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Wess-Zumino Terms in Supersymmetric Gauge Theories
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The Wess-Zumino term is constructed for supersymmetric QCD with two colors and flavors and is
shown to correctly reproduce the anomalous Ward identities. Supersymmetric QCD is also shown not
to have topologically stable Skyrmion solutions because of baryon flat directions, which allow them to
unwind. The generalization of these results to other supersymmetric theories with quantum modified
constraints is discussed. [S0031-9007(98)06906-3]
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The configuration space of zero-energy states of a s
persymmetric gauge theory is known as the moduli spa
M , and is parametrized by the expectation values
gauge invariant composite fields subject to constrain
If M has nontrivial topology, there can exist topologi
cal terms in the effective action such as a Wess-Zumi
term [1,2]. It is also possible to have topologically stabl
field configurations, such as Skyrmions or vortices [2,3
The early work on Wess-Zumino terms in supersymmetr
gauge theories [4–7] was done before the recent work
Seiberg and others elucidating the structure of the qua
tum moduli spaces [8]. The existence of topological term
is reexamined in light of these results. Supersymmet
QCD with two colors and flavors is the simplest examp
of a theory which has a quantum deformed moduli spa
with nontrivial topology. The Wess-Zumino term for this
theory is studied in this paper. It is also shown that th
theory does not have topologically stable Skyrmion sol
tions. The generalization of these results to Sps2nd theo-
ries is given at the end of this paper. Similar resul
should also hold for other quantum deformed theories [9

The structure of the moduli space of supersymmetr
QCD in 3 1 1 dimensions depends on the number o
colors N and flavorsF. For F , N the low-energy
description is in terms of the expectation value of gaug
invariant mesonsMi

j, and the effective theory has a
nonperturbative superpotential

W ­ sN 2 Fd

√
L3N2F

detM

!1ysN2Fd

,

where L is the nonperturbative scale parameter of th
theory. The quantum theory is unstable, with detM !
`. The moduli space for detM fi 0 is isomorphic to
the group GLsF, Cd. This example has been studied in
detail in the literature [4–7], and the analysis will no
be repeated here. The moduli spaceM ­ GLsF, Cd
has a Wess-Zumino term and supports stable Skyrmi
solutions. Skyrmions in supersymmetrics models have
also been studied [10].

The cases we will examine areF ­ N andF ­ N 1

1, where the quantum moduli spaces have recently be
constructed [8]. ForN ­ F 1 1, the moduli space [8] is
given by the expectation values of gauge invariant meso
0031-9007y98y81(8)y1558(4)$15.00
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Mi
j , baryonsBi, and antibaryons̃Bj . Herei, j ­ 1, . . . , F

are flavor indices. There are nontrivial constraints amon
the basic invariants,

BiM
i
j ­ 0, Mi

jB̃j ­ 0, cof
j
i M ­ BiB̃

j , (1)

wherecof
j
i M is the cofactor of theij entry ofM. These

constraints are precisely the same as those obtained
minimizing the superpotential

W ­
BiM

i
jB̃j 2 detM

L2N21 . (2)

This theory clearly has a topologically trivial moduli
space. One can make a deformation retract of th
moduli space to the originM ­ B ­ B̃ ­ 0 since all the
constraints are homogeneous. It is therefore not possi
to construct a topological term in the effective action
Obviously, a similar result holds for any theory whos
moduli space is given by gauge invariants subject
homogeneous constraints, such ass-confining theories
[11], or any theory whose moduli space has no constrain
such as those with an affine moduli space [12]. I
these theories, the flavor anomalies of the gauge-invaria
composites agree with those of the microscopic fields,
a Wess-Zumino term is not required in the low-energ
theory.

