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Collective Edge Excitations in the Quantum Hall Regime:
Edge Helicons and Landau Levels
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Based on a microscopic evaluation of the local current density, a treatment of edge magnetoplasmons
is presented for confining potentials that allow Landau level (LL) flattening to be neglected. Mode
damping due to electron-phonon interaction is evaluated. vFer 1,2 there exist independent modes
that are either spatially symmetric or antisymmetric with respect to the edge. Certain modes that change
shape during propagation are nearly undamped even for very strong dissipation and are termed “edge
helicons.” Forv > 2 inter-LL Coulomb coupling leads to a strong repulsion of ttecoupledLL
fundamental modes. The theory agrees well with recent experiments. [S0031-9007(98)06899-9]

PACS numbers: 73.40.Hm, 71.70.Di

The essentially classical treatments [1,2] of low- Both previous classes of models are oversimplifications.
frequency collective excitations, propagating along thdn this Letter we present a quasimicroscopic treatment
edges of a two-dimensional electron gas (2DEG) subjeatf EMPs for integerrv, which takes into account LL
to a normal magnetic field, termed in Ref. [3] edge structure, LL mixing, dissipation (related to LL mixing
magnetoplasmons (EMP), account for some importanéssentially), and the inhomogeneity of the current density
characteristics of EMP, e.g., the gapless spectrum of thesear the edges treated recently [11]. It is valid for bare
excitations [1] and theacousticmodes [2,4]. However, confining potentials sufficiently steep that LL flattening
the results of Refs. [1] and [2] are valid, respectively, forand the formation of compressible and incompressible
infinitely sharp and smooth density profiles that are indestrips [12] can be neglected [13]; in this case the dissipation
pendent of the filling factow. As contrasted in Fig. 1 is essential only within a distancef, from the edges [11].
with our calculated density profile for one or two LandauAs will be made clear, our model effectively incorporates
levels (LLs) occupied and a smooth, on the magnetithe previous two distinct propagation mechanisms.
length €y = +//i/|e|B scale, parabolic confining potential We consider a zero-thickness 2DEG, of width and
these assumed profiles miss an important quantum mef length L, = L, in the presence of a strong magnetic
chanical aspect, the LL structure. This inadequacy was
manifested in the observed [4] plateau structure of the
transit times reflecting that of the quantum Hall effect 1.0 \
(QHE) plateaus and not accounted for in Ref. [2]. In ad- !
dition, for a spatially homogeneous dissipation within the
channel, the damping is found quantized and independent
of temperature [1] or it is treated phenomenologically [2]
with damping rates strongly overestimated [4]. Other M 05 —t_
limitations of the model of Ref. [1] were pointed out in nQ
Refs. [5,6]. In a sense, the conventional EMP [1-3] is ‘
the magnetic analog of the Kelvin wave [7] at the edge IS
of a rotating “shallow” sea with chirality determined by ~
the Coriolis parameter which corresponds to the cyclotron 4
frequency w. = |e|B/m*. In these mostlyclassical 0.0 i i I
models the position of the edge does not vary but the 220.0 -10.0 0.0 50
charge density profile at the edge does.

In another distinctly different and fully quantum- y/fo
mechanical edge-wave mechanism [8—10] only the edge
position, forv = 1, of an incompressible 2DEG varies; FIG. 1. Unperturbed electron density(y), normalized to the
with respect to that the density profile is that of thebulk valueny, as a function ofy/€,. The thick solid curve
undisturbed 2DEG. For = 1 this approach is limited to S the model of Ref. [1] and the short-dashed curve that of

. Ref. [2] (a/€y = 20). The dashed and solid curves show the
the sgbspace Of. thg '°,W€St LL wave fgnctlons, negl_ec'[%alculated profile forv = 1,2, and for v = 4, respectively.
LL mixing and dissipation, and results in a single chiralThe solid and open dots mark the edges of the- 1 and

EMP with dispersion law similar to that in [1]. n = 0 LLs.
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field B along thez axis. We take the confining po- but is not well justified for those<E,(y). We approxi-

tential flat (V, = 0) in the interior of the 2DEG and mate the latter by those obtained whep(y) is smooth.

parabolic at its edges;, = m*Q%*(y — y,)*/2,y = y,.  This is equivalent to neglecting nonlocal contributions to

V, is assumed smooth on the scale &f such that j, « [ dy' o,,(y,y")E,(y'). For weak dissipation the

Q) < w.. The resulting one-electron energy spectrumresults for the fundamental modes can be justified by a

