered f
a long time (see Ref. [13], and references therein). Th
most widely used techniques are based on the Fadde
Yakubovsky (FY) equations [14–16] and the Kohn
Hulthén variational principles [17]. In the latter case, th
resonating group method has been used to parametr
the wave function (WF) [18,19], but also the expansio
of the WF on a hyperspherical harmonic (HH) basis ha
been investigated [20]. Calculations using the FY an
HH techniques, which allow for the full description of
the four-body dynamics, were performed by using simpl
central or separable potentials. Only recently, the F
equations have been solved by adopting realisticNN
potentials [21].

In the present paper, the wave functions of the scatteri
states are expanded in terms of the correlated hypersph
cal harmonic (CHH) basis [22] and the Kohn-Hulthén
variational principles are applied. Such a technique h
been successfully used in the study of theN-d scattering
below and above the deuteron breakup threshold. T
present calculations follow exactly the same line followe
in theN-d case described in Ref. [23]. Let us consider th
© 1998 The American Physical Society
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p-3He scattering; the case ofn-3H scattering can be easily
obtained in the limite2 ! 0, wheree is the unit charge (see
also Ref. [24]). The WF with total angular momentumJ,
parity P, and total isospinT , Tz can be written as

C
g
LS ­ C

g
C 1 F

g
LS , (2)

where the indexg denotes hereafter the set of quantum
numbersJ, P, T , Tz . The first termC

g
C of Eq. (2) must

be sufficiently flexible to guarantee a detailed descriptio
of the “core” of the system, when all the particles are clos
to each other and the mutual interaction is large;C

g
C goes

to zero when thep-3He distancerp increases. It has been
expanded in terms of CHH basis functions, following th
procedure discussed in detail in Ref. [5].

The second termF
g
LS describes the asymptotic configu-

ration of the system, for largerp values, where the nuclear
p-3He interaction is negligible. The quantum numberL
is the relative orbital angular momentum;S is the spin
obtained by coupling the spin1y2 of 3He to the spin of
the fourth nucleon. The angular momentaL and S are
coupled to give the total angular momentumJ. In the
present study the total isospin isT ­ 1. The function
F

g
LS must be the solution of the two-particle Schrödinge

equation appropriate for largerp values. It is convenient
to introduce the following surface functions

V
sld
LSg ­

4X
i­1

hYLsr̂id fFjk,xigSjJJz fjjk,jigTTz R
sld
L srid ,

(3)

where the productFjk, 3 jjk, is the WF C3He of the
3He bound state (in the case ofn-3H scattering, it is the
WF C3H of the 3H bound state). They are normalized to
unity and are antisymmetrical for the exchange of any pa
of particlesj, k, and,. Both C3He and C3H have been
determined as discussed in Ref. [23] by using the CH
expansion for a three-body system. Within this schem
the WF and the binding energyB3 are determined with
high accuracy. For example, theB3 evaluated for the
different potential models considered in this paper agr
within a few keV to the corresponding results obtained b
solving the Faddeev equations [25,26].

In Eq. (3), the spin (isospin) function of the unbound
nucleon i is denoted byxi (ji). Moreover, ri is the
distance between nucleoni and the center of mass of
3He. The functionsR

sld
L srid of Eq. (3) can be taken

to be the regular (l ; R) and irregular (l ; I) radial
solutions of the two-body Schrödinger equation withou
nuclear interaction. They are analogous to those used
N-d scattering [23].

With the above definitions, the asymptotic WF is
written as

F
g
LS ­ V

sRd
LSg 1

X
L0S0

g eRSS0

LL0V
sId
L0S0g , (4)

where the matrix elementg eRSS0

LL0 gives the relative weight
between the regular and the irregularL0S0 components.
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These elements are the reactance matrix (R matrix)
elements, except for some numerical factors [23]. Th
eigenvalues of theR matrix are tandLS, wheredLS are
the eigenphase shifts of the2S11LJPTTz wave.

