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Symmetry Properties of the Electrophoretic Motion of Patterned Colloidal Particles
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In sedimentation experiments at low Reynolds numbers there are general restrictions for the motion
of particles. We show that some of them do not apply for electrophoresis in ionic solutions. In
particular, we construct specific examples of objects with patterned shape and surface charge, that (1)
undergo a permanent motion of rotation without translation, or (2) move perpendicularly to the applied
electric field, whatever the direction of the latter. This demonstrates the broad spectrum of possible
electrically induced motions, and could guide the design of microengines and the understanding of
biological systems. [S0031-9007(98)06760-X]

PACS numbers: 82.45.+z, 07.10.Cm, 82.65.Fr, 83.50.Pk

Although used in a large number of practical situations, We want to contrast this with electrophoresis in ionic
electrophoresis of colloidal particles in solution, i.e., set-solutions (in the presence of salt), focusing for simplicity
ting them into motion by applying an electric field, is not on the case of particles with thin Debye layers and weak
simple to describe analytically [1-3]. In particular, stud- surface potentials. Then the deformation of the Debye
ies throughout the century have pointed out basic differfayer due to the application of a weak electric field
ences with sedimentation or other classical hydrodynamics negligible [2]. Teubner [10] has shown that in this
situations: The electric field pulls not only on the particlelimit the motion of the particle can still be described by
but also on the counterion cloud surrounding it, which re-Eqgs. (1)—(3), the tensoR, M, C being the same as in
sults in flows very different from the usual Stokes descrip-the case of sedimentatio and P being, respectively,
tion. As a consequence, surprising behaviors have bean effective tensor and an effective pseudotensor that
predicted: A neutral object can be set into motion [4],take account of the effect of the backflow due to the
the electrophoretic mobility of an object can change sigrpresence of the counterions. The latter differ thus from
as the field is increased [5], and an object can be set intthe total electric charge and from the electric dipole of the
motion perpendicularly to the electric field if the latter is particle. This leads to new possibilities for the symmetry
applied along a specific direction [6]. In the same spiritof the resulting motion: Indeed, we provide in this Letter
we show in this Letter that, due to the counterions, the dyspecific examples wher@ is antisymmetricand others
namic response of charged particles to a constant and hahereP is symmetric
mogeneous applied electric field does not obey the general Let us discuss first the case of electrophoresis in salt
symmetry rules of field-induced motion at low Reynoldsfree solutions. The® = QI4 andPE, = p X E; with
number hydrodynamics, at work, e.g., in sedimentation) andp the total charge and the electric dipole moment
experiments or in electrophoresis in the absence of coursf the particle [10]. The torque is always perpendicular
terions, with an emphasis on the case of chiral particles. to the applied electric field while the force is always

Let us recall the usual hydrodynamic picture: a solidcolinear to the electric field. Take a particle with zero
particle submitted to an external foréeand an external dipole momentp = 0. Its velocity isV = MQE,. As
torqueT acquires translational and rotational velocités M is positive definite, the velocity has always a nonzero
andQ [7]. Itis possible to choose a particular point of component along the direction of the electric field, of the
reference in the frame of the solid such that the dynamisame sign ag. In particular, it is impossible for such a
law reads particle to move perpendicularly to the applied field. The

V = MF + CT, (1) angular velocity isQ) = CQE( = CM~1V. The tensor
Q — CF + RT., o) C couples translation and rotation: Particles with nonzero

i . , C tensor can undergo a permanent (but not necessarily
whereM, R are positive definite symmetric tensors and uniform) motion of rotation, provided they have also

is a symmetric pseudotensor [7—-9] which is nonzero only; 1onzero electrophoretic mobilitylQ, i.e., a nonzero
for geometrically chiral objects. These tensors depeng, chargeQ. For example, ifM is isotropic and if
only on the shape and size of the particle. In classicajhe glectric field is applied along a principal direction
situations where motion is induced by an external flé{d ¢ the tensorC, the particle is set into a permanent
(for sedimentatiorE, = g, for electrophoresis in salt-free 5,4 uniform motion of translation and rotation. @

solutionskE, is the applied electric field), one has has two identical eigenvalues and if the electric field