E,(ky) = (n + 1/2)hw. + m*Q*(yo — y,)*/2, where microscopicRPA treatment [14] which includes nonlocal

yo = €3k, = y,, leads to the group velocity of the edge effects and does not require the smoothnesB dfy) on

states v,, = 9E,(k")/hok, = KQ2k" /m*w? with  the scale offy. The Hall conductivity is [11]

characteristic wave vectok” = (w./iQ)\2m*Ar,,

Ap, = Er — (n + 1/2)hiw.. The edge of theth LL is o2 %

denoted byy,, = y, + €k" andW = 2y,. oh(y) = 7— Z f dyo f(Ew)¥5(y = y0), (1)
Assuming|q,|W > 1, we can consider an EMP along 2ah S )

the right edge of the channel of the forf{w, g.,y) X

exf—i(wr — g.x)], totally independent of the left edge. \herew, () is a harmonic oscillator function antiE,)
We neglect the spin spll_ttmg for even. Because_ the the Fermi-Dirac function. We consider only the interac-
wavelengtha of the practically quasistatic EMP satisfies tjon of electrons with piezoelectric phonons and neglect
A > £y, the electric fieldE,(w, g,,y) has a Smoothy ot with impurities shown to be very weak [15]. We
dependence on the scale éf. Following Ref. [11] approximateo . (y) by oy, (y) = 3, o™(y) and calcu-
we obtain the current density, in the form j,(y) = |t it for very low temperature® < Fiv o/ €0k using

0 . _ gn B
U%yEY;EyE)’; + gyx(y)Ex((y), Jx()y) = ou(VELY) = Ref (11, Forv,, > sandv = 2,4 we obtains{")(y) =
oy (ME,(y) + > ;vgi0pj(w,q,y). The convection _ o\ — _ 1) n 2 A 33
contribution v,; 87, is due to a charge distortiod p; Ué:v)\ﬁyﬂfy")’ Yu =¥ = Ym, and oy = 3eXicksT?/
localized near the edge of theh LL. These contributions 7 /i"Vg,s Where s is the speed of sound and the
to j,, are microscopically obtained whef), (y) is smooth ~ INteraction constant.

on the scale of,. This holds for the componentst, (y) Using j,, the continuity equation linearized ibp =
| p, and Poisson’s equation we obtain the integral equation

d2

d d d
[ng()’)] - a-yy(y)ﬁ - E[O'yy(y)]a X

. 2 :
_ZZ((U - vagn)pn(ws l]x,)’) + ; q;%a-xx(y) - ZCIxa
n

| Kollad 1y = yDp(@.400) = 0. @

wheree is the spatially homogeneous dielectric constant. _ () _ S (n) (n)q _

For a dissipationless, classical 2D electron liquid Eq. (2) “°P° Somnzzocm"[a’"”po T bmpr’]1 =0, (4)
becomes identical with Eq. (4) of Ref. [2]. &, (y) El[Akpﬁk) n kaik+2> n pik—”/z]/z _

is independent ofy, for | y| < W/2, Eqg. (2) reduces to w

Eq. (15) of Ref. [1]. To solve Eq. (2), we remark that Z Cinl SixFr/2 — \/ES{Fnk] =0. (5
for hivg, > €okgT we haved[a')(,)x(y)]/dy o« [\Ifg(io) + =0

\Pf(yl)]. It follows that p,(w,q,,y) is concentrated Here @, = @ — g, Fum = b p(()”)+d pin) o
within a region of extent-¢, around the edge of theth . (" - = S o ESVRR
LL. For 2Ay = y,o — yn 3 £, cf. Fig. 1, we neglect 2mmP0 + duny Sum = Su + mS,, Sy = 2(gx0y, =

the exponentially small overlap betwep(w, ¢, y) and  i4:7\))/€, S, = _4"&;'})/'5{%: ando?), = e*/mh. au,
pi(w,q,,y) and, forv = 4, attempt the exact solution is given in Ref. [16] and,.,., byun, dpn, andd,,, are given
® by similar expressions. Further,,, = (2"n!/2"m!)"/2,
p(0.4:.7) = V(o) Y " (@4 Ha( 5o/ o) Ap = (@2m + 1), andB,, = (m +2)2m + 2).
n=0 (i) v = 2.—In this case the second term of Eg. (3),
e 0 _ the third term of Eq. (4), and Eq. (5) are absent. Equa-
+ W) D p1 (@.q)HI(5,/€0). @) tions (3), (4), and the form af,,, show [16] that there ex-
=0 ist independentnodes, spatiallysymmetric,o*(w, g, y),
where H,(x) are the Hermite polynomials. We call the or antisymmetricp*(w, q,,y), with respect toy = y,¢;
terms/ = 0, 1, 2, etc., the monopole, dipole, quadrupole,they correspond ta evenor odd, respectively.
etc., terms in this expansion of,(, g, y). Symmetric modes-We first consider only two terms,
We now multiply Eq. (2) byH,,(y,/€o) and integrate n =0 andn = 2, in Eq. (3). Form =0 andm = 2
over y. This procedure is repeated witH;(y,/¢y). EQq. (4) gives a system of two coupled equations for the

