
VOLUME 81, NUMBER 7 P H Y S I C A L R E V I E W L E T T E R S 17 AUGUST 1998

ine
M8
Collective Edge Excitations in the Quantum Hall Regime:
Edge Helicons and Landau Levels
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Based on a microscopic evaluation of the local current density, a treatment of edge magnetoplasmons
is presented for confining potentials that allow Landau level (LL) flattening to be neglected. Mode
damping due to electron-phonon interaction is evaluated. Forn  1, 2 there exist independent modes
that are either spatially symmetric or antisymmetric with respect to the edge. Certain modes that change
shape during propagation are nearly undamped even for very strong dissipation and are termed “edge
helicons.” Forn . 2 inter-LL Coulomb coupling leads to a strong repulsion of thedecoupledLL
fundamental modes. The theory agrees well with recent experiments. [S0031-9007(98)06899-9]

PACS numbers: 73.40.Hm, 71.70.Di
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The essentially classical treatments [1,2] of low
frequency collective excitations, propagating along th
edges of a two-dimensional electron gas (2DEG) subje
to a normal magnetic fieldB, termed in Ref. [3] edge
magnetoplasmons (EMP), account for some importa
characteristics of EMP, e.g., the gapless spectrum of the
excitations [1] and theacousticmodes [2,4]. However,
the results of Refs. [1] and [2] are valid, respectively, fo
infinitely sharp and smooth density profiles that are ind
pendent of the filling factorn. As contrasted in Fig. 1
with our calculated density profile for one or two Landa
levels (LLs) occupied and a smooth, on the magnet
length,0 

p
h̄yjejB scale, parabolic confining potential

these assumed profiles miss an important quantum m
chanical aspect, the LL structure. This inadequacy w
manifested in the observed [4] plateau structure of th
transit times reflecting that of the quantum Hall effec
(QHE) plateaus and not accounted for in Ref. [2]. In ad
dition, for a spatially homogeneous dissipation within th
channel, the damping is found quantized and independe
of temperature [1] or it is treated phenomenologically [2
with damping rates strongly overestimated [4]. Othe
limitations of the model of Ref. [1] were pointed out in
Refs. [5,6]. In a sense, the conventional EMP [1–3]
the magnetic analog of the Kelvin wave [7] at the edg
of a rotating “shallow” sea with chirality determined by
the Coriolis parameter which corresponds to the cyclotro
frequency vc  jejBymp. In these mostlyclassical
models the position of the edge does not vary but th
charge density profile at the edge does.

In another distinctly different and fully quantum-
mechanical edge-wave mechanism [8–10] only the ed
position, for n  1, of an incompressible 2DEG varies;
with respect to that the density profile is that of th
undisturbed 2DEG. Forn  1 this approach is limited to
the subspace of the lowest LL wave functions, neglec
LL mixing and dissipation, and results in a single chira
EMP with dispersion law similar to that in [1].
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Both previous classes of models are oversimplification
In this Letter we present a quasimicroscopic treatme
of EMPs for integern, which takes into account LL
structure, LL mixing, dissipation (related to LL mixing
essentially), and the inhomogeneity of the current dens
near the edges treated recently [11]. It is valid for bar
confining potentials sufficiently steep that LL flattening
and the formation of compressible and incompressib
strips [12] can be neglected [13]; in this case the dissipati
is essential only within a distance&,0 from the edges [11].
As will be made clear, our model effectively incorporate
the previous two distinct propagation mechanisms.

We consider a zero-thickness 2DEG, of widthW and
of length Lx  L, in the presence of a strong magneti

FIG. 1. Unperturbed electron densityn0s yd, normalized to the
bulk value n0, as a function ofyy,0. The thick solid curve
is the model of Ref. [1] and the short-dashed curve that
Ref. [2] say,0  20d. The dashed and solid curves show th
calculated profile forn  1, 2, and for n  4, respectively.
The solid and open dots mark the edges of then  1 and
n  0 LLs.
© 1998 The American Physical Society 1481
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field B along the z axis. We take the confining po
tential flat sVy  0d in the interior of the 2DEG and
parabolic at its edges,Vy  mpV2s y 2 yr d2y2, y $ yr .
Vy is assumed smooth on the scale of,0 such that
V ø vc. The resulting one-electron energy spectru
Enskxd  sn 1 1y2dh̄vc 1 mpV2s y0 2 yr d2y2, where
y0  ,2

0kx $ yr , leads to the group velocity of the edg
states ygn  ≠Ensksnd

e dyh̄≠kx  h̄V2ksnd
e ympv2

c with
characteristic wave vectorksnd

e  svcyh̄Vd
p

2mpDFn,
DFn  EF 2 sn 1 1y2dh̄vc. The edge of thenth LL is
denoted byyrn  yr 1 ,2

0ksnd
e andW  2yr0.

