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The role of the symmetries in the topology of sets of Lagrangian singularities is studied in a sim
physical model: the envelope of the rays emanating from a convex wave front invariant under the a
of polyhedral groups. New point singularities are found of integer index and located at the vert
of the polyhedron or of its reciprocal. This remarkable layout results from the interplay between
symmetries of the singularities, the polyhedral symmetries, and the topology of the wave front.
application to fine-particle magnetic systems is given. [S0031-9007(98)06939-7]
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Singularities, as defined by the singularity theory, ar
encountered in physics under various aspects: caust
shocks, critical points of stability diagrams, etc. [1]
One can extract from the singularities information o
the physical system [2]. In general the singularitie
do not appear isolated, but they rather form ensembl
(configurations) including strata of different dimensions
self-intersections, asymptotic branches, borders, and
on. The physical laws, the boundary conditions, o
some external fields, often impose symmetries which m
increase the complexity of the singular configuration. I
the following we study precisely the relationship betwee
the symmetriesand the globaltopology of an ensemble
of Lagrangian singularities (caustics [3]) defined as th
focal set of a closed surfaceW . Two important features
characterize these singularities.

On the one hand, each type of singularity possesse
local symmetry. This symmetry must be compatible wit
the symmetry imposed by the system; i.e., it is a subgro
of the (global) symmetry group. The compatibility con
dition raises an interesting problem when no generic (el
mentary) singularity can be compatible with one of th
symmetries of the system. In this case, as we shall s
one may have instead new degenerated singularities, i
singularities composed of generic ones, so as to satisfy
imposed symmetry.

On the other hand, the caustic surface is not total
arbitrary, but it also obeys some topological rules. Fo
instance, the number of the umbilical singularities i
related to the Euler characteristic of the (compact) caus
[4,5]. Thus, any ensemble of singularities must obe
simultaneously two constraints: the topological rules an
the symmetry imposed by the physical system.

In this Letter we study, on an example, the interplay o
these constraints on the configurations of Lagrangian s
gularities. We study the caustic defined as the envelope
the normals to a convex closed surfaceW invariant under
the action of a polyhedral group of symmetries [discre
subgroup of the groupOs3d]. We show that new singu-
larities appear located in a remarkable dual way and th
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they result from the application of the two constraints du
to the symmetries and the topology. The results are com
pared with some results obtained in the problem of th
stability of magnetic grains [6].

Our model is a wave front propagating in a homoge
neous medium of refractive index equal to 1. We de
fine the initial wave frontW with the required symmetry
by introducing, as in the classical construction of the el
lipse, a functionV “sum of the distances to the foci”:
W ­ hsx, y, zd, V sx, y, zd ­ constj. More precisely we
fix n pointsPi (the “foci”) in R3 ­ hx, y, zj andn masses
mi. The functionV is given by

V sPd ­
nX

i­1

midsP, Pid , (1)

wheredsP, Pid denotes the distance fromP to Pi . We
assume now thatmi ­ 1yn . 0 for all i, so that the level
surfaceW is closed. Moreover, we assume also that th
Pi lie on the unit sphere and that they form the vertice
of a regular polyhedronP ­ hp, qj, in which q p-gons
are surrounding each vertex. By construction, the wav
front W , the family of the rays, which are the normals to
W , and the caustic, which is the envelope of the rays, ar
left invariant under the action of the symmetry group o
P. We name the associated caustic apolyhedral caustic.

Since W is a convex surface enclosing the originO,
it is convenient to use the spherical coordinatesr , a, b:
x ­ r cosa cosb, y ­ r cosa sinb, z ­ r sina. The
equation ofW : V sPd ­ const defines implicitlyr as a
function of a and b. We denote bys the coordinate
along the ray. A pointP ­ sx, y, zd of the congruence of
the rays depends ona, b, ands through the relation

xsa, b, sd ­ r cosa cosb 1 sVx ,

ysa, b, sd ­ r cosa sinb 1 sVy , (2)

zsa, b, sd ­ r sina 1 sVz ,
whereVx stands for≠Vy≠x, etc.

The relation (2) defines a mappingf from the source
space ha, b, sj into the physical spacehx, y, zj. The
singular points are the points wheref has a rank strictly
© 1998 The American Physical Society 1547
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less than the maximum possible value 3. They are giv
by the relation

det≠sx, y, zdy≠sa, b, sd ­ 0 . (3)

The solutionssa, bd of this equation determines the
singular setS. It cannot be found explicitly and its value
is determined numerically, with relative errors of the orde
of 1027. Then the mappingf is applied toS to obtain the
causticC ­ fsSd. Equation (3) is a quadratic equation o
s, showing that the caustic is composed of two sheetsC1

andC2.
Here it is worth recalling that a caustic surface is nev

a regular surface. It possesses itself singular lines, t
cusp linesA3. These cusp lines have generally singula
points: swallowtailsA4 or umbilics D4. The umbilics
are junction points between the two sheetsC1 and C2.
They may be classified in essentially two distinct way
First, according to the number of cusp lines meeting
the umbilic point, they may be either of the elliptic type
D2

4 (three cusps) or of the hyperbolic typeD1
4 (one cusp

line). Second, they may have an index equal either to1
1
2

or to2
1
2 [4,7]. The elliptic umbilics have always an index

equal to2
1
2 . The hyperbolic umbilics may have either an

index equal to1 1
2 (type “drop” D1d

4 ) or an index equal to
2

1
2 (type “triangle”D1t

4 ). In our simulations, we use the
characterization of the index of an umbilic by the relativ
position of the ray with respect to the caustics [7].