With the abbreviationSp(()m)(a),qx) = p(()m), ami(gy) = unknownSp(()O) and p(()z). The vanishing of the determi-

amk, €tc., we obtain the coupled systems of equations  nant gives two branches’ and w®. With v, = v,
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and S = S, their dispersion relations (DRs) ake’ = 1.0 =73
Gevgn + {R+ = [R: + 4S(S + 28")ai,]'/?}/2,  where h
R+ = [S(ag * axn) * 2S5'ax]; for further details see
Ref. [16]. 3
Edge helicons—The coupling between the branches ;N5 4
(due to agp # 0) and the strength of the dissipation 5p 0.5 —| / <N
modify the character of the pure modes. HOr> 7, \ N NN
n = 0'(0 /€509, 1q,], and weak dissipationy < 1/4, Y N \
the w? branch remains almost unchanged, whereas the PN N
w* branch acquires a principally new contribution to / \\ / NN
damping since w% = q.v, + S(K + 1/4) + S'/4K, AN RN
K = 1/2 — In(g.€y). The coupling leaves the phase 0.0 \ |
velocity of both branches nearly unchanged, anddiie 0.0 1.0 2.0 3.0
branch |svery weakly dampednd almost monopolelike

smcepo /p(z) —8K, K > 1. For strong dissipation gj/ﬁo

(K> n>1/4) we obtalnp(o)/p(()z) ~ —2iK/n. This FIG. 2. Dimensionless charge density profiley) of the low-
corresponds  to w’ 7y > vro/m > wi1y/(4K + 1), frequency edge helicon as a functionygf/ ¢, for » = 2. The
where ry = ¢2/ehw. s, and o can still be consid- number ofeventerms retained in Eq. (3) is shown next to the
ered high compared td/7y; 7, defined byl1/7: = Curves.

wcﬁﬁ’;) /(052)60\/2;1 + 1), is an effective scattering time .

in an edge strip of widtiyv/2n + 1. In this frequency Equation (6) already approximates well Ref; and the

: s — (O : dependence of Inwgf; onT.
region we call thew’ = wgy branch high-frequency X . . .
edge hellcor(HFEH) Because of the almost/2 shift The antisymmetric modes have been described in

Ref. [16]. Here it is worth mentioning that if we
betweenp(()) andp , the HFEH exhibits the following [16] 9

keep only one, two, or threedd terms in Eq. (3), the
remarkable property if its charge alonghas a pure dimensionless velocity of the dipole branchy;, =

quadrupole character|p02 | for some phase of the wave, (w/qy — ugo)/(ez/whe) for weak dissipation is equal,
after approximately atw/2 shift it acquires a pure respectively, to 0.4996, 0.5963, and 0.6287. The charge
monopole characteqtlpf)o)l. Notice that Imw( )\ o T3, density profile shows a similar fast convergence.
That is, in contrast with Ref. [1], the damprng of the It is worth noticing that if we limit ourselves to the
HFEH scales withT and is not quantized in the QHE subspace of the = 0 LL wave functions, by keeping,
plateaus. As for the? branch, it is strongly damped. for v =1, only then =0 term in Eq. (3), we have
For very strong dissipationy > K, thew? branch is the same edge-wave mechanism as Refs. [8—10] with
strongly damped while the?. branch changes to a low- the same single mode. This can be seen by writing
frequencyedge helico(LFEH) with DR (0%, = wih) n(x,y,t)=noly + b(w, q,) codwt — g x)]=no(y) +
WER = " gxvg [S — icl)/n*Gel(K — 1//4). (6) [dno(y)/dylb(w,qx) coSwt — g.x), with dno(y)/dy ~
where w7y < vro/m < 1. Despite this, the LFEH l//(%(}’_o), for the total densityn(x,y,7). It is only by
is very weakly damped. Further, p(()O) 2 _ 5  retaining _the_n = | terms th_at we obtain more t_han one
and Eq. (3) gives the charge density proflmo _ modes with important contrrbuﬂon; to the damping of the
J7 o Rdp(w.q y)/p((»(w 4] shown in Fig. 2 fundamental mo_de. Furth_er, retarnrng the= 1 terms_
b 5 f’ ;(’/ =°001’_ o h I ratio has 'S equivalent to incorporating in the model the classical
y curve 2 for & /m V% sueh a sman ratl S edge-wave mechanism [1-3,7]. It is also clear that we

practically no effect on 5p.(y) it only rhe MS  t5cus on wave effects of nonspin nature and do not treat
n =0 andn =2 are kept in Eq. (3). Sinc&®p(y) o ciations such as Skyrmions.

