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Wess-Zumino Terms in Supersymmetric Gauge Theories
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The Wess-Zumino term is constructed for supersymmetric QCD with two colors and flavors and is
shown to correctly reproduce the anomalous Ward identities. Supersymmetric QCD is also shown not
to have topologically stable Skyrmion solutions because of baryon flat directions, which allow them to
unwind. The generalization of these results to other supersymmetric theories with qguantum modified
constraints is discussed. [S0031-9007(98)06906-3]
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The configuration space of zero-energy states of a SLMJl baryonsB;, and antibaryon®/. Herei,j = 1,..., F
persymmetric gauge theory is known as the moduli spacare flavor indices. There are nontrivial constraints among
M, and is parametrized by the expectation values othe basic invariants,
gauge invariant composite fields subject to constraints. , ./ _ iBi Jng — popi
If M has nontrivial topology, there can exist topologi- BiM; =0, M;B 0, cofi M = BB, (1)
cal terms in the effective action such as a Wess-Zuminqynherecof’ M is the cofactor of the;j entry of M. These

term [1,2]. Itis also possible to have topologically stableconstraints are precisely the same as those obtained by
field configurations, such as Skyrmions or vortices [2v3]-minimizing the superpotential

The early work on Wess-Zumino terms in supersymmetric
gauge theories [4—7] was done before the recent work of
Seiberg and others elucidating the structure of the quan-

tum moduli spaces [8]. The existence of topological termsrhijs theory clearly has a topologically trivial moduli
is reexamined in light of these results. Supersymmetrigpace. One can make a deformation retract of the
QCD with two colors and flavors is the simplest examplemoduli space to the origi¥ = B = B = 0 since all the
of a theory which has a quantum deformed moduli spacgonstraints are homogeneous. It is therefore not possible
with nontrivial topology. The Wess-Zumino term for this to construct a topological term in the effective action.
theory is studied in this paper. It is also shown that thisopviously, a similar result holds for any theory whose
theOl’y does not have tOpOlOgica"y stable Skyrmion SOlUmodu" space is given by gauge invariants Subject to
tions. The generalization of these results t¢28ptheo-  homogeneous constraints, such asonfining theories
ries is given at the end of this paper. Similar results11], or any theory whose moduli space has no constraints,
should also hold for other quantum deformed theories [9]such as those with an affine moduli space [12]. In
The structure of the moduli space of supersymmetrighese theories, the flavor anomalies of the gauge-invariant
QCD in 3 + 1 dimensions depends on the number ofcomposites agree with those of the microscopic fields, so
colors N and flavorsF. For F < N the low-energy g \Wess-Zumino term is not required in the low-energy
description is in terms of the expectation value of gaugeheory.

invariant mesonsM;, and the effective theory has a The interesting case is supersymmetric QCD Vfith-

B;M;B/ — detM
- A2N-1 . ()

nonperturbative superpotential N; the F = N =2 case will be studied here. Since
A3N-F /(N=F) the 2 and2 representations of SU) are equivalent, the
W=(©N -F) detM ; quarks and antiquarks can be combined to form four

i i SU(2) doublets. The flavor symmetry of the theory is
where A is the nonperturbative scale parameter of theSU(4) X U(1)g. The baryon nimber is part of the §1J

theory. The quantum theory is unstable, with Met> gy ey The mesons and baryons can be combined into
o, The moduli space for daf # 0 is isomorphic to a single4 X 4 antisymmetric matrix/

the group GI(F,C). This example has been studied in

detail in the literature [4—7], and the analysis will not 0 B ‘ M

be repeated here. The moduli spadd = GL(F,C) V= -B 0 3)
has a Wess-Zumino term and supports stable Skyrmion r | 0 B

solutions. Skyrmions in supersymmetigc models have MU B oo

also been studied [10]. which transforms as the two-index antisymmetric tensor

The cases we will examine afée= N andF = N +
1, where the quantum moduli spaces have recently beelﬁnOler flavor SW4) and has zera charge. The quantum

constructed [8]. Folv = F + 1, the moduli space [8] is constraint is [8]
given by the expectation values of gauge invariant mesons PfV = A4, (4)

1558 0031-900798/81(8)/1558(4)$15.00 © 1998 The American Physical Society



VOLUME 81, NUMBER 8 PHYSICAL REVIEW LETTERS 24 AGUST 1998

wherePf is the Pfaffian. The constraint can be written asdefined. This determines the Wess-Zumino term to be

