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Ultrafast Adiabatic Population Transfer in p-Doped Semiconductor Quantum Wells
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The light-induced adiabatic population transfer of holes from the heavy-hole (hh) to the light-hole
(lh) band inp-doped semiconductor quantum wells is investigated theoretically. The exact analog to
the population-trapped state (PTS) used in atomic and molecular adiabatic population transfer does not
exist in a semiconductor due to the continuum of transition energies and the dynamic light-induced
shifts thereof. However, it is found that the population transfer only requires an approximate PTS
condition to be fulfilled. As for a possible observation of the effect, the transient creation of ahh
exciton resonance at the expense of thelh exciton is predicted. [S0031-9007(98)06870-7]

PACS numbers: 73.20.Dx, 42.50.Hz, 78.20.–e, 78.66.–w
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In atomic and molecular 3-level physics, cohere
optical techniques allowing for almost complete ultrafa
adiabatic transfer of population between different molec
lar eigenstates have been developed and refined for m
years [1–5]. It is possible to completely transfer pop
lation between two not-optically-coupled states by usi
a third state which is optically coupled to both the in
tial and the final state. The material is excited by tw
light pulses, one for each transition, with equal or simi
detunings. This yields the so-called population-trapp
state (PTS) or dark state, which is a superposition of
two not-optically-coupled states, and the weighting of t
two states depends on the light-field amplitudes. The
herence between the two states is also called a Ra
coherence, since the states are not optically coupled
each other. During the pulsed excitation the PTS chan
according to the momentary field amplitudes. If the a
plitude change is adiabatic, a system originally in the P
remains in it. By delaying one of the pulses, a PTS c
be created that coincides initially with one of the stat
of the 3-level system (the initial state). When the seco
pulse appears, the PTS is a superposition of the two sta
and, when the first pulse is switched off before the seco
pulse, the PTS coincides in the end with the other st
in the 3-level system (the final state). In this way, t
population is transferred from one state to another. T
transfer seems to work best in the so-called counterin
itive pulse delay scheme in which the first pulse cor
sponds to the optical transition that includes the final st
and, therefore, to a transition between two empty sta
In a 3-level system the exact resonance condition unde
ing the PTS is not necessary for the transfer to work.
the off-resonance case, a quasiadiabatic transfer solu
can be obtained if there is a crossing of two of the thr
adiabatic eigenvalues of the dressed 3-level system.
crossing is essential, since it is necessary in order to h
the states switched in the limit of vanishing light amp
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tudes (i.e., before and after the pulse sequence). We
publish more details on this elsewhere.

The physical processes in semiconductor quant
wells, which can be characterized in terms of a condu
tion (c) and two valence (v) bands [i.e., one heavy-hole
(hh) and one light-hole (lh) band], are much more
complex than in atomic 3-level systems, because of ba
structure effects and because of the Coulomb interac
which yields excitonic and plasma-induced many-bo
effects. Nevertheless, the existence of nonradiative coh
ences in semiconductors has been proven experimen
(see, e.g., [6]). Also, theoretical simulations predict t
existence of the PTS in semiconductors [7]. In the fo
lowing, we address the issue of light-induced populati
transfer in semiconductors, including the questions
(i) whether theory predicts this process to be possible
principle, (ii) if so, in what parameter regime does it wo
best, and (iii) how one can observe it. A semiconduc
system suitable to study population transfer is ap-doped
semiconductor quantum well. If thehh-lh splitting is
sufficiently large for a given doping concentration an
temperature, thep doping yields only heavy holes. In
this case, the linear absorption spectrum does not exh
a hh exciton because of the Pauli blocking. Howeve
because of the absence of light holes, it may exhibit alh
exciton if the screening due tohh’s is not too large. The
transfer of holes from thehh to thelh band would result,
ideally, in a reversal of excitons, i.e., in a linear spectru
that contains ahh exciton but not alh exciton. For
a related investigation of optical excitation of spatial
indirect excitons in double quantum wells utilizing th
counterintuitive pulse delay scheme see Ref. [8].