AssumingjqxjW ¿ 1, we can consider an EMP alon
the right edge of the channel of the formAsv, qx , yd 3

expf2isvt 2 qxxdg, totally independent of the left edge
We neglect the spin splitting forn even. Because the
wavelengthl of the practically quasistatic EMP satisfie
l ¿ ,0, the electric fieldExsv, qx , yd has a smoothy
dependence on the scale of,0. Following Ref. [11]
we obtain the current densityjm in the form jys yd 
syys ydEys yd 1 s0

yxs ydExs yd, jxs yd  sxxs ydExs yd 2

s0
yxs ydEys yd 1

P
j ygjdrjsv, qxyd. The convection

contribution ygjdrj is due to a charge distortiondrj

localized near the edge of thejth LL. These contributions
to jm are microscopically obtained whenEms yd is smooth
on the scale of,0. This holds for the components~Exs yd
n
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but is not well justified for those~Eys yd. We approxi-
mate the latter by those obtained whenEys yd is smooth.
This is equivalent to neglecting nonlocal contributions to
jm ~

R
dy0 smys y, y0dEys y0d. For weak dissipation the

results for the fundamental modes can be justified by
microscopicRPA treatment [14] which includes nonlocal
effects and does not require the smoothness ofEms yd on
the scale of,0. The Hall conductivity is [11]

s0
yxs yd 

e2

2p h̄

X
n

Z `

2`

dy0 fsEnkx dC2
ns y 2 y0d , (1)

whereCns yd is a harmonic oscillator function andfsEnkx d
the Fermi-Dirac function. We consider only the interac-
tion of electrons with piezoelectric phonons and neglec
that with impurities shown to be very weak [15]. We
approximatesxxs yd by syys yd 

P
n ssnd

yy s yd and calcu-
late it for very low temperaturesT ø h̄ygny,0kB using
Ref. [11]. Forygn . s andn  2, 4 we obtainssnd

yy s yd 

s̃snd
yy C2

ns ynd, yn  y 2 yrn, and s̃snd
yy  3e2,4

0c0k3
BT3y

p2h̄6y4
gns where s is the speed of sound andc0 the

interaction constant.
Using jm, the continuity equation linearized indr ;

r, and Poisson’s equation we obtain the integral equatio
2i
X

n
sv 2 qxygndrnsv, qx , yd 1

2
e

(
q2

xsxxs yd 2 iqx
d
cy

fs0
yxs ydg 2 syys yd

d2

dy2 2
d
dy

fsyys ydg
d
dy

)
3

Z `

2`

dy0 K0sjqxj j y 2 y0jdrsv, qx , y0d  0 , (2)
-

where is the spatially homogeneous dielectric constan
For a dissipationless, classical 2D electron liquid Eq. (
becomes identical with Eq. (4) of Ref. [2]. Ifs0

mns yd
is independent ofy, for j yj , Wy2, Eq. (2) reduces to
Eq. (15) of Ref. [1]. To solve Eq. (2), we remark tha
for h̄ygn ¿ ,0kBT we havedfs0

yxs ydgydy ~ fC2
0s y0d 1

C
2
1s y1dg. It follows that rnsv, qx , yd is concentrated

within a region of extent,,0 around the edge of thenth
LL. For 2Dy  yr0 2 yr1 ¿ ,0, cf. Fig. 1, we neglect
the exponentially small overlap betweenr0sv, qx , yd and
r1sv, qx , yd and, forn  4, attempt the exact solution

rsv, qx , yd  C2
0s y0d

X̀
n0

r
snd
0 sv, qxdHns y0y,0d

1 C2
1s y1d

X̀
l0

r
sld
1 sv, qxdHls y1y,0d , (3)

whereHnsxd are the Hermite polynomials. We call the
termsl  0, 1, 2, etc., the monopole, dipole, quadrupol
etc., terms in this expansion ofrnsv, qx , yd.