BB — detM = BB — MMy + MMy = A*. (5) r— 1 im [ Te(vlavy. )
It is straightforward to determine the topology of the 240m %
guantum moduli spacéM given byV subject to the con- The term in the effective action i8I', wheren is an
straint Eq. (4). The SW) group is equivalent to S@), integer. The Wess-Zumino term is well defined, since
and V is the 6 dimensional (i.e., vector) representation the constraint Eq. (4) implies that is invertible. The
of SO6), which can be denoted b{X,...,Xs), where coefficient is fixed by requiring that the integral over the

the X; are linear combinations of thg;. The constraint five-sphere is2z. Equation (9) gives the bosonic part

Eq. (4) is the S@) invariant constraint of the Wess-Zumino action; one can always make the
. action supersymmetric by adding fermionic components
> X2 =AY (6) and writing the Wess-Zumino term as B term [4—

7]. In the remainder of the paper, we will concentrate
and the moduli spaceM is the surface inC® given only on the bosonic part of the Wess-Zumino term,
by Eq. (6). It is straightforward to show that there is asince that is the piece relevant for the anomalous Ward
deformation retract ofM onto the real section given by identities. The Wess-Zumino term Eg. (9) has been
taking X; real, i.e., the five-spherg’. written using a holomorphic five-form. For a discussion

The homotopy and cohomology groups®f are iden-  of why this is possible, see section 5 of Ref. [4]. An
tical to those ofS°. In particular, H3 (M) = Z and  explicit construction of the supersymmetric Wess-Zumino
m3(M) = 0, so that one can write down a Wess-Zuminoaction given a holomorphic five-form can be found in
term, but there are no topologically stable Skyrmion soluRef. [13].
tions. By analogy with QCD (which has stable Skyrmion The Wess-Zumino term has been written as the imagi-
solutions), one can write down a “Skyrmion” field con- nary part of the integral in Eq. (9). Only the imaginary
figuration V(x) which is a static field configuration from part has a quantized coefficient and contributes to the
§3— M, anomalous Ward identities. The real part is an allowed

s . N term in the effective action, and does not have a quantized
B=5=0, M =exdir - xF(x)], (7) coefficient since its integral ove§® vanishes. The real
with F() = 0, F(0) = 7. The Skyrmion has a nontriv- part vanishes in QCD, because the Wess-Zumino action is
ial winding number if one looks only at the subspacewritten as an integral of the form Eq. (9), with— U, a
B = B =0, detM # 0, but can unwind because of the unitary matrix. Heré/ is not unitary, and the integral has
baryon directionsB and B. It is easy to explicitly write  both real and imaginary parts.
down a sequence of field configurations that go through The integern multiplying Eq. (9) in the effective ac-
the pointBB = 1, detM = 0, and allows the Skyrmion tion is fixed by requiring that the low-energy theory
to unwind. This result generalizes o= N > 2, where reproduce all the flavor anomalies of the microscopic the-
the moduli space is given by & X N matrix M, and ory. (The microscopic theory refers to the theory written
baryonsB and B with the quantum constraint [8] in terms of quarks and gluons, and the low-energy the-
detM — BB = AN 8) ory refers to the theory written in terms of gauge invari-

ant mesons and baryons.) The microscopic theory has a
[The difference in sign from Eq. (5) has to do with the SU(4) X U(1)x flavor symmetry. The (), U(1)%, and
relation between th2 and2 representations of SB) and  SU(4)?U(1)z anomalies match between the microscopic
is unimportant.] A Skyrmion Eq. (7) embedded in the and low-energy theories when computed using the mass-
first 2 X 2 block of M can unwind because of the baryon less fermions in the two theories, but the (83 anoma-
directions. lies do not match. This was the original motivation for

A Wess-Zumino functional’ on M can be defined introducing the quantum deformation Eq. (4) in the moduli
following the method used by Witten [2] for QCD. A spaceM. The SU4) symmetry is broken at all points on
field configurationV(x) is a mapV : §* — M from M, so the SW)® anomalies computed using the mass-
spacetime to the moduli space. Singg(M) = 0, the less fermions of the microscopic and low-energy theo-
four-surface inM given by the image of spacetime under ries need not match. Nevertheless, the anomalous Ward
V is the boundary of a five-surfacgs in M. The Wess- identities must be satisfied [14]. Anomalous Ward iden-
Zumino functional is given by integrating a closed (buttities get contributions from massless fermions and Gold-
not exact) five-formws defined onM over the five- stone bosons [15], so the $4° Ward identity gets an
surface2s € M. As for QCD, one finds that since additional Goldstone boson contribution from the Wess-
ms(M) = Z, the Wess-Zumino action is ambiguous. TheZumino term, which fixes.
ambiguity inT" is an integer times the integral afs over The contribution of the Wess-Zumino term can be
the five-sphere that generates(M ). The ambiguity is determined by turning on weakly coupled background
irrelevant for the quantum theory provided eXpis well  gauge fields for the S4) X U(1)g flavor symmetry, and
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studying the variation of the Wess-Zumino term under lo- Tr(dvy —12mtl = (=1)"Tr(avy ~HT2m+1
cal flavor symmetry transformations. The variationlof — (= 1)"Tr(dvy
under an infinitesimal local SY) X U(1)z transforma- ’