The theory is based on equations of motion for t
time-dependent optical polarization functionsPsjs $kd as
well as the electron and hole distribution-coherence fu
tions fss0s $kd and fjj0s $kd, respectively. The vector$k is
the two-dimensional in-plane wave vector, the electr
© 1998 The American Physical Society 1477
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quantum numberss, s0 denote the spin-degenerate co
duction bands withs ­ 61y2, and the hole quantum
numbersj, j0 denote the two degenerate heavy-hole (j ­
63y2) and light-hole (j ­ 61y2) bands. The equation
of motion comprise the coherent Hartree-Fock (HF) co
tributions and incoherent dephasing and scattering c
tributions. If (as assumed in the following) biexciton
effects are insignificant, the Hartree-Fock contributions
the nonlinear optical response constitute the ideal limit
the sense that optical pulses can, in principle, be sho
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than typical incoherent scattering times, but the man
particle effects described by the Coulomb terms in the
theory cannot be neglected on any time scale. Since ty
cal femtosecond pulses do not quite reach this ideal lim
we have amended the HF theory with dephasing c
tributions and a self-consistent multiband relaxation ra
model. Before discussing this model, we review brie
the basic HF contributions to the theory, which are sim
ilar to those used in [9], except we use a quasistatica
screened HF theory to account for the effects of thep
doping. The equation forPsjs $kd reads (̄h ­ 1)
i
d
dt

Psjs $kd ­
X
s0j0

hfdss0djj0´
s
k 1 dss0Hjj0s2 $kdgPs0j0s $kd 2 Vs0j0s $kd fdss0djj0 2 djj0fss0s $kd 2 dss0fjj0s $kdg

1 fdjj0Sss0s $kd 1 dss0Sjj0s2 $kdgPs0j0s $kdj 1 i
d
dt

Psjs $kd
Ç
scatt

, (1)

and that for the hole distribution function is

i
d
dt

fjj0s $kd ­
X
j00

hHjj00s $kdfj00j0s $kd 2 fjj00s $kdHj00j0s $kdj 1
X

s
hVp

sj0s2 $kdPsjs2 $kd 2 Vsjs2 $kdPp
sj0s2 $kdj

1
X
j00

hSjj00s $kdfj00j0s $kd 2 fjj00s $kdSj00j0s $kdj 1 i
d
dt

fjj0s $kd
Ç
scatt

. (2)
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A similar equation, but without theH contribution,
governs fss0s $kd. Here the electron energies are para
bolic, ´

s
k ­ h̄2k2y2me 1 SCH 1 EG , where EG is the

band gap of the undoped quantum well andSCH is
the Coulomb hole self-energy. The Luttinger Hamilton
ian H consists of two2 3 2 matrices (compare with
[9]) with elementsHhh ­ sh̄2y2m0d sg1 1 g2dk2, Hlh ­
sh̄2y2m0d sg1 2 g2dk2 1 Dhh2lh, and, within an isotropic
approximation,

c ­ 2sh̄2y2m0d
p

3 fg2sk2
x 2 k2

y d 2 2ig3kxkyg

ø 2sh̄2y4m0d
p

3 sg2 1 g3dk2.

Hereg1, g2, g2 are the Luttinger parameters. The energ
renormalizations are given by (witha ­ s or j)

Saa0skd ­ 2
X
$q 00

V s $q dfaa0s $k 1 $q d , (3)

and the renormalized dipole energy is

Vsjskd ­ $msj ? $E 1
X

$q

V s $q dPsjs $k 1 $q d . (4)

The interaction potentialV sqd is the statically screened
Coulomb potential including the form factor according
to the lowest-subband wave functions in an infinitel
deep quantum well. The static screening function
taken ase21

q ­ 1 2 v
2
plsqdyv2sqd, where vplsqd and

vsqd are the two-dimensional plasmon frequency an
plasma dispersion function, respectively [10]. The ligh
pulses are denoted by$E. The dipole matrix elements
$msj contain the information of optical selection rules
The dipole matrix elements [11] are given by$m1y2,3y2 ­p

3 $m21y2,1y2 ­ 2m$e1 and $m21y2,23y2 ­
p

3 $m1y2,21y2 ­
2m$e2, where m is the magnitude of the microscopic
-

-

y

y
is

d
t

.

