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Symmetry Properties of the Electrophoretic Motion of Patterned Colloidal Particles
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In sedimentation experiments at low Reynolds numbers there are general restrictions for the motion
of particles. We show that some of them do not apply for electrophoresis in ionic solutions. In
particular, we construct specific examples of objects with patterned shape and surface charge, that (1)
undergo a permanent motion of rotation without translation, or (2) move perpendicularly to the applied
electric field, whatever the direction of the latter. This demonstrates the broad spectrum of possible
electrically induced motions, and could guide the design of microengines and the understanding of
biological systems. [S0031-9007(98)06760-X]

PACS numbers: 82.45.+z, 07.10.Cm, 82.65.Fr, 83.50.Pk
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Although used in a large number of practical situation
electrophoresis of colloidal particles in solution, i.e., se
ting them into motion by applying an electric field, is no
simple to describe analytically [1–3]. In particular, stud
ies throughout the century have pointed out basic diffe
ences with sedimentation or other classical hydrodynam
situations: The electric field pulls not only on the particl
but also on the counterion cloud surrounding it, which re
sults in flows very different from the usual Stokes descrip
tion. As a consequence, surprising behaviors have be
predicted: A neutral object can be set into motion [4
the electrophoretic mobility of an object can change sig
as the field is increased [5], and an object can be set in
motion perpendicularly to the electric field if the latter is
applied along a specific direction [6]. In the same spir
we show in this Letter that, due to the counterions, the d
namic response of charged particles to a constant and
mogeneous applied electric field does not obey the gene
symmetry rules of field-induced motion at low Reynold
number hydrodynamics, at work, e.g., in sedimentatio
experiments or in electrophoresis in the absence of cou
terions, with an emphasis on the case of chiral particles

Let us recall the usual hydrodynamic picture: a soli
particle submitted to an external forceF and an external
torqueT acquires translational and rotational velocitiesV
and V [7]. It is possible to choose a particular point o
reference in the frame of the solid such that the dynam
law reads

V ­ MF 1 CT , (1)

V ­ CF 1 RT , (2)
whereM, R are positive definite symmetric tensors andC
is a symmetric pseudotensor [7–9] which is nonzero on
for geometrically chiral objects. These tensors depe
only on the shape and size of the particle. In classic
situations where motion is induced by an external fieldE0
(for sedimentationE0 ­ g, for electrophoresis in salt-free
solutionsE0 is the applied electric field), one has

F ­ QE0; T ­ PE0 , (3)
whereQ is a scalar and thus symmetric tensorand P is
an antisymmetric pseudotensor[10].
0031-9007y98y81(7)y1529(4)$15.00
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We want to contrast this with electrophoresis in ion
solutions (in the presence of salt), focusing for simplici
on the case of particles with thin Debye layers and we
surface potentials. Then the deformation of the Deb
layer due to the application of a weak electric fie
is negligible [2]. Teubner [10] has shown that in thi
limit the motion of the particle can still be described b
Eqs. (1)–(3), the tensorsR, M, C being the same as in
the case of sedimentation,Q and P being, respectively,
an effective tensor and an effective pseudotensor t
take account of the effect of the backflow due to th
presence of the counterions. The latter differ thus fro
the total electric charge and from the electric dipole of t
particle. This leads to new possibilities for the symmet
of the resulting motion: Indeed, we provide in this Lette
specific examples whereQ is antisymmetricand others
whereP is symmetric.

Let us discuss first the case of electrophoresis in s
free solutions. ThenQ ­ QId andPE0 ­ p 3 E0 with
Q andp the total charge and the electric dipole mome
of the particle [10]. The torque is always perpendicul
to the applied electric field while the force is alway
colinear to the electric field. Take a particle with zer
dipole momentp ­ 0. Its velocity isV ­ MQE0. As
M is positive definite, the velocity has always a nonze
component along the direction of the electric field, of th
same sign asQ. In particular, it is impossible for such a
particle to move perpendicularly to the applied field. Th
angular velocity isV ­ CQE0 ­ CM21V. The tensor
C couples translation and rotation: Particles with nonze
C tensor can undergo a permanent (but not necessa
uniform) motion of rotation, provided they have als
a nonzero electrophoretic mobilityMQ, i.e., a nonzero
total chargeQ. For example, ifM is isotropic and if
the electric field is applied along a principal directio
of the tensorC, the particle is set into a permanen
and uniform motion of translation and rotation. IfC
has two identical eigenvalues and if the electric fie
is applied at some angle with the third principal ax
of C, the particle undergoes permanent translation a
rotation, with a precession around the third axis. T
© 1998 The American Physical Society 1529
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general case with three different eigenvalues leads to
very complicated motion.