The convergence of the expansion of the internal pa
C

g
C is conveniently studied by grouping the functions

of the basis in “channels” (a given channel contain
CHH states with the same angular-spin-isospin quantu
numbers). It is very useful to consider first the channel
with orbital angular momentum values as low as possible
One channel at a time is included in the expansion o
C

g
C ; the number of the CHH functions belonging to that

channel is increased until convergence is reached.
the contribution of that particular channel is found to be
sizable, the corresponding CHH functions are retained i
the expansion; otherwise, they are rejected. Then, othe
channels are added and the convergence studied in ter
of the total number of channelsNc. This procedure results
to be effective since (i) the value ofNc can be kept
rather low, and (ii) a small number of CHH functions
is sufficient, except for few channels. In particular, for
the states (S wave, T ­ 1) considered here, the number
of channels included finally in the wave functions is
rather small (Nc ø 6 8). This is due mainly to the Pauli
principle which prevents the overlap of the four nucleons
As a consequence, the internal part is rather small an
does not require a large number of channels.

The quantities to be determined in the WF (2) are th
hyperradial functions entering the HH expansion of the
internal partC

g
C , and the matrix elementsg eRSS0

JJ 0 . For
these, the Kohn or the Hulthén variational principles hav
been used. The Kohn variational principle establishes th
the following functionals,

fg eRSS0

LL0g ­ g eRSS0

LL0 2
M

p
6 h̄2

kCg
L0S0 jH 2 EjC

g
LSl , (5)

where g eRSS0

LL0 are the trial parameters entering Eq. (4)
must be stationary with respect to variations of all the tria
parameters of the WF. In Eq. (5),E is the total (c.m.)
energy andM the nucleon mass.

The form of the equations then derived and the pro
cedure to solve them is completely analogous to thos
of Ref. [23] and is not repeated here. With the Hulthén
variational principle the asymptotic function is written in
the form

F
g
LS ­ V

sId
LSg 1

X
L0S0

g eUSS0

LL0V
sRd
L0S0g , (6)

whereeU ­ eR21. The Kohn and Hulthén variational prin-
ciples lead to essentially different equations. Therefore,
the solutions in the two cases turn out to be close to eac
other, we are quite confident that they are close to the tru
solution.

The results for the singlet and triplet scattering length
for n-3H scattering are given in Table I, as a function
of the number of channels included in the WF. The
1581
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TABLE I. Singlet as and tripletat S-wave scattering lengths
(fm) for n-3H zero-energy scattering calculated with the AV1
potential and the Kohn (rows labeled K) or Hulthén (row
labeled H) variational methods.Nc is the number of channels
included in the CHH expansion of the wave functions (the ca
Nc ­ 0 corresponds to including in the WF only the asymptoti
terms). The last row reports the results obtained in Ref. [2
by solving the FY equations.

Method Nc as Nc at

K 0 4.38 0 3.87
K 1 4.33 2 3.82
K 3 4.33 4 3.82
K 4 4.32 6 3.80
K 6 4.32 8 3.80

H 6 4.32 8 3.80

FY 4.31 3.79

potential adopted in this case is the AV14 interactio
[27], so that a direct comparison with the results obtaine
in Ref. [21] by solving the FY equations can be made
From an inspection of the table, the rapid convergen
with Nc is evident; this fact reflects that (i) the scatterin
lengths are mainly determined by the asymptotic part a
(ii) the CHH expansion basis is very effective. Moreove
there is a strict agreement between the converged val
of the scattering lengths obtained by means of the Ko
and the Hulthén variational principles. Both estimate
compare very well with the FY results of Ref. [21],
which is a strong signal of the good accuracy of bot
calculations.

The calculated singlet and tripletn-3H scattering lengths
corresponding to different potential models are plotte
versus the corresponding3H binding energy in Fig. 1.
The most recent experimental values [9,10] ofas and at

have also been reported. The models including onlyNN
forces are the AV14 [27], AV8 [28], and AV18 [29] poten-
tials. Including3N forces we have the AV14 1 Urbana
model VIII (AV14UR) [30], AV18 1 Urbana model
IX (AV18UR) [3], AV 14 1 Brazil with L ­ 5.6mp

(AV14BR1) and AV14 1 Brazil with L ­ 5.8mp

(AV14BR2) [31]. In the AV14UR and AV18UR mod-
els, one of the parameters of the3N potentials was chosen
so that to reproduce the experimental3H binding energy
value B3 ­ 8.48 MeV. The AV14BR1 and AV14BR2
models have been chosen so as to give slightly largerB3
values. It should be noted that all the results for the si
glet (triplet) scattering length fall essentially on a straigh
line. However, the experimental values extracted fro
the data do not lie on the theoretical curves. This di
agreement is related to a rather small discrepancy betwe
the calculated and measured coherent scattering leng
as will be shown below.