Cartesian dipole element. In the following, we will cal
the transitions fromj ­ 3y2 and j ­ 21y2 to s ­ 1y2
“spin 11 transitions” (and this subset of bands “spi
11 subset”) and the transitions fromj ­ 23y2 andj ­
11y2 to s ­ 21y2 “spin 21 transitions” (and this subset
of bands “spin21 subset”).

For the scattering contribution to theÙf equations we
use a relaxation time approximation (RTA) in which th
band renormalization (shifts) are computed in a tim
dependent and self-consistent fashion. In general, an R
requires one to find, at each point in time, the Ferm
distributions toward which the system would relax
no optical pulses were present. In the present case
assume that the spin11 and spin21 subsystems are
not coupled by scattering processes since the spin
times are typically in the ps rather than the fs regim
[12]. Assuming, furthermore, that because of the hig
carrier density the fs-scattering processes are domina
by carrier-carrier scattering, the parameters characteriz
the appropriate quasithermal equilibrium are (for ea
subsystem) the three band-offsets, two chemical potent
(one for thec band and one for thev bands), and the
temperature. These parameters are uniquely and s
consistently determined by the zero-density band offse
the two densities (electron and total hole density), a
the total electron-hole kinetic energy. Note that th
renormalization of the bands due to the occupatio
dependent screened exchange interaction influences
relative shift of thehh and thelh band in a complicated
way. Note also that the off-diagonal elements of th
quasithermal hole distribution (denoted by the superscr
“F” for Fermi) fF

jj0s $kd (j fi j0) do not vanish. This is
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because we have written Eq. (2) in a basis that do
not correspond to the true one-particle eigenstates of
system. A simple RTA of the form

d
dt

f̃jj0s $kd
Ç
scatt

­ 2
1
T1

f f̃jj0s $kd 2 djj0f̃F
j s $kdg (5)

is possible only if the states labeled byj and $k are the
one-particle eigenstates. To indicate this, we use a “tild
in Eq. (5), and the relation betweeñf and f is given
by f̃jj0 ­

P
ii0 up

ijui0j0fii0 , where uij is the eigenvector
matrix of H and we have suppressed the common ind
$k. Finally, in the scattering contribution to the equatio
for the optical polarization functions, we use a simpl
dephasing constant1yT2 to simulate the effects of carrier-
carrier scattering.

For the numerical investigation we use GaAs materi
parameters:me ­ 0.067m0 (m0 ­ electron mass in vac-
uum),eb ­ 12.7 (background dielectric function entering
the Coulomb potential),g1 ­ 6.85, g2 ­ 2.1, g3 ­ 2.9.
We use ahh-lh splitting of 40 meV and a well thickness
of 50 Å with infinite potential barriers. Unless otherwise
noted, we use two 40 fs pulses (intensity FWHM), on
left-handed circularly polarized pulse centered in time
t ­ 0 and in frequency at̄hv0 ­ EG 2 180 meV, and
one right-handed circularly polarized pulse centered
t ­ 40 fs andh̄v1 ­ EG 2 160 meV. The peak ampli-
tudes aremE0 ­ 212 meV. Since the pulses have essen
tially no spectral overlap with the frequency region of th
hh exciton, we can simulate the non-Lorentzian line sha
of the optical transitions by choosing infinite or very long
dephasing and relaxation times. The doping density is ch
sen to be3.42 3 1011 cm22 at a temperature of 20 K. We
use, for simplicity, a time-independent screening model