Consider now a particle of zero chargeQ ­ 0 and
nonzero dipole moment. ThenV ­ Rsp 3 E0d. As the
tensor R is positive definite, the angular velocity can
never be colinear to the applied field (it has always
nonzero component along the direction ofp 3 E0, unless
the electric field is aligned with the dipole and the angula
velocity is zero). One can show that1

2
d
dt sp 3 E0d2 ­

2sp ? E0d sp 3 E0d ? Rsp 3 E0d: As the tensorR is
positive definite, the effect of the rotation is here to alig
the dipole along the external electric field and thus
reduce its very cause. Once the dipole is aligned wi
the electric field, motion ceases:R determines the rate
at which the particle reaches “orientational” equilibrium
For a steady rotation to occur, the torque which resu
from the application of the external field must remai
essentially invariant under the resulting rotation, whic
cannot be the case here.

Thus we recall that, in salt-free electrophoresis cond
tions, as consequences of general properties of the tens
M, C, and R, (1) the only possibility for a particle to
experience a permanent motion of rotation is to be hydr
dynamically chiralsC fi 0d and to have a nonzero elec-
trophoretic mobility (i.e., a nonzero total charge) so as
translate, (2) a particle cannot move perpendicularly to t
applied field, whatever the direction of the latter.

Electrophoresis in salty solutions is not limited by thes
restrictions as we will show. We push this point to it
extreme by constructing two clear examples:Object A
undergoes a uniform motion of rotation around the applie
field without translating, object Btranslates normally to
the applied field, without rotatingfor any direction of the
latter but one.

What strategy can be used to reach this goal?
principle, one may want to play with the shape and th
charge distribution on the particle. It is well known that in
free flow electrophoresis conditions, in the present limit o
small Debye length, any uniformly charged and insulatin
particle undergoes a permanent motion of translatio
along the electric field, without any rotation, even i
it has a chiral (e.g., screwlike) shape [10,11]. In suc
conditions, using an object of chiral shape is thus n
sufficient to obtain a permanent motion of rotation.

Consider now a spherical particle with a single punctu
charge located atr0 on its surface and apply an externa
field E0. Then, by symmetry, the vectorF is a linear
combination ofE0 and sE0 ? r0dr0 which are the only
vectors linear in the applied fieldE0 that can be built
in this problem, and the pseudovectorT is proportional
to r0 3 E0, which is the only pseudovector linear in
the applied field. Then, by linear superposition, fo
any charge distribution on a sphere, the tensorQ is
symmetric and the pseudotensorP is antisymmetric (note
that this actually holds for any ionic strength). As
consequence, a spherical particle cannot systematica
move normally to the applied field (V ­ M ? Q ? E0 for
1530
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a sphere). Note that—contrarily to the salt-free case
the eigenvalues ofQ can be of different signs, which
allows the velocity to be normal to the applied fieldfor
particular directions of the latter(examples can be found
in [3,6]). Also a spherical particle cannot undergo
permanent motion of rotation: Its only motion of rotatio
in electrophoresis corresponds to the alignment of t
dipole associated withP along the electric field—very
similar to the salf-free case. Again, examples have be
provided in [3,6] of objects rotating transiently toward
equilibrium. Similar symmetry arguments prove that a
axisymmetric particle cannot rotate permanently arou
its symmetry axis. Thus, to design rotating particles,
is not sufficient to pattern a symmetric object with
well-chosen (chiral or not) surface charge distributio
Consequently, we construct examples whereboth shape
and charge distribution are patterned.

As we turn to explicit calculations, we recall the usu
recipe in the present limit of small Debye length an
small surface potentials (see the review of Anders
[3] for details). Applying an electric fieldE0 induces
an electroosmotic slip velocity at the surface of th
particle: U ­ 2sk21Eyh [1,3] whereh and k21 are,
respectively, the viscosity and the Debye length of t
solution, s is the local surface charge density on th
particle, andE is the local electric field at the surface
of the insulating particle, which can differ fromE0 due
to the disturbance caused by the particle itself. The flo
around the object (in a reference frame attached to
object) is then obtained by solving the Stokes equati
with no body force, with the slip velocityU as boundary
condition on the object’s surface [1,3]. The flow at
distancer from the object tends to the limiting value
vsrd ! 2V 2 V 3 r, which allows one to determine
V and V. This procedure is now applied to variou
objects.