The calculated total cross section and coherent sc
tering length for the AV14UR and AV18UR models
are compared with the experimental values [7–10]
Table II. These two potential models are chosen sin
1582
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FIG. 1. Singlet (full symbols) and triplet (open symbols)
scattering lengths plotted against the3H binding energy.
Circles labeled by a, b, c, d, e, and f correspond to th
AV18, AV14, AV8, AV18UR, AV14BR1, and AV14BR2
models, respectively. The AV14UR and AV18UR model
predictions are almost coincident. The squares (triangles) a
the experimental values of Ref. [9] (Ref. [10]). The straigh
lines are linear fits of the theoretical results.

they well reproduce the experimentalB3 value, and mean-
ingful comparisons with the scattering data extracted from
experiments can then be performed. From inspection
Table II, it can be concluded that there is a satisfactor
agreement between the calculated and the measured v
ues ofsT . The calculated coherent scattering lengths, dif
fer, however, by about 3% from the experimental values
This small discrepancy gives rise to the large difference
in the scattering lengths, when these are determined fro
the relations given in Eq. (1). In fact, in theas, at plane,
the ellipse corresponding to the experimental values of th
total cross sectionsT ­ 1.7 b, and the straight line cor-
responding to the coherent scattering lengthac ­ 3.7 fm
are almost tangent. Therefore, a slight change in theac

value produces a large variation ofas andat. This is also
the reason for the large uncertainty in the values ofas re-
ported in Fig. 1.

The 3He binding energyB3s 3Hed and the p-3He
scattering lengths as determined with the AV18 an
AV18UR models are presented in Table III, togethe
with the available experimental data [11,12]. It should

TABLE II. Total cross sectionsT (b) and coherent scattering
length (fm) forn-3H zero-energy scattering calculated with the
AV14UR and AV18UR potential models. The last rows repor
the experimental values.

Model sT ac

AV14UR 1.74 3.71
AV18UR 1.73 3.71

Expt. 1.70 6 0.03 [7] 3.82 6 0.07 [8]
3.59 6 0.02 [9]

3.607 6 0.017 [10]
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TABLE III. 3He binding energyB3 (MeV) and singletas and
triplet at s-wave scattering lengths (fm) forp-3He scattering
calculated with the AV18 and AV18UR potential models. Th
last rows report the experimental values.

Model B3 as at

AV18 6.93 12.9 10.0
AV18UR 7.74 11.5 9.13

Expt. 7.72 10.8 6 2.6 [12] 8.1 6 0.5 [12]
10.2 6 1.5 [11]

be remarked that, in contrast with the AV18UR mode
the AV18 potential does not reproduce correctly th
experimental value ofB3s3Hed. More in general, it has
been verified that the scattering length values show
scaling property analogous to that found in then-3H
case. In Table III, the available experimental values ha
also been reported. However, it should be observed t
(i) such experimental values have been extrapolated
zero energy from measured data taken above 1 Me
(ii) the quoted “error bars” include only statistical and no
systematical uncertainties [32]. Thep-3He experimental
scattering lengths therefore suffer large uncertaintie
even somewhat bigger than those reported in the tab
By inspection of the table it can be concluded th
the agreement between the AV18UR predictions a
the experimental values is reasonably satisfactory a
that it would be very useful to have a more accura
experimental determination ofas and at. Finally, it
should be noted that thep-3He scattering lengths are
larger than the corresponding values found in then-3H
case. This result is quite similar to that found ins-wave
N-d scattering in the quartet spin state.

In conclusion, accurate predictions of then-3H and
p-3He zero energy scattering lengths with realistic Ham
tonians includingNN and 3N potentials have been pro-
duced. The Kohn-Hulthén variational principle and th
correlated hyperspherical harmonics technique were u
to solve the four-body problem and to calculate the qua
tities of interest. The singlet and triplet scattering lengt
for n-3H scattering were found to lie on straight line
when plotted against the3H binding energy for a vari-
ety of potential models. Our total cross section agre
well with the measured value, while some discrepancy
found in the comparison of the coherent scattering leng
values quoted in the literature. This is somewhat surpr
ing, since the corresponding quantity inN-d scattering is
well reproduced by the theory [23], and the same was e
pected for the four-nucleon case.

Although low-energyp-3He andn-3H experiments are
difficult, we hope that the present work might inspir
further efforts in this area.

The authors thank J. Carbonell and L. D. Knutson f
valuable discussions and for providing their results pri
to publication, and I. Bombaci and L. Lovitch for a critica
reading of the manuscript.
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