We now multiply Eq. (2) byHms y0y,0d and integrate
over y. This procedure is repeated withHks y1y,0d.
With the abbreviationsr

smd
0 sv, qxd ; r

smd
0 , amksqxd ;

amk , etc., we obtain the coupled systems of equations
t.
2)

t

e,

v0r
smd
0 2 S0m

X̀
n0

cmnfamnr
snd
0 1 bmnr

snd
1 g  0 , (4)

v1fAkr
skd
1 1 Bkr

sk12d
1 1 r

sk22d
1 y2gy2 2X̀

n0

cknfS1kFnky2 2
p

k S0
1F̃nkg  0 . (5)

Here vn  v 2 qxygn, Fnm  bnmr
snd
0 1 dmnr

snd
1 , F̃nm 

b̃nmr
snd
0 1 d̃mn, Snm  Sn 1 mS0

n, Sn  2sqxs0
yx 2

iq2
xs̃snd

xx dye, S0
n  24is̃snd

yy ye,2
0, ands0

yx  e2yp h̄. amn

is given in Ref. [16] andbmn, b̃mn, dmn, andd̃mn are given
by similar expressions. Further,cmn  s2nn!y2mm!d1y2,
Am  s2m 1 1d, andBm  sm 1 2d s2m 1 2d.

(i) n  2.—In this case the second term of Eq. (3),
the third term of Eq. (4), and Eq. (5) are absent. Equa
tions (3), (4), and the form ofamn show [16] that there ex-
ist independentmodes, spatiallysymmetric,rssv, qx , yd,
or antisymmetric,rassv, qx , yd, with respect toy  yr0;
they correspond ton evenor odd,respectively.

Symmetric modes.—We first consider only two terms,
n  0 and n  2, in Eq. (3). Form  0 and m  2
Eq. (4) gives a system of two coupled equations for the
unknownsr

s0d
0 and r

s2d
0 . The vanishing of the determi-

nant gives two branchesvs
1 and vs

2. With yg ; yg0
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and S ; S0 their dispersion relations (DRs) arevs
6 

qxygn 1 hR1 6 fR2
2 1 4SsS 1 2S0da2

02g1y2jy2, where
R6  fSsa00 6 a22d 6 2S0a22g; for further details see
Ref. [16].

Edge helicons.—The coupling between the branche
(due to a02 fi 0) and the strength of the dissipation
modify the character of the pure modes. ForK ¿ h,
h  s̃s0d

yy y,2
0s0

yxjqxj, and weak dissipationh , 1y4,
the vs

2 branch remains almost unchanged, whereas
vs

1 branch acquires a principally new contribution t
damping since vs

1  qxyg 1 SsK 1 1y4d 1 S0y4K,
K  1y2 2 lnsqx,0d. The coupling leaves the phas
velocity of both branches nearly unchanged, and thevs

1

branch isvery weakly dampedand almost monopolelike
sincer

s0d
0 yr

s2d
0 ø 28K, K ¿ 1. For strong dissipation

sK ¿ h ¿ 1y4d we obtainr
s0d
0 yr

s2d
0 ø 22iKyh. This

corresponds to vs
1t

p
0 ¿ nr0yp ¿ vs

1t
p
0ys4K 1 1d,

where r0  e2yeh̄vc,0, and vs
1 can still be consid-

ered high compared to1yt
p
0 ; tp

n, defined by 1ytp
n 

vcs̃snd
yy ysss0d

yx ,0
p

2n 1 1 d, is an effective scattering time
in an edge strip of width,0

p
2n 1 1. In this frequency

region we call thevs
1 ; v

s0d
EH branch high-frequency

edge helicon(HFEH). Because of the almostpy2 shift
betweenr

s0d
0 and r

s2d
0 , the HFEH exhibits the following

remarkable property: if its charge alongy has a pure
quadrupole character~jr

s2d
0 j for some phase of the wave

after approximately a6py2 shift it acquires a pure
monopole character~jr

s0d
0 j. Notice that Imv

s0d
EH ~ T3.