Since V sOd ­ 1, the value of the constant defining
the level surfaceW must be taken greater than 1, sa
equal to 2. The caustic surface is a compact (singula
surface without infinite branches. The caustic poin
are calculated by type, according to the method
the corank [8,9]. Figure 1(a) shows the caustic surfa
associated with a cube, each sheet being represen
separately for a better understanding. The caustic is ve
intricate, because of the presence of many self-intersect
lines. However, it is possible to reduce the complexit
of the description by focusing our attention only on

FIG. 1. Shape of the wave frontsW (left) constructed starting
from (a) the cube, (b) the octahedron, and their associa
causticsC. Both sheets ofC are represented separately:C1

(middle) andC2 (right).
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the singularities of smallest dimension, i.e., the po
singularities, calledorganizing centersin the literature,
because of their dominant role in the topology of th
caustic [1].

This technique of identification of the singularities
now applied successively to the five polyhedral causti
The results are summarized in Table I. Each colum
corresponds to a polyhedronP. Each axis of symmetry
is of type Cny and passes through a vertex, a center
a face, or a center of an edge. It is denoted here by
value ofn: 2, 3, 4, or 5. It is convenient to distinguish th
two semiaxes forming an axis of symmetry, so that, f
instance, there are four axes 3 passing through the vert
of a tetrahedron and four other axes 3 passing through
centers of its faces. All the axes 3 bear an elliptic umbi
D2

4 (see Table I). Their presence is expected, since t
have locally the symmetryC3y . The axes 4 and 5 bea
nongeneric singularities, as expected too, since gen
singularities do not have the symmetriesC4y or C5y . In
order to understand the nature of these new singularit
we slightly perturbW by changing the values of the
masses. The nongeneric singularities split into pa
of hyperbolic umbilics: twoD1d

4 (in the case of the
octahedron, of the icosahedron, and of the dodecahed
or two D1t

4 (in the case of the cube). These degener
singularities are then noted by2D1d

4 and2D1t
4 in Table I.

The sum of the indices of both singularities of each p
stands for their indexg: 11 for the pair 2D1d

4 , 21
for the pair 2D1t

4 . The point singularities located on
the axes of symmetry passing through the vertices fo
a second polyhedronP. The point singularities located
on the axes of symmetry passing through the centers
the faces form the reciprocal polyhedron ofP. In the
case of the tetrahedron and of the cube, there exist a
umbilics D1d

4 outside the axes of symmetry, in som
planes of symmetry. We check that the total index of t
umbilics is always equal to 2, i.e., the value of the Eu
characteristic ofW .

We note also that everyD2
4 of each polyhedral caustic

is surrounded by three symmetric butterfliesA1
5 [10] (not

reported in Table I).
In Table I, the results concerning the icosahedron a

its reciprocal, the dodecahedron, may be clearly put
correspondence by the reciprocation transforming verti
and faces. On the other hand, the results concern
the cube and its reciprocal, the octahedron, seem
be uncorrelated. The case of the tetrahedron gives
information on this issue, since it is self-reciprocal.

To explain this apparent asymmetry, we consider
general polyhedral caustic. The symmetry elements
those of some polyhedronhp, qj [11]. Each element
(axis or plane) bears singularities having a local symme
compatible with the symmetry associated with it. W
now assume that the number of the umbilics and
value of their indices are as small as possible. Th
the axes 3 bear elliptic umbilicsD2

4 . The axes 4 or
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TABLE I. For each polyhedronhp, qj, the umbilics (degenerate or not) lie on symmetry elements which are the axes pa
through the vertices (row “vertices”), the axes passing through the center of the faces (row “faces”), and some planes of sy
(row “extra umbilics”). The symmetry of the axes is indicated by the value ofn (see text). For each symmetry element, the tab
gives the nature, the number, and the index of the umbilics. It gives also (in the two first rows) the polyhedron formed by t
bilics. Only the caustics associated with the tetrahedron and the cube have extra umbilics. The last row indicates the su
indices of the umbilics.