Consider first an infinitely long charged, insulatin
cylinder of radiusa, decorated with a nonuniform “heli-
cal” surface charge densityssz, ud ­ s0 cossmu 1 qzd.
Oz is the axis of the cylinder, and we use the correspon
ing cylindrical coordinatessr , u, zd. An electric fieldE0
is applied alongOz . The electro-osmotic flow around
this cylinder is obtained by solving the following Stoke
equations:hDU 2 gradp ­ 0, divU ­ 0, Usr ­ ad ­
U0 cossmu 1 qzd, where p and U are the pressure
and velocity fields, respectively, andU0 2 s0k21E0yh.
From the solution [12] in the reference frame of the o
ject, it is clear that no net flow is created at infinity:V ­
0 andV ­ 0, as expected from the symmetry consider
tions stated above. Therefore, let us couple to the cha
modulation a slight modulation of the radius of the cylin
der: asz, ud ­ af1 1 a cossnu 1 kz 1 fdg wherea is
a small number andf a phase shift. The electroosmos
flow can be calculated to first order ina. At this order,
the local electric field isE ­ 2=F with F ­ 2E0z 2

2aaE0
Knskrd

Kn21skad1Kn11skad sinskz 1 nu 1 fd, whereKn are
modified Bessel functions [13].
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The first order correction to the flow is obtained
solving the Stokes problem, with slip velocitydU on
the unperturbed boundaryaszd ­ a, where dU is the
difference between the true boundary conditionU ­
2sk21h21E and the value thezeroth order solu-
tion takes on the actual boundary of the cylind
dU contains terms proportional to cosfsm 1 ndu 1

sq 1 kdz 1 fg 1 cosfsm 2 ndu 1 sq 2 kdz 2 fg and
y

r.

qhsinfsm 1 ndu 1 sq 1 kdz 1 fg 1 sinfsm 2 ndu 1

sq 2 kdz 2 fgj 1 khsinfsm 1 ndu 1 sq 1 kdz 1 fg 2

sinfsm 2 ndu 1 sq 2 kdz 2 fgj, respectively. Only
the first term can generate a net flow at infinity, and th
only for m ­ n and q ­ k or m ­ 2n and q ­ 2k.
This term is then proportional to cosf. The boundary
conditions for this part of the first order correctio
are thenu

s1d
u sr ­ ad ­ aCuU0, us1d

z sr ­ ad ­ aCzU0,
u

s1d
r sr ­ ad ­ 0, with [12]
Cu ­ 2 cosf

∑
gskad

2
k2a2

µ
K2

nskad
Kn11skad

2
K2

nskad
Kn21skad

1
2nKnskad

ka

∂
2

nKnskad
Kn21skad 1 Kn11skad

∏
, (4)

Cz ­ cosf

∑
ka
4

Kn21skad 1 Kn11skad
Knskad

2 gskadk2a2

µ
Kn21skadKn11skad

Knskad
2 Knskad

∂
1

kaKnskad
Kn21skad 1 Kn11skad

∏
,

(5)

andgskad is defined by

gskad21sKn21Kn11d ­ kafK2
n11Kn21 1 K2

n21Kn11 2 K2
nKn11 2 K2

nKn21g 2 4Kn21KnKn11 . (6)
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The corresponding flow and pressure fields in th
solution are then given byu

s1d
u sr , zd ­ aCuU0rya,

us1d
z sr , zd ­ aCzU0, u

s1d
r sr , zd ­ 0, ps1dsr , zd ­ 0. Thus

in the reference of the lab, the object translates
V ­ 2aCzU0ez and rotates withV ­ 2asCuyadU0ez.
Cu is an increasing function ofka, with the two lim-
iting behaviors: Cuskad ø ka cosf for ka ø 1, and
Cuskad ø n cosf for ka ¿ 1 [12]. If one considers
an electric field of103Vm21, an electrophoretic mobility
sk21yh of 1028 ms21ysV m21d, which is typical of the
high salt concentration regime [2], andaCu ø 0.1, one
obtains V.a ø 1026 ms21, i.e., an angular velocity of
10 radys for a cylinder of radius0.1 mm.

Thus, we have solved the electrohydrodynam
equations (in the limits described above), for cylin
ders with any shape and charge modulations,
spectively, of the form s ­ s0 cossqz 1 mud and
asz, ud ­ a0f1 1 a cosskz 1 nu 1 fdg, at first order in
a. The angular velocity, as well as the electrophoret
mobility, are found to be nonzero only when these char
and shape modulations are correlated, i.e.,k ­ q and
n ­ m or n ­ 2m andk ­ 2q. As the electrohydrody-
namic equations are linear, we can calculate, in the lim
of small shape modulationsasz, ud (i.e., at linear order in
a), the angular velocity and the electrophoretic mobilit
of cylinders for any shape and charge modulation by
simple superposition.