That is, in contrast with Ref. [1], the damping of the
HFEH scales withT and is not quantized in the QHE
plateaus. As for thevs

2 branch, it is strongly damped.
For very strong dissipation,h ¿ K, the vs

2 branch is
strongly damped while thevs

1 branch changes to a low-
frequencyedge helicon(LFEH) with DR svs

1 ; v
LF
EHd

vLF
EH  qxyg 1 fS 2 is̃s0d

yy yh2,2
0eg sK 2 1yy4d , (6)

where v
LF
EHt

p
0 ø nr0yp & 1. Despite this, the LFEH

is very weakly damped. Further, r
s0d
0 yr

s2d
0 ø 2

and Eq. (3) gives the charge density profiledr 
p

p ,0 Refrsv, qx , ydyr
s0d
0 sv, qxdg shown in Fig. 2

by curve 2 for Kyh  0.01; such a small ratio has
practically no effect on drs yd if only the terms
n  0 and n  2 are kept in Eq. (3). Sincedrs yd
is symmetric with respect to the edge, only one-ha
of Fig. 2 is shown. Curve 1 shows the monopo
term s~C

2
0d. The effective convergence parameter fo

curve 2 is not sufficiently small. To better describ
the profile of the LFEH we also plot curves 3, 4, an
5 obtained with 3, 4, and 5 evenn terms retained in
Eq. (3), respectively. As shown, keeping 4 or 5 term
in the n summation leads already to a clear convergen
in the form of the charge-density profile, without alterin
its oscillatory character or changing its magnitude b
much. This oscillatory behavior ofdr, further modified
during propagation, is in sharp contrast with the “usua
EMPs of Ref. [1] and thej  0 mode of Ref. [2].
s

the
o

e

,
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FIG. 2. Dimensionless charge density profiler̃s yd of the low-
frequency edge helicon as a function ofy0y,0 for n  2. The
number ofeventerms retained in Eq. (3) is shown next to the
curves.

Equation (6) already approximates well Rev
LF
EH and the

dependence of Imv
LF
EH on T .

The antisymmetric modes have been described in
Ref. [16]. Here it is worth mentioning that if we
keep only one, two, or threeodd terms in Eq. (3), the
dimensionless velocity of the dipole branchydip 
svyqx 2 yg0dyse2yp h̄ed for weak dissipation is equal,
respectively, to 0.4996, 0.5963, and 0.6287. The charg
density profile shows a similar fast convergence.

It is worth noticing that if we limit ourselves to the
subspace of then  0 LL wave functions, by keeping,
for n  1, only the n  0 term in Eq. (3), we have
the same edge-wave mechanism as Refs. [8–10] wi
the same single mode. This can be seen by writin
nsx, y, td  n0f y 1 bsv, qxd cossvt 2 qxxdg ø n0s yd 1

fdn0s ydydygbsv, qxd cossvt 2 qxxd, with dn0s ydydy ,
c

2
0 s y0d, for the total densitynsx, y, td. It is only by

retaining then $ 1 terms that we obtain more than one
modes with important contributions to the damping of the
fundamental mode. Further, retaining then $ 1 terms
is equivalent to incorporating in the model the classica
edge-wave mechanism [1–3,7]. It is also clear that w
focus on wave effects of nonspin nature and do not tre
excitations such as Skyrmions.

(ii) Inter-LL coupling.—n  4. Although the con-
dition 2Dy ¿ ,0, cf. Fig. 1, is well justified forVy , the
system of Eqs. (4) and (5) can be strongly coupled du
to the long-range nature of the Coulomb interaction. To
make contact with then  2 results, we first consider
the symmetricmodes,r

s0d
1 and r

s2d
1 of the n  1 LL

decoupled from then  0 LL. Then one branch is
v

s1d
3 ø qxyg1 1 sS1 1 2S0

1dy4. The other one is the

fundamental branch, or HFEH of then  1 LL, v
s1d
EH ø

qxyg1 1 S1sK 2 1y4d 1 S0
1y12K . Now the decoupled

fundamental modes ofn  0 and n  1 LLs have DR
given by v

s0d
EH and v

s1d
EH. When they are coupled, their
1483



VOLUME 81, NUMBER 7 P H Y S I C A L R E V I E W L E T T E R S 17 AUGUST 1998

d

s
r

-

s
-

n
s

l

DRs change drastically. For2Dy ¿ ,0 and2Dyqx ø 1
an examination of the coefficientsamn, etc., shows that
the most important terms in Eq. (3) arer

s0d
0 , r

s0d
1 , and

r
s2d
1 . This leads to three branches,ṽ

s01d
6 andv

s01d
3 ø v

s1d
3 .

