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Mass Inflation in Dynamical Gravitational Collapse of a Charged Scalar Field
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During the last ten years evidence has been mounting that generically the Cauchy horizon inside a
charged or a spinning black hole becomes a null, weak singularity which is a precursor of a strong,
spacelike singularity along the = 0 hypersurface. We present here the missing link in this picture:

A complete calculation from aegular initial data to the formation of a black hole and its inner
singularities. We follow the gravitational collapse of a self-gravitating charged massless scalar field
and observe the formation of an apparent horizon, a null, weak, mass-inflation singularity along the
Cauchy horizon, and a final, spacelike, central singularity. [S0031-9007(98)06951-8]

PACS numbers: 04.70.Bw, 04.25.Dm, 04.40.Nr

The no-hair conjecture, introduced by Wheeler [1] in thesents a portion of the ingoing radiation which is scattered
early 1970s, states that the external field of a black-hole reénside the black hole).
laxes to a Kerr-Newman field characterized solely by the Yet, it should be emphasized that despite the remarkable
black-hole’s mass, charge and angular-momentum. Thigrogress in our physical understanding of the inner struc-
simple picture describing the exterior of a black hole is inture of black holes, the evidence supporting the existence
dramatic contrast with its interior. The singularity theo- of a null, weak CH singularity is largely based on perturba-
rems of Penrose and Hawking [2] predict the occurrencéive analysis. Thus, itis of interest to perforrfudl nonlin-
of inevitable spacetime singularities as a result of a graviear investigation of the inner structure of black holes. The
tational collapse in which a black hole forms. According pioneering work of Gnedin and Gnedin [11] was a first step
to the weak cosmic censorship conjecture [3] these spaces this direction. They have demonstrated the existence of
time singularities are hidden beneath the black hole’s everat central spacelike singularity deep inside a charged black
horizon. However, these theorems tell us nothing aboutole coupled to a (neutral) scalar field. Much insight was
the nature of these spacetime singularities. In particulagained from the numerical work of Brady and Smith [9]
the final outcome of a generic gravitational collapse is stilwho studied the nonlinear evolution of a (neutral) scalar
an open question in general relativity. field on a spherical charged black hole. These authors es-

Until recently, our physical intuition regarding the tablished the existence of a null mass inflation singular-
nature of these inner singularities was largely basedty along the CH. Furthermore, they have shown that the
on the known static or stationary black-hole solutions:singular CH contracts to meet the centrad= 0 spacelike
Schwarzschild (spacelike, strong, and unavoidable centraingularity. More recently, Burko [12] studied the same
singularity), Reissner-Nordstrém and Kerr (timelike, model problem. His work improves the numerical results
strong singularity). Further insight was gained from thegiven in [9]; namely, he found a good agreement between
work of Belinsky, Khalatnikov, and Lifshitz [4] who the nonlinear numerical results and the predictions of the
found a strong oscillatory spacelike singularity. However,perturbative approach.
a new and drastically different picture of these inner Despite the important results achieved in these numeri-
black-hole singularities has emerged in the last few yearsal investigations the mass-inflation scenario has never
according to which the Cauchy horizon (CH) inside been demonstrated explicitly in@llapsingsituation. It
charged or spinning black holes is transformed into ashould be emphasized that these numerical works begin
null, weak singularity [5—9]. The CH singularity is weak on a singular Reissner-Nordstrém spacetime and the black
in the sense that an infalling observer which hits thishole formation wasot calculated there. The main goal
null singularity experiences only a finite tidal deforma- of this paper is to demonstragxplicitly that mass infla-
tion [7,8]. Nevertheless, curvature scalars (namely, théion takes place during a dynamical charged gravitational
Newman-Penrose Weyl scaldf,) diverge at the CH, a collapse.
phenomena known amass inflation[6]. The physical We consider the gravitational collapse of a self-
mechanism which underlies this CH singularity is actuallygravitating charged massless scalar fiedd Massless
quite simple: small perturbations, which are remnants otharged fields are not expected in nature and charged col-
the gravitational collapse outside the collapsing object aréapse in general is not expected in a realistic gravitational
gravitationally blueshifted as they propagate in the blaclcollapse. Still we expect that this is a good toy model. It
hole’s interior parallel to the CH [10] (the mass-inflation is generally accepted that the similarity between the inner
scenario itself includes in addition an outgoing radiationstructure of a Reissner-Nordstrom black hole and a Kerr
flux which irradiates the CH. This outgoing flux repre- black hole indicates that a charged collapse might be a
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simple (spherical) toy model for the more realistic genericpartial derivatives. The electromagnetic potential is given
rotating collapse. Furthermore, is it expected that théoy the Maxwell equations