F=QE;; T =PE,, (3) is applied at some angle with the third principal axis
whereQ is a scalar and thus symmetric tensand P is  of C, the particle undergoes permanent translation and
an antisymmetric pseudotengdg]. rotation, with a precession around the third axis. The
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general case with three different eigenvalues leads to a sphere). Note that—contrarily to the salt-free case—
very complicated motion. the eigenvalues of) can be of different signs, which
Consider now a particle of zero charge = 0 and allows the velocity to be normal to the applied fidtat
nonzero dipole moment. The® = R(p X Eq). Asthe particular directions of the lattefexamples can be found
tensor R is positive definite, the angular velocity can in [3,6]). Also a spherical particle cannot undergo a
never be colinear to the applied field (it has always gpermanent motion of rotation: Its only motion of rotation
nonzero component along the directionpofx Eg, unless in electrophoresis corresponds to the alignment of the
the electric field is aligned with the dipole and the angulardipole associated witlP along the electric field—very
velocity is zero). One can show thét%(p X Eg)> =  similar to the salf-free case. Again, examples have been
—(p - Eg)(p X Eg) - R(p X Eg): As the tensorR is  provided in [3,6] of objects rotating transiently towards
positive definite, the effect of the rotation is here to alignequilibrium. Similar symmetry arguments prove that an
the dipole along the external electric field and thus toaxisymmetric particle cannot rotate permanently around
reduce its very cause. Once the dipole is aligned withits symmetry axis. Thus, to design rotating particles, it
the electric field, motion ceasesR determines the rate is not sufficient to pattern a symmetric object with a
at which the particle reaches “orientational” equilibrium. well-chosen (chiral or not) surface charge distribution.
For a steady rotation to occur, the torque which result€onsequently, we construct examples whieoth shape
from the application of the external field must remainand charge distribution are patterned.
essentially invariant under the resulting rotation, which As we turn to explicit calculations, we recall the usual
cannot be the case here. recipe in the present limit of small Debye length and
Thus we recall that, in salt-free electrophoresis condismall surface potentials (see the review of Anderson
tions, as consequences of general properties of the tensd8j for details). Applying an electric fieldE, induces
M, C, and R, (1) the only possibility for a particle to an electroosmotic slip velocity at the surface of the
experience a permanent motion of rotation is to be hydroparticle: U = —o« 'E/% [1,3] wheren and« ! are,
dynamically chiral(C # 0) and to have a nonzero elec- respectively, the viscosity and the Debye length of the
trophoretic mobility (i.e., a nonzero total charge) so as tasolution, o is the local surface charge density on the
translate, (2) a particle cannot move perpendicularly to thg@article, andE is the local electric field at the surface
applied field, whatever the direction of the latter. of the insulating particle, which can differ frol, due
Electrophoresis in salty solutions is not limited by theseto the disturbance caused by the particle itself. The flow
restrictions as we will show. We push this point to itsaround the object (in a reference frame attached to the
extreme by constructing two clear example®bject A object) is then obtained by solving the Stokes equation
undergoes a uniform motion of rotation around the appliedvith no body force, with the slip velocity as boundary
field without translating, object Branslates normally to condition on the object's surface [1,3]. The flow at a
the applied field, without rotatinfpr any direction of the distancer from the object tends to the limiting value
latter but one. v(ir) — =V — Q X r, which allows one to determine
What strategy can be used to reach this goal? I'W and Q. This procedure is now applied to various
principle, one may want to play with the shape and theobjects.
charge distribution on the particle. It is well known thatin Consider first an infinitely long charged, insulating
free flow electrophoresis conditions, in the present limit ofcylinder of radiusa, decorated with a nonuniform “heli-
small Debye length, any uniformly charged and insulatingcal” surface charge density(z, 8) = oocogmé + gz).
particle undergoes a permanent motion of translatiorO, is the axis of the cylinder, and we use the correspond-
along the electric field, without any rotation, even if ing cylindrical coordinate$r, 6,z). An electric fieldEg
it has a chiral (e.g., screwlike) shape [10,11]. In suchs applied alongO,. The electro-osmotic flow around
conditions, using an object of chiral shape is thus nothis cylinder is obtained by solving the following Stokes
sufficient to obtain a permanent motion of rotation. equations:nAU — gradp = 0,divU = 0,U(r = a) =
Consider now a spherical particle with a single punctuallp cogmé + gz), where p and U are the pressure
charge located at, on its surface and apply an external and velocity fields, respectively, afdy — ook 'Eo/7.
field Eo. Then, by symmetry, the vectdr is a linear From the solution [12] in the reference frame of the ob-
combination ofE, and (Eq - ro)rp which are the only ject, it is clear that no net flow is created at infinity. =
vectors linear in the applied fiell, that can be built 0 and{ = 0, as expected from the symmetry considera-
in this problem, and the pseudovectbris proportional tions stated above. Therefore, let us couple to the charge
to ry X Ey, which is the only pseudovector linear in modulation a slight modulation of the radius of the cylin-
the applied field. Then, by linear superposition, forder: a(z,0) = a[l + acognb + kz + ¢)] wherea is
any charge distribution on a sphere, the tenris a small number and a phase shift. The electroosmosis
symmetric and the pseudotendiis antisymmetric (note flow can be calculated to first order . At this order,
that this actually holds for any ionic strength). As athe local electric field i = —V® with ® = —Eyz —
consequence, a spherical particle cannot systematical@aaEOW% sinfkz + nf + ¢), wherek, are
move normally to the applied fiel?W(= M - Q - E; for  modified Bessel functions [13].
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The first order correction to the flow is obtained by g{sin(m + n)6 + (¢ + k)z + ¢] + sin(m — n)d +
solving the Stokes problem, with slip velocit§U on (¢ — k)z — ¢ ]} + k{sinl(m + n)0 + (¢ + k)z + ¢] —
the unperturbed boundary(z) = a, where 6U is the sinf(m — n)0 + (¢ — k)z — ¢]}, respectively. Only
difference between the true boundary conditibh=  the first term can generate a net flow at infinity, and then
—ok ' 'E and the value thezeroth order solu- only form =n andg =k or m = —n and g = —k.
tion takes on the actual boundary of the cylinder.This term is then proportional to cgs The boundary
8U contains terms proportional to do& + n)8 +  conditions for this part of the first order correction