The renormalizedn  0 LL fundamental mode becomes
ṽ

s01d
1 ø qxsyg0 1 yg1dy2 1 s2yedqxs0

yxf2 lns1yqx,0d 2

lns2Dyy,0d 1 3y5g 1 S0
1y16K and that of then  1 LL

vs01d
2 ø qxsyg0 1 yg1dy2 1 s2yed qxs0

yxflns2Dyy,0d 1

2y5g 1 S0
1yh24flnsDyy,0d 1 g 1 1y4gj, whereg is the

Euler constant. Thevs01d
2 mode becomes purely acoustic

and has a phase velocity larger than that of thej  1 mode
of Ref. [2] for 2Dyy,0 $ 5. The coupled fundamental
modesṽ

s01d
6 are very weakly damped.

The DRs forn  4, corresponding to the experimental
[4] parametersB  2.06 T and T  1.5K, are shown in
Fig. 3. The solid and short-dashed curves are obtain
with e  12.5. The dashed curvesse  6.75d pertain to a
sample with air above the spacer. The short-dashed curv
are the decoupled fundamental modes, the solid and das
ones the coupled modes. As can be seen, the inter-LL co
pling strongly modifies the DR of both fundamental modes
Using V  7.8 3 1011 sec21 [17] gives Vyvc ø 0.14,
2Dyy,0 ø 6, yg0  2.3 3 106 sec21, and yg0yyg1 p

3. The n  4 modes, in Fig. (3a) of Ref. [4], are
very well described by the renormalized fundamenta
modesṽ

s01d
6 . The same holds for then  4 modes of

Fig. 3(b) of Ref. [4]. The modev
s01d
3 is strongly damped:

with e  6.75 its decay rate is ImS0
1y2 ø 2s̃s1d

yy ye,2
0 ø

1.3 3 1010 sec21. This is smaller than that of thej  1
branch of Ref. [2]1yt1 ø 2 3 1010 sec21. The decay
rate of the j  0 mode is 1yt0 ø 1.7 3 109 sec21,

FIG. 3. EMP dispersion relations pertinent to Ref. [4] for
n  4. The short-dashed curves are the decoupled fundamen
modesse  12.5d. The upper two solidse  12.5d and dashed
se  6.75d curves are the coupled fundamental modes. Th
lowest solid (dashed) curve is the third branchv

s01d
3 ø v

s1d
3 .

The accessible [4] frequencies are belowv  0.01vc.
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whereas those of thẽv
s01d
6 modes are about 10 times

smaller, Imṽ
s01d
1 ø 2.1 3 108 sec21 and Imṽs01d

2 ø
5.6 3 108 sec21 ø 1yt1 ø 2 3 1010 sec21. Thus, the
decay rates of thẽv

s01d
6 modes should be much closer to

those of the experiment [4] than the strongly overestimate
ones [2]. Regarding the delay timestd for the sample with
length Lx  320 mm, we obtaintd  1.2 3 10210 sec
for the ṽ

s01d
1 mode andtd  6.9 3 10210 sec for the

ṽs01d
2 mode, in very good agreement with the observation

[4]. We conclude that the slower mode observed fo
n  4 is not thej  1 mode of Ref. [2] but the present
ṽs01d

2 mode. It is also clear that our theory accounts for
the existence of the plateaus intd [4] as the quantized
Hall conductivity appears in all DRs.

In summary, we presented a theory of edge magneto
plasmons for confining potentials that allow LL flattening
to be neglected. It accounts for the existence of plateau
in the delay times, the dispersion relations, and the damp
ing rates of the observed [4] modes forn  4. Com-
pared to thedecoupled,individual LL fundamental modes,
the coupled LL modes are drastically renormalized and i
good agreement with the experiment. Other novel result
are mentioned in the abstract.
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