The interesting case is supersymmetric QCD withF ­
N; the F ­ N ­ 2 case will be studied here. Since
the 2 and 2 representations of SUs2d are equivalent, the
quarks and antiquarks can be combined to form fo
SUs2d doublets. The flavor symmetry of the theory is
SUs4d 3 Us1dR. The baryon number is part of the SUs4d
symmetry. The mesons and baryons can be combined i
a single4 3 4 antisymmetric matrixV ,

V ­

0BBBB@
0 B

2B 0

2MT

M

0 B̃
2B̃ 0

1CCCCA , (3)

which transforms as the two-index antisymmetric tens
under flavor SUs4d and has zeroR charge. The quantum
constraint is [8]

PfV ­ L4, (4)
© 1998 The American Physical Society
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wherePf is the Pfaffian. The constraint can be written a

BB̃ 2 detM ­ BB̃ 2 M11M22 1 M12M21 ­ L4. (5)

It is straightforward to determine the topology of th
quantum moduli spaceM given byV subject to the con-
straint Eq. (4). The SUs4d group is equivalent to SOs6d,
and V is the 6 dimensional (i.e., vector) representatio
of SOs6d, which can be denoted bysX1, . . . , X6d, where
the Xi are linear combinations of theVij. The constraint
Eq. (4) is the SOs6d invariant constraintX6

i­1 X2
i ­ L4, (6)

and the moduli spaceM is the surface inC6 given
by Eq. (6). It is straightforward to show that there is
deformation retract ofM onto the real section given by
takingXi real, i.e., the five-sphereS5.

The homotopy and cohomology groups ofM are iden-
tical to those ofS5. In particular, H5sM d ­ Z and
p3sMd ­ 0, so that one can write down a Wess-Zumin
term, but there are no topologically stable Skyrmion sol
tions. By analogy with QCD (which has stable Skyrmio
solutions), one can write down a “Skyrmion” field con
figurationV sxd which is a static field configuration from
S3 ! M ,

B ­ B̃ ­ 0, M ­ expfit ? x̂Fsjxjdg , (7)

with Fs`d ­ 0, Fs0d ­ p. The Skyrmion has a nontriv-
ial winding number if one looks only at the subspac
B ­ B̃ ­ 0, detM fi 0, but can unwind because of the
baryon directionsB and B̃. It is easy to explicitly write
down a sequence of field configurations that go throu
the pointBB̃ ­ 1, detM ­ 0, and allows the Skyrmion
to unwind. This result generalizes toF ­ N . 2, where
the moduli space is given by aN 3 N matrix M, and
baryonsB andB̃ with the quantum constraint [8]

detM 2 B̃B ­ L2N . (8)

[The difference in sign from Eq. (5) has to do with th
relation between the2 and2 representations of SUs2d and
is unimportant.] A Skyrmion Eq. (7) embedded in th
first 2 3 2 block of M can unwind because of the baryo
directions.

A Wess-Zumino functionalG on M can be defined
following the method used by Witten [2] for QCD. A
field configurationV sxd is a map V : S4 ! M from
spacetime to the moduli space. Sincep4sM d ­ 0, the
four-surface inM given by the image of spacetime unde
V is the boundary of a five-surfaceS5 in M . The Wess-
Zumino functional is given by integrating a closed (bu
not exact) five-formv5 defined onM over the five-
surface S5 [ M . As for QCD, one finds that since
p5sMd ­ Z, the Wess-Zumino action is ambiguous. Th
ambiguity inG is an integer times the integral ofv5 over
the five-sphere that generatesp5sMd. The ambiguity is
irrelevant for the quantum theory provided expiG is well
s
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defined. This determines the Wess-Zumino term to be

G ­
1

240p2 Im
Z

S5

Tr
°
V 21dV

¢
5. (9)

The term in the effective action isnG, where n is an
integer. The Wess-Zumino term is well defined, sinc
the constraint Eq. (4) implies thatV is invertible. The
coefficient is fixed by requiring that the integral over th
five-sphere is2p. Equation (9) gives the bosonic part
of the Wess-Zumino action; one can always make th
action supersymmetric by adding fermionic componen
and writing the Wess-Zumino term as aD term [4–
7]. In the remainder of the paper, we will concentrat
only on the bosonic part of the Wess-Zumino term
since that is the piece relevant for the anomalous Wa
identities. The Wess-Zumino term Eq. (9) has bee
written using a holomorphic five-form. For a discussio
of why this is possible, see section 5 of Ref. [4]. An
explicit construction of the supersymmetric Wess-Zumin
action given a holomorphic five-form can be found in
Ref. [13].