inner structure of the black hole will not depend on the 2
details of the collapsing matter field. In previous papers a, — a_g =0, (6)
we have investigated the linear [13,14] and nonlinear [15] 2r

evolution of a charggd sqalar field outside a ch_arged _b|aC{ﬂ/here the charge(u, v) is given by

hole. The results given in these papers, and in particular R N

the existence of oscillatory inverse power-law charged qv — ier*(s’y — sy”) = 0. (7

tails along the black hole outer horizon suggest the ocThe Hawking mass functiom(u, v) is given by

currence of mass inflation along the CH oflynamically

formed charged black hole. Thus, this model is suitable m

to establish our main goal. 2
Our scheme is based on double null coordinates. Thi

allows us to begin withregular initial spacetime (at ap-

proximately past null infinity), calculate tHermation of

the black hole’s event horizon, and follow the evolution ) ) ie ,

insidethe black hole all the way to the central singularity, Y« © fy + gx + ieary + ieags + *=a“qs = 0.

which is formedduring the collapse. Thus, this numerical )

scheme makes it possible to telitectly (and for the first

time) the conjecture that the mass-inflation scenario is an The initial conditions include the specificationydd, v)

inevitable feature of a generic gravitational collapse. andd (0, v) along an outgoing = 0 null ray. We assume
The physical model is described by the coupled Einsteind (0, v) = 0, which fixes the remaining freedom in the

Maxwell-charged scalar equations. We express the metricoordinates. The boundary conditions on the axis

of a spherically symmetric spacetime in the form [16] O(u=v)areg=—f = %a, x=y,a=q =0, and

ds* = —a(u,v)*dudv + r(u,v)*dQ?, 1) ar=s = 0(onaxis). N _

whereu is a retarded time null coordinate ands an ad- The evolution of the quantltl_es andy are deter_mmed

vanced time null coordinate. We fix the axis= 0 to by Egs. (3) and (9), respectllvely. We then Integrate

be alongu = v. The remaining coordinate freedom is Eq. (2) outwards f_rom the axis along an outgoing=t

the freedom of the choice af along some future null const) T‘“” ray to fmgh. Equations (5) and (2) ar(.—:"used

cone, i.e., along some fixad= const outgoing null ray. to obtaing andr. _Fmally,_ we evaluate the quantities

It should be noted that fos > M our null ingoing coor- 4 % /> andx by integrating Egs. (2), (7), (6), (4), and

dinatew is proportional to the Eddington-Finkelstein null ©), respectiverJ[ is evglua_lted fmm (9). usi_ng the_ relation
ingoing coordinates X, = yu]. The integration in thex direction is carried out
e

Following Hamade and Stewart [17] we formulate thegsing a fifth-order Runge-Kutta method, while the integrals

problem as a system of first-order coupled partial differeni” the v direction are discretized using the three-point

: . . - . Simpson method [18].
tial equations. To do so we define auxiliary variabdes N
a 4 The qualitative nature of the results was found to be

(R

)

r

Einally, the wave equation for the charged scalar field
becomes

, &, 5, x, andy: - :
URIEIE Y the same for all numerical models computed. Figure 1
d=2 f=ra g =r displays the radius(u,v) as a function of the ingoing
a ) null coordinatev along a sequence of outgoing €&

s = Vam &, x =g, y=s,. const) null rays. All the outgoing null rays originate from

the norsingular axisr = 0, i.e., we start with a regular

Using these variables one can generalize the neutrgh,cetime (this situation is in contrast with previous nu-
Hamade and Stewart scheme [17]. In terms of these NeWerical works, where the evolution begins on a Reissner-

variables the Einstein equations expand to Nordstrém spacetime). One can distinguish between three
g — fg o N a’q? N types of outgoing null rays in thev plane: (i) The out-
g2 4r2 24 ermost (small) rays, which escape to infinity. (ii) The

| 1 intermediate outgoing null rays approach a fixed radius

— (xy* + x"y) + —iea(sy” — s'y) =0, (3) rcu(u) atlate timesy — . This indicates the existence

2 2 of a CH in these spacetimes. (iii) The innermost (large-

a’q? u) rays, which originate on the nonsingular axis= 0 and

=0, (4)  terminate at the singular section of the= 0 hypersurface.