In Fig. 1 we show the temporal density response
the six bands involved for the idealized case of infinit
T1 and T2. Except for an adiabatic transient populatio
of the c bands, we see that the initial populations o
the hh bands get transferred to thelh bands. Although
the pulses have been chosen to simulate the conventio
PTS-based transfer configuration for the spin11 subset
shown in Fig. 1(a), it apparently works as well for the
spin 21 subset [Fig. 1(b)]. The fact that the transfe
works at all in the semiconductor indicates clearly that th
existence of an exact PTS is not necessary for the proc
to work, and, therefore, it is not surprising that it may wor
simultaneously for both spin subsets. In Fig. 2 we sho
the final density after the transfer as a function ofh̄v0 with
otherwise unchanged parameters for the spin11 subset
and, for comparison, quasi-cw results for an ideal 3-lev
system, in which the PTS is ath̄v0 ­ EG 2 200 meV.
The large spectral overlap of the 40 fs pulses underlyin
Fig. 2(a) is not present in 2(b) and, hence, not a cruc
factor in the transfer. As for the semiconductor, Fig. 2(a
shows a striking resemblance to the 3-level system desp
the continuum of transition energies involved, the dynam
band gap shift, and the dynamic change of exciton
es
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FIG. 1. Density vs time for the heavy-hole density (dashed
line), light-hole density (solid line), and conduction band
density (dotted line). The unit length isaB ­ 135 Å. In
(a), s ­ 1y2 and j ­ 3y2 and 21y2, respectively, and in
(b) s ­ 21y2 andj ­ 23y2 and11y2. Here dephasing and
relaxation have been omitted.

Coulomb correlations (cf. Fig. 4). Calculations including
finite dephasing and relaxation times yield, in genera
a weakening of the transfer and an increase of fina
electron population. However, this does not necessari
mean that such incoherent processes destroy the act
population transfer mechanism, because the momentu
states involved in the transfer are generally different from
the ones involved in the dephasing-induced absorptio
process. This is especially true in the large detuning lim
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FIG. 2. (a) Final density of thej ­ 3y2 hh (dashed-dotted
line) and thej ­ 21y2 lh (dashed line) population vs center
frequencyh̄v0 of the first pulse. The second pulse is centered
160 meV belowEG . (b) Corresponding results for a 3-level
system with one transition atEG and one transition 40 meV
aboveEG . “PTS” marks the population-trapped state.
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FIG. 3. Distribution function before and shortly after the
population transfer. Solid line: distribution ofhh (j ­ 3y2)
before and lh (j ­ 21y2) after the transfer according to
Fig. 1 (the distributions are essentially identical). The electro
distribution is zero. For the case with dephasing and relaxat
(T1 ­ T2 ­ 600 fs) the final lh distribution is shown as a
dash-dotted line, and the final electron andhh distributions are
shown as dotted and dashed lines, respectively.

considered here. Figure 3 shows the distribution functio
before and after the transfer according to Fig. 1(a)
well as those for the case where incoherent processes
included. Whereas without incoherent processes thehh
distribution before the transfer is practically the same
the lh distribution after the transfer, incoherent process
reduce slightly the number of light holes in the low
momentum region and createhh’s and electrons spread
out over a very large momentum region (in the case sho
these distributions go to zero at aboutk ­ 40a21

B ).
The general guidelines for the optimum paramet

regime can be summarized as follows: the pulses sho
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FIG. 4. Linear optical absorption spectra, including heav
hole and light-hole exciton resonances: undoped quant
well (dotted line), doped quantum well before (solid line
and after the adiabatic transfer [dash-dotted line: accord
to Fig. 1; dashed line: dephasing and relaxation (T1 ­ T2 ­
600 fs) included]. In all cases, the dephasing time used in t
calculation of the linear spectra isT2 ­ 200 fs.
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be detuned from the band gap only as much as necess
to avoid spectral overlap between the pulses and t
interband absorption. Larger than necessary detuni
would require stronger pulses for the effect to work, an
therefore increase, in reality, the undesirable two-photo
absorption.

We discuss briefly a possible way to measure th
transfer. If one simply takes a linear absorption spectru
with linearly polarized light immediately after the transfe
and compares it with a linear absorption spectrum tak
before the transfer, one obtains, ideally, only alh-
exciton resonance before the transfer and only ahh-
exciton resonance after the transfer. Of course, th
ideal picture will be modified due to the plasma effect
(screening, relaxation, etc.), but, as Fig. 4 shows, it
not completely destroyed by them. Note that the plasm
induced blueshift of the exciton resonances seen in Fig
should not be taken as quantitative prediction because
is well known that it depends sensitively on the details o
the screening model.

In summary, we have presented a theoretical analy
of population transfer inp-doped semiconductor quantum
wells and identified a parameter regime that should allo
for successful experimental verification of the transfe
mechanism in the future.
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