Let us apply this superposition principle. Take th
modified cylinder with surface modulationda1szd ­
aa cossnu 1 kz 1 fd and charge modulation
s0 cossnu 1 kzd. Superimpose to its shape modulatio
one with opposite chiralityda2szd ­ aa cossnu 2 kzd.
The electrophoretic properties are not modified as this a
ditional shape modulation is not correlated to the char
modulation on the cylinder, i.e.,s0 cossnu 1 kzd. The
resulting object has now a nonchiral shape. Eventua
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add to the existing modulated charge density a unifo
charge densitys0 ­ 2aCzs0. This cancels the transla
tion alongOz without modifying the rotation around this
axis. We thus have an object with a nonchiral shape
in rotation without any translation.

As a last cylindrical example take an insulating cylind
having a nonuniform charge densityssz, ud ­ s0 cossnud
(with n . 2) and apply an electric field normal to th
axis of symmetry, in theu ­ 0 direction (Fig. 2). By
symmetry this object does not move. Let us now co
ple the charge modulation to a modulation of the r
dius asud ­ af1 1 a cossnu 1 fdg, wheref is a phase
shift. Consider the casef ­ 2py2 as on Fig. 2. An
argument of symmetry prevents the motion in the d
rection of the electric field, while the symmetry allow
in principle for a motion normal to the field. Solving
the Laplace and Stokes equations to first order ina for
any f [12], we find that the free electrophoretic veloc
ity of the cylinder is given byyx ­ 2aU0

s3n23d
2 cosf

and yy ­ 2
1
2 aU0 sinf. For f ­ 2py2, one has in-

deedyx ­ 0 and yy ­ 1
2 aU0: The velocity of the par-

ticle V ­ VsE0d is nonzero and normal to the applie

FIG. 1. Cylinders: (a) With a helical charge modulatio
(darker areas are, e.g., positively charged); (b) same as prev
with matching shape modulation; (c) same as previous w
additional and chirally symmetric shape modulation. Only (
is hydrodynamically chiral.
1531
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FIG. 2. Cylinder with shape modulation asud ­
af1 1 a cossnudg and charge modulation ssz, ud ­
s0 cossnu 1 py2d (here n ­ 4 and s0 , 0). Whatever
the direction of an applied external electric field (normal to th
cylinder axis), the cylinder moves in the direction normal t
the field.

field. The problem we consider is invariant under th
rotation r2pyn of angle 2pyn (with n . 2) aroundOz ,
i.e., one hasVsssr2pynsE0dddd ­ r2pynsssVsE0dddd. As n . 2,
the vectorsr2pynsE0d form a complete set of vectors
in the plane normal toOz . By linear superposition and
as the mobility is a second rank tensor, we deduce t
the problem is invariant by rotation in the plane, i.e
one hasV ­ VsssrusE0dddd ­ russsVsE0dddd for any rotationru

aroundOz . This latter property can be proven in mor
details very similarly as, say, one shows that the he
diffusion tensor of crystals with cubic lattice symmetr
is a scalar [15]. As the mobility of an object alongOz

is zero, the tensor which relates the applied field to t
velocity is antisymmetric: This particle moves normall
to any applied external field (but for the specific case
a z-oriented field which induces no motion whatsoever
More precisely, the velocity can be writtenV ­ MQE0 ­
Mq 3 E0, whereQ is antisymmetric andM ­ Mxx ­
Myy is the Stokes mobility in the plane of the modifie
cylinder (which is a scalar as the modified cylinder
invariant by rotations of2pyn with n . 2). q is the
pseudovector associated to the antisymmetric tensorQ,
and is oriented in thez direction.

The strategy of coupling charge and shape modulatio
can, of course, be applied to other particles, such
spherical ones. Though the geometry is different fro
that studied in this paper, one can, for example, exp
that a sphere, modified along a given direction in the sa
way as our first cylindrical example, can indeed rota
around this privileged direction, as such property for th
cylinder is the result of local effects.

In conclusion, electrophoresis in salty solutions di
plays a wide variety of features which are absent
sedimentation. To take advantage of this richness an
propriate coupling between shape and charge modulati
1532
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is necessary. Patterning surfaces along these lines is
principle within the reach of current microtechnology, an
could lead to various micropumps or micromotors [14
Also it may be useful to bear in mind the principles out
lined here when analyzing the dynamics and motion
biological systems where (a) due to ionic pump activ
ity, electric currents are generated and (b) patterns a
present due to the self-organization of various molecul
entities. Indeed, electro-osmotic flows have already be
invoked as possible sources of cellular motion, growt
or organization [16–18]. They could also be relevant fo
understanding the mechanisms at work in some biologic
rotors, such as those studied in [19].

Our interest in these problems originated from discu
sions with Jacques Prost, to whom we are deeply indebt
We acknowledge useful conversations with Howard A
Stone.
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