These outgoing rays reach the= 0 singularity in a finite

v, without intersecting the CH. This situation is in contrast
8y —2dg +ry'y =0, (5)  with the Reissner-Nordstrém spacetime, in which it is well

where a(u,v) = A, is the u component of the vector known that all the outgoing null rays which originate in-

potential A, and otherwise the indices and v denote side the black hole intersect the CH. One should also note
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FIG. 1. Null rays in therv plane. One can distinguish right section corresponds the the central spacelike singularity.
between three types of outgoing null rays: The outermostIhe apparent horizon is indicated by the vanishingrpf(a
which escape to infinity, the innermost, which terminate at thethicker curve). The (singular) CH (a null hypersurface, located
singular section of the = 0 hypersurface and the intermediate atv — <, and indicated by the approach of outgoing null rays
outgoing null rays which approach a-dependent) finite radius, to finite values ofr) contractsto meet the central spacelike
indicating the existence of a CH. All the null rays originate Singularity (in a finite proper time).
from the nonsingular axis = 0.

gence of the mass function (and the curvature scalars,
that in contrast with the Reissner-Nordstrom spacetimejamely the Newman-Penrose-Weyl scaliay which di-
where the CH is a stationary null hypersurface, heig(u)  verges likem/r?) along the CH in a dynamically collaps-
depends on the outgoing null coordinatei.e., the CH ing spacetime. These results agree with the mass-inflation
contracts [9]. This dramatic difference in the causal struc-
ture of the preserdollapsingspacetime compared with the 300
Reissner-Nordstrdm spacetime is attributed to the outgoing
flux of energy momentum carried by the charged scalar
field which crosses the CH and forces it to contract.

To understand better the causal structure of our dynami-
cal spacetime we display in Fig. 2 the contour lines of 100
r(u,v) in thevu plane. The outermost contour line cor-
responds to- = 0, where its left section (a straight line 0
u = v) is the nonsingular axis, and its right section cor-
responds to the central singularitysat= 0. It should be
emphasized that this central singularity forms during the
gravitational collapse. The singularity at the= 0 hyper- 60
surface is clearly a spacelike one, fgris negative along
this section. The vanishing of, indicates the existence of
an apparent horizon (which is first formeduat= 1.05 for
this specific solution). The CH itself is a null hypersur-
face which is located ai — oo. Its existence is indicated
by the fact that the intermediate outgoing null rays (in the 1 L

rangel.05 < u < 2.1 for this specific solution) terminate 0 0, 100

at a finite ¢-dependent) radiugcp (u). Th('_:‘ smgular C,H FIG. 3. The CH singularity. The top panel displaygrin
contracts to meet the central = 0) spacelike singularity vs advanced times, along a sequence of outgoing null rays.
(along theu = 2.1 outgoing null ray). Thus, the null CH The exponential growth of the mass function demonstrates the
singularity is a precursor of the final spacelike singularityappearance of the mass-inflation scenario [6]. The bottom
along ther = 0 hypersurface [9]. panel displays the metric functiog,y along an outgoing null

. . ray. The finite value approached by the metric functions
The behavior of the mass functier(u, v) along the out- ;™3 agreement with the simplified model of Ori [7,8],

goi_ng _nuII rays iS_diSpIaye_d_ in the top pane_l of Fig- 3.and demonstrates theveaknessof the null mass-inflation
This figure establishegxplicitly the exponential diver- singularity.
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rrrrrrprrrrp e Thus, the initially regular axis is replaced by a strong
(spacelike) singularity along the= 0 hypersurface.

In summary, we have studied the gravitational collapse
of a self-gravitating charged scalar field. We calculate
the formation of an apparent horizon, followed by a
weak,null, mass-inflatiorsingularity along the contracting
CH, which precedes strong, spacelikeingularity along
the r = 0 hypersurface. Our results give a fiestplicit
confirmation of the mass-inflation scenario in a dynamical
collapse that begins wittegular initial conditions.
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