The Wess-Zumino term has been written as the imag
nary part of the integral in Eq. (9). Only the imaginary
part has a quantized coefficient and contributes to t
anomalous Ward identities. The real part is an allowe
term in the effective action, and does not have a quantiz
coefficient since its integral overS5 vanishes. The real
part vanishes in QCD, because the Wess-Zumino action
written as an integral of the form Eq. (9), withV ! U, a
unitary matrix. HereV is not unitary, and the integral has
both real and imaginary parts.

The integern multiplying Eq. (9) in the effective ac-
tion is fixed by requiring that the low-energy theory
reproduce all the flavor anomalies of the microscopic th
ory. (The microscopic theory refers to the theory writte
in terms of quarks and gluons, and the low-energy th
ory refers to the theory written in terms of gauge invar
ant mesons and baryons.) The microscopic theory ha
SUs4d 3 Us1dR flavor symmetry. The Us1dR, Us1d3

R , and
SUs4d2Us1dR anomalies match between the microscop
and low-energy theories when computed using the ma
less fermions in the two theories, but the SUs4d3 anoma-
lies do not match. This was the original motivation fo
introducing the quantum deformation Eq. (4) in the modu
spaceM . The SUs4d symmetry is broken at all points on
M , so the SUs4d3 anomalies computed using the mass
less fermions of the microscopic and low-energy theo
ries need not match. Nevertheless, the anomalous W
identities must be satisfied [14]. Anomalous Ward iden
tities get contributions from massless fermions and Gol
stone bosons [15], so the SUs4d3 Ward identity gets an
additional Goldstone boson contribution from the Wes
Zumino term, which fixesn.

The contribution of the Wess-Zumino term can b
determined by turning on weakly coupled backgroun
gauge fields for the SUs4d 3 Us1dR flavor symmetry, and
1559
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studying the variation of the Wess-Zumino term under lo
cal flavor symmetry transformations. The variation ofG

under an infinitesimal local SUs4d 3 Us1dR transforma-
tion is

dG ­
1

48p2

Z
≠S5

TrfdeT sV 21dV d3 2 desdVV 21d3g ,

­ 2
1

24p2

Z
≠S5

TrdesdVV 21d3,
(10)

wheree ­ eaTa is an SUs4d generator, so that the Wess-
Zumino term contributes to the SUs4d flavor current,

ja
m ­

1
24p2 emnabTrTa

°
≠nVV 21

¢ °
≠aVV 21

¢
s≠bVV 21d .

(11)

The fieldV does not transform under Us1dR, so that one
might naively think that the Wess-Zumino term does no
contribute to theR current. However, for QCD, Witten
pointed out that the Wess-Zumino term contributes to th
baryon number current even though it is written in term
of mesons which have zero baryon number. This subtle
does not occur for the Us1dR current. The possible Wess-
Zumino contribution to theR current is given by using
Eq. (11), and replacingeaTa ! e', as for QCD. The
resulting current vanishes, since

TrsdVV 21d3 ­ 0 , (12)

becauseV is an antisymmetric matrix. To see this, note
that
1560
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e
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TrsdVV 21d2m11 ­ s21dmTrsdVV 21dT2m11,

­ s21dmTrsdVV 21d2m11,

since transposing the matrices changes the ordering of
differential forms. This shows that TrsdVV 21d3 vanishes,
but not TrsdVV 21d5. Thus the Wess-Zumino term does
not contribute to anomalous Ward identities involving
Us1dR, which is consistent with the fact that the low-
energy fermions correctly reproduce the anomalies of t
microscopic theory which involves Us1dR. The vanishing
of Eq. (12) is related top3sMd ­ 0 and the nonexistence
of Skyrmions. Finally, note that the baryon number i
part of SUs4d, and the Wess-Zumino term does contribut
to SUs4d currents.