is symmetric with respect to the edge, only one- “half® (i) Inter-LL coupling—» = 4. Although the con-

?f Flgwf,z is _?EOW?T t(_:urve 1 shows the mO?Op?Iedltion 2Ay > {, cf. Fig. 1, is well justified forV,, the
erm («Wp). € eliective convergence parameter Orsystem of Egs. (4) and (5) can be strongly coupled due

f[:r:rrve 2ﬂ|s nfo:h Su[fl':cl';l"_?ﬂy sn?all. ITtO bettergdefcrrbgto the long-range nature of the Coulomb interaction. To
€ protiie of the WE alSo plot CUves s, 4, and,ave contact with they = 2 results, we first consider

5 obtained with 3, 4, and 5 evem terms retained in th i d (0) d 0) f th — 1 LL
Eq. (3), respectively. As shown, keeping 4 or 5 termel € Symmetricmodes, p;~ and p;_ of the » .
in the n summation leads already to a clear convergencgecou|0|eOI from then =0 LL. Then one brarrch IS
in the form of the charge-density profile, without altering “’3 ~ q:vg + (S1 + 251)/4. The other one is the
its oscillatory character or changing its magnitude byfundamental branch, or HFEH of the= 1 LL, w](gll){ =~
much. This oscillatory behavior af p, further modified  g,v, + Si(K — 1/4) + Si{/12K. Now the decoupled
during propagation, is in sharp contrast with the “usual’fundamental modes(?i =0 andn =1 LLs have DR

EMPs of Ref.[1] and thej = 0 mode of Ref.[2]. given by a)](gOH and wgy. When they are coupled, their
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DRs change drastically. FaAy > €, and2Ayg, < 1  whereas those of th&@"" modes are about 10 times

an examination of the coefficients,,, etc., shows that gmajler, Imd)(fl) ~2.1 % 10 sec! and Ime©) ~

the most important terms in Eq. (3) a8, pi”, and 5.6 x 10° sec! < 1/7 = 2 % 10'° sec’!. Thus, the
sz)- This leads to three branches, andwgm) ~ w3 . decay rates of th&"" modes should be much closer to
The renormalized: = 0 LL fundamental mode becomes those of the experiment [4] than the strongly overestimated
@+ = q:(vg T vg1)/2 + (2/€)q o) [2In(1/9:€0) —  ones[2]. Regarding the delay timgsfor the sample with

InQAy/€o) + 3/5] + S{/16K and that of thez = 1 LL  length L, = 320 um, we obtainz; = 1.2 X 107'° sec
0 = g.(ve + vo1)/2 + (2/€) g% [IN2AY/€0) +  for the & " mode andr; = 6.9 X 10~ sec for the
2/5] + S1/{24[In(Ay/€y) + v + 1/4]}, wherey is the  &©Y mode, in very good agreement with the observations
Euler constant. The ) mode becomes purely acoustic [4]. We conclude that the slower mode observed for
and has a phase velocity larger than that ofjtke 1 mode  » = 4 is not thej = 1 mode of Ref. [2] but the present

of Ref. [(20]1)for 2Ay/€y = 5. The coupled fundamental @©) mode. It is also clear that our theory accounts for

modesa+ = are very weakly damped. the existence of the plateaus ip [4] as the quantized
The DRs forv = 4, corresponding to the experimental Hall conductivity appears in all DRs.
[4] parameters8 = 2.06 T andT = 1.5K, are shown in In summary, we presented a theory of edge magneto-

Fig. 3. The solid and short-dashed curves are obtaineglasmons for confining potentials that allow LL flattening
with e = 12.5. The dashed curvds = 6.75) pertaintoa to be neglected. It accounts for the existence of plateaus
sample with air above the spacer. The short-dashed curvésthe delay times, the dispersion relations, and the damp-
are the decoupled fundamental modes, the solid and dashé rates of the observed [4] modes for= 4. Com-
ones the coupled modes. As can be seen, the inter-LL cogared to thelecoupledindividual LL fundamental modes,
pling strongly modifies the DR of both fundamental modesthe coupled LL modes are drastically renormalized and in
Using Q = 7.8 x 10! sec’! [17] gives Q/w. ~ 0.14,  good agreement with the experiment. Other novel results
2Ay/€y = 6, vg = 2.3 X 10° sec’!, and vy/v, =  are mentioned in the abstract.
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