(g +k)z + @]+ cod(m —n)6 + (¢ — k)z — ¢]and are thenufgl)(r =a) = aCyUy, ugl)(r =a) = aC,Uy,
| WV = a) = 0, with [12]

k), 2< KXka)  K3(ka) ZnKn<ka>> _ nKy (ka) }
CB COS¢|: 2 k a Kn+l(ka) Kn*](ka) kd Kn*l(ka) + Kn+l(ka) ’ (4)
ka K,—(ka) + K,+1(ka) 2 2<Kn1(k6l)Kn+1(ka) ) kakK, (ka) }
== —_— - - K, + ’
C COS‘J’[ 4 K, (ka) vlka)k'a K, (ka) kD) * K oka) + Ko ika)
andy(ka) is defined by
y(ka)™ (Ky-1Kp+1) = kalKpy (Kyy + K7 K1 = KpKyiy = KpKy—1] = 4Ky 1Ky Ky - 6)

The corresponding flow and pressure fields in thaadd to the existing modulated charge density a uniform
solution are then given byu(gl)(r,z) = aCyUyr/a, c_harge densnyr_’ = —aCZ.a'O.. This canc_els the translz_;l—
u(zl)(r,z) — «C.Uj, ME‘I)(}",Z) —0, p“)(r,z) — 0. Thus tlon along Oz without modlfylng the rotation qround this
in the reference of the lab, the object translates afX'S: We th_us have an objec'g with a nonchiral shape set
V = —aC,Uge, and rotates with) = —a(Cy/a)Use,. In rotation Wlth'out.any translation. ' ' _