tion is since transposing the matrices changes the ordering of the
1 Tro—1 nd N3 differential forms. This shows that @VV ') vanishes,
oI = 48772 ]325 Trlde  (V"dV)" — de(@vv )], but not T(dVV ~!)°>. Thus the Wess-Zumino term does
not contribute to anomalous Ward identities involving
— _ 1 f Trde(dvv ') (10) U(1)g, which is consistent with the fact that the low-
2472 ) 53, ’ energy fermions correctly reproduce the anomalies of the

wheree = €4T is an SU4) generator, so that the Wess- microscopic theory which involves(U)gz. The vanishing

Zumino term contributes to the $4) flavor current, of Eq. (12_) is relat_ed tor;(M) = 0 and the nonexistence_
of Skyrmions. Finally, note that the baryon number is

e,L,,aBTrT“(a”VV‘l) (02vv N (Pvv . part of SU4), and the Wess-Zumino term does contribute
(12) to SU4) currents.
The Wess-Zumino term in the presence of background

The fieldV does not transform under(U, so thatone SU4) gauge fieldsA can be obtained from the result
might naively think that the Wess-Zumino term does notof Witten for QCD [2] (in the parity invariant form of
contribute to ther current. However, for QCD, Witten Ref. [16]). It is conventionally written as
pointed out that the Wess-Zumino term contributes to the
baryon number current even though it is written in terms (V) +
of mesons which have zero baryon number. This subtlety 4872
does not occur for the U)g current. The possible Wess-
Zumino contribution to theR current is given by using
Eq. (11), and replacing?T* — €1, as for QCD. The

Jn = 2am

Z(V,A),

whereZ can be obtained from the one in Ref. [16] by the
replacement

resulting current vanishes, since AL — A, Ag — —AT, S v, st Lyt
Tr@vv—')? =o, (12) (13)
becausé/ is an antisymmetric matrix. To see this, note
that | The variation under a gauge transformation is
5(1‘ - z) S [Tred(AdA + lA3> - fTr - er<ATdAT - lA”)
4872 2472 2 2472 2
— 1 /Tr d<AdA + lA3> (14)
24m2) € 2

using the results of Ref. [2] and Eq. (13). Thus the Wesstheories. One can check that Eq. (14) does not contribute
Zumino functional contribution to the SW? anomaly to the anomalous Ward identity for ). For the Sp4)

is twice that of a Weyl fermion in the fundamental subgroupJeJ = €’, JAJ = AT. Using these relations,
representation of S4). The quarks in the microscopic it is easy to see that Eq. (14) vanishes. This must be the
theory are a4 of SU(4), and contribute an anomaly of case, since §p) does not have complex representations.
two [since they are a gauge &) doublet]. The low- The above results are easily generalized t@sp- 2)
energy field fermions are & of SU4), which is a real theories with2n fundamentals, which also has a quan-
representation, and so do not contribute to the anomalyum deformed moduli space with a Pfaffian constraint
This determines the coefficiemt in front of the Wess- [17]. The moduli space for supersymmetric QCD with
Zumino term in the effective action to be= 1. Note N = F =2 can be thought of as the complexifica-
that I' contributes to the anomalous Ward identity evention of SU4)/Sp4), which is the complexification of
thoughV transforms as a real representation of®Jand  S°. Similarly, the moduli space for the 8n — 2)

thatn = 1 for two colors, unlike in QCD where = 2. theories with2n fundamentals is the complexification
At points on the moduli space whete= J, of SU(2n)/Sp2n), which has a deformation retract
icy 0 onto SU2n)/Sp2n). It is known [2] that,[SU22n)/
J = ( 0 i02>, Sp2n)] = m[SUQ2n)/Sp2n)] = 0, but 75[SU2n)/

Sp(2n)] = Z, so the theory has a Wess-Zumino term but
the flavor SW4) group is broken into an $) subgroup. no Skyrmions.

The Syi4)° flavor anomaly matching condition is satisfied The generalization to other quantum modified theories
between the fermions in the high-energy and low-energys more involved. In nonsupersymmetric theories with a
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