The Wess-Zumino term in the presence of backgroun
SUs4d gauge fieldsA can be obtained from the result
of Witten for QCD [2] (in the parity invariant form of
Ref. [16]). It is conventionally written as

GsV d 1
1

48p2 ZsV , Ad ,

whereZ can be obtained from the one in Ref. [16] by the
replacement

AL ! A, AR ! 2AT , S ! V , Sy ! V 21.
(13)

The variation under a gauge transformation is
d

µ
G 1

1
48p2 Z

∂
­ 2

1
24p2

Z
Tred

µ
AdA 1

1
2

A3

∂
1

1
24p2

Z
Tr 2 eT d

µ
AT dAT 2

1
2

AT3

∂

­ 22
1

24p2

Z
Tred

µ
AdA 1

1
2

A3

∂
(14)
te
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using the results of Ref. [2] and Eq. (13). Thus the Wes
Zumino functional contribution to the SUs4d3 anomaly
is twice that of a Weyl fermion in the fundamenta
representation of SUs4d. The quarks in the microscopic
theory are a4 of SUs4d, and contribute an anomaly of
two [since they are a gauge SUs2d doublet]. The low-
energy field fermions are a6 of SUs4d, which is a real
representation, and so do not contribute to the anoma
This determines the coefficientn in front of the Wess-
Zumino term in the effective action to ben ­ 1. Note
that G contributes to the anomalous Ward identity eve
thoughV transforms as a real representation of SUs4d, and
thatn ­ 1 for two colors, unlike in QCD wheren ­ 2.

At points on the moduli space whereV ­ J,

J ­

µ
is2 0
0 is2

∂
,

the flavor SUs4d group is broken into an Sps4d subgroup.
The Sps4d3 flavor anomaly matching condition is satisfie
between the fermions in the high-energy and low-ener
s-

l

ly.

n

d
gy

theories. One can check that Eq. (14) does not contribu
to the anomalous Ward identity for Sps4d. For the Sps4d
subgroup,JeJ ­ eT , JAJ ­ AT . Using these relations,
it is easy to see that Eq. (14) vanishes. This must be t
case, since Sps4d does not have complex representations

The above results are easily generalized to Sps2n 2 2d
theories with2n fundamentals, which also has a quan
tum deformed moduli space with a Pfaffian constrain
[17]. The moduli space for supersymmetric QCD with
N ­ F ­ 2 can be thought of as the complexifica-
tion of SUs4dySps4d, which is the complexification of
S5. Similarly, the moduli space for the Sps2n 2 2d
theories with 2n fundamentals is the complexification
of SUs2ndySps2nd, which has a deformation retract
onto SUs2ndySps2nd. It is known [2] thatp2fSUs2ndy
Sps2ndg ­ p3fSUs2ndySps2ndg ­ 0, but p5fSUs2ndy
Sps2ndg ­ Z, so the theory has a Wess-Zumino term bu
no Skyrmions.

The generalization to other quantum modified theorie
is more involved. In nonsupersymmetric theories with
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flavor symmetryG broken into a subgroupH, the mani-
fold of Goldstone boson fields is the compact manifo
GyH. In this case, it has been proved, in gener
that one can always construct a Wess-Zumino te
that reproduces the correct anomalous Ward identit
[18]. In supersymmetric theories, there are (noncompa
flat directions in addition to the usualGyH Goldstone
boson directions. In general, the moduli spaceM
is not a homogeneous space, and the unbroken fla
group can be different at different points ofM , as
happens in supersymmetric QCD withN ­ F . 2. The
Higgs mechanism can be used in this case to flow
supersymmetric QCD withN ­ F ­ 2, for which the
Wess-Zumino term exists. This indicates that a Wes
Zumino term should also exist forN ­ F . 2, but it
would be useful to have an explicit construction.
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