Tetrahedron Cube Octahedron Icosahedron Dodecahed
h3, 3j h4, 3j h3, 4j h3, 5j h5, 3j

Vertices 3 3 4 5 3
Singularity D2

4 D2
4 2D1d

4 2D1d
4 D2

4

Number 4 8 6 12 20
Index 2 1

2 2 1
2 11 11 2 1

2

Polyhedron Tetrahedron Cube Octahedron Icosahedron Dodecahe

Faces 3 4 3 3 5
Singularity D2

4 2D1t
4 D2

4 D2
4 2D1d

4
Number 4 6 8 20 12
Index 2 1

2 21 2 1
2 2 1

2 11
Polyhedron Tetrahedron Octahedron Cube Dodecahedron Icosahed

Extra umbilics
Singularity D1d

4 D1d
4 · · · · · · · · ·

Number 12 24
Index 1 1

2 1 1
2

Total index 2 2 2 2 2
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5 are incompatible with generic singularities, and the
bear degenerate singularities with an indexg ­ 0 or 61
(the most simple cases). Of course, other umbilics m
be present. The numberN of such “extra” umbilics
is equal to half of the number of the triangles of th
hp, qj tiling of the sphere, i.e.,N ­ 4kpqyf4 2 sp 2

2d sq 2 2dg, wherek ­ 0 or 1. We now write that the
total index is equal to the Euler characteristic ofW ,
i.e., 2. In the case of the tetrahedral symmetry, w
obtain the relation66k ­ 6 (the sign in the left hand
member refers to that of the index of the extra umbilics
We then obtain the solutionk ­ 1, i.e., the solution
for the tetrahedron: 12 extra umbilicsD1d

4 . For the
cubic symmetry, we obtain the relation6g 6 12k ­ 6
which admits the two solutionsg ­ 1, k ­ 0 and g ­
21, k ­ 1. The first one corresponds to the solutio
for the octahedron: degenerate singularities of index
and no extra umbilic. The second one corresponds
the solution for the cube: degenerate singularities
index 21 and 24 extra umbilicsD1d

4 . Finally, for the
icosahedral symmetry, we obtain the relation12g 6

30k ­ 12 which admits the unique solutiong ­ 1, k ­
0. It corresponds to the solution for the icosahedro
and for the dodecahedron: degenerate singularities
index 11 and no extra umbilics. Moreover, we can
specify the nature of the umbilics, since the valueg ­ 11
corresponds to the pair2D1d

4 . The valueg ­ 21, found
in the cubic case, givesa priori two possibilities:2D1t

4
(the solution of the model) and2D2

4 . In fact, the latter
solution can be obtained from the former one through
symmetry-preservingbifurcation by decreasing the value
y

ay

e

e

).

n
1
to
of

n
of

a

of the constant of the level surfaceW . Both cases are
two realizations of a unique case. So we conclude that
the information contained in Table I is recovered on th
basis of the compatibility between the local symmetries
the singularities and the imposed symmetries (implyin
that D2

4 lie on the axes 3, and so on) and on th
basis of a minimal index for the degenerate singulariti
( g ­ 0 or 61). There exist four elementary polyhedra
caustics, and they are provided by our simple model. T
duality between the cases of the icosahedron and of
dodecahedron simply expresses that they form a uniq
case. We note that the number of the basic polyhed
caustics (4) is neither equal to the number of polyhed
(5) nor equal to the number of polyhedral symmetries (3

Although our model is an optical one, the results app
as well to other (Lagrangian) symmetrical singularitie
This circumstance allows us to compare them with tho
obtained in a recent study of the stability diagram of
magnetic nanoparticle placed in a magnetic fieldH [6].
In this example the coordinatesHx , Hy , Hz play the role
of our physical coordinatesx, y, z. The magnetic energy
depends on the magnetization orientationm and on the
applied fieldH [12]. The equilibrium conditions defineE
as a function ofH and the level surfaceEsHd ­ const is
a convex closed surfaceWmag. Its caustic represents the
fields for which the magnetization orientation undergo
a jump (switching fields) and may be experimental
determined [6]. In the case of the cubic symmet
the caustic of the switching fields exactly presents t
topology of our caustic for the octahedron [see Fig. 1(b
In particular, it presents the six degenerate umbili
1549
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around which the caustic surface is locally conic. The
without any calculation, we are able to give the natu
and the indices of all the umbilic points of this causti
(see column “octahedron” of Table I). We also predic
how the degenerate singularities split under the effe
of a small symmetry breaking of the magnetic system
It would be very interesting to check experimentall
this point. It would be also interesting to know if the
second solution for the cubic symmetry (column “cube” o
Table I) may be realized in this example by changing th
value of some parameter preserving the cubic symmetr

Other applications of our results may include as we
phase transitions with symmetries [13], ballistic hea
pulses in crystals [14], and bound states of Hamiltonia
systems [15].

Finally, we point out that our model is also well adapte
to the study of the dihedral caustics and to attack the op
problem of the caustic bifurcations preserving (totall
or partially) imposed symmetries (cf., for instance, th
symmetry-preserving bifurcation in the discussion of ou
cubic case).

In conclusion, we have shown that there exist four el
mentary polyhedral caustics. We have described the n
ture and the layout of their point singularities. Except fo
the tetrahedral symmetry, the caustic contains degener
umbilics of integer index61. We stress that these charac
teristics result from the conditions simultaneously impose
by theglobal (polyhedral) symmetries of the problem, by
the local symmetries associated with the singularities, an
by the topology of the initial wave front.
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