Cy is an increasing function ofa, with the two lim- A_salast cyhr_1dnca| example tal_<e an insulating cylinder
iting behaviors: Cy(ka) = kacos¢ for ka < 1, and 1@ving anonuniform charge densityz, ) = o cognf)
Cy(ka) = ncose for ka > 1 [12]. If one considers (with n > 2) and apply an electric field normal to the

an electric field ofl0>Vm~!, an electrophoretic mobility &S Of symmetry, in they = 0 direction (Fig. 2). By
ok~ /n of 1078 ms~!/(Vm~1), which is typical of the symmetry this object does not move. Let us now cou-

high salt concentration regime [2], areC, ~ 0.1, one ple the charge modulation to a modulation of the ra-
obtains Q.a =~ 10°°ms™!, i.e., an angular velocity of diusa(f) = a[l + acogné + ¢)], whered is a phase

10 rad's for a cylinder of radiu®.1 um. shift. Consider the cas¢ = —#/2 as on Fig. 2. An

Thus, we have solved the eIectrohydrodynamicargument of symmetry prevents the motion in the di-

equations (in the limits described above), for cylin- rection of the electric field, while the symmetry allows
ders with any shape and charge modulations reln principle for a motion normal to the field. Solving
spectively, of the form ¢ = opcodqgz + m0) anc,i the Laplace and Stokes equations to first ordetifior

a(z,0) = ap[1 + acodkz + no + ¢)], at first order in any ¢ [12], we find that the free electrop(r;r?jgtic veloc-

a. The angular velocity, as well as the electrophoretidty of the cylinder is given byv, = —a Uy~ cos¢
mobility, are found to be nonzero only when these charg@nd v, = —>aUysing. For ¢ = — /2, one has in-
and shape modulations are correlated, ke ¢ and deedv, = 0 andv, = %an: The velocity of the par-
n=morn = —m andk = —q. As the electrohydrody- ticle V = V(E) is nonzero and normal to the applied

namic equations are linear, we can calculate, in the limit
of small shape modulations(z, 6) (i.e., at linear order in
a), the angular velocity and the electrophoretic mobility
of cylinders for any shape and charge modulation by a
simple superposition.

Let us apply this superposition principle. Take the
modified cylinder with surface modulatioda;(z) =
aa cognd + kz + @) and charge modulation
oocognd + kz). Superimpose to its shape modulation
one with opposite chiralityda;(z) = aa cognf — kz). ) ) ) )
The electrophoretic properties are not modified as this ad!G: 1. Cylinders: (a) With a helical charge modulation

.. h . darker areas are, e.g., positively charged); (b) same as previous
ditional shape modulation is not correlated to the charggy, matching shapg rﬁodulatign; (C)gsa)m((a )as previour?s with

modulation on the cylinder, i.eqocodné + kz). The  additional and chirally symmetric shape modulation. Only (b)
resulting object has now a nonchiral shape. Eventuallys hydrodynamically chiral.

1531



VOLUME 81, NUMBER 7 PHYSICAL REVIEW LETTERS 17 AGusT 1998

is necessary. Patterning surfaces along these lines is in
Vi principle within the reach of current microtechnology, and
could lead to various micropumps or micromotors [14].
Also it may be useful to bear in mind the principles out-
lined here when analyzing the dynamics and motion of
biological systems where (a) due to ionic pump activ-

<_YZ_ ity, electric currents are generated and (b) patterns are
_— present due to the self-organization of various molecular
E, entities. Indeed, electro-osmotic flows have already been

invoked as possible sources of cellular motion, growth,
or organization [16—18]. They could also be relevant for
understanding the mechanisms at work in some biological
rotors, such as those studied in [19].
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the field.
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