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Fluctuations Dominate the Phase Diagram of Chiral Nematic Liquid Crystals
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Phase diagrams of the liquid-crystalline blue phases (BPs), as calculated by means of Landau th
display two serious deficiencies: They contain a never-observed structure of space groupO5, and
BP II does not disappear at very high chiralities. Here we prove by a first-order cumulant expan
that neglect of fluctuations is the cause. We also observe a smooth transition from a strongly
weakly correlated isotropic phase, which vanishes at large chiralities. It indicates the existence
critical point and characterizes BP III as a second isotropic phase, in agreement with recent experim
[S0031-9007(98)06928-2]
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The phase diagram and structure of the liquid-crystalli
blue phases (BPs) have been a challenge to experimen
ists and theoreticians since the beginning of liquid-crys
research [1]. The discovery of the body centered cub
BP I [2] and the simple cubic BP II [3] was soon followed
by the observation of a third phase [4], called “blue fog
(BP III) for its amorphous appearance. Freeze-fractu
electron-microscope observations of BP III supported
“spaghetti model” [5] and gave a first hint to an isotropi
nature. Complete phase diagrams of the BPs were m
sured and showed remarkably universal features [6].
all of them BP II disappears at high chiralities. For sma
chiralities and low temperatures BP I is the most stab
phase. BP III always is the high chirality phase (Fig. 1
In recent measurements of specific heat, rotatory pow
and light scattering [7,8] a critical point was detected
the BP III–isotropic phase transition leading to the strin
gent conclusion that BP III is a second isotropic phase a
the critical point is of the Ising type. The correct critica
exponents have been determined in a careful analysis
the experimental data [9].

Theoretically, the structure of the BPs was inves
gated by means of a Landau–de Gennes theory for
licity modes of the alignment tensor field [10]. With
Landau–de Gennes theory Grebel, Hornreich, and Shtr
man calculated phase diagrams [11] (Fig. 2) that expla
the structure of BP I (O8

c) and BP II (O2), but not the
nature of the blue fog. Instead, another cubic pha
[O5sI432d] was predicted, which never has been observ
experimentally. Furthermore, BP II does not vanish
high chiralities.

Despite the success of Landau theory with regard
the first two BPs, the structure of the blue fog and th
artificial stability of theO5 phase became a crucial tes
for the Landau–de Gennes theory. An icosahedral mo
was suggested [12] but could not be stabilized over t
cubic BPs [13,14]. The “spaghetti model” gave rise t
the assumption of squirming double twist tubes [15], b
its stability has not been confirmed.
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A “melted blue phase” [16] was suggested as a bo
orientational order model for BP III [14], analogously to
the hexatic phase in two dimensions [17]. It was th
first model for BP III that took fluctuations into accoun
(in a simplified way) and that was proven to be stabl
After the critical point was detected it became clear th
the bond order model is a secondary aspect of BP
Isotropic models with a pseudoscalar order parameter h
recently been presented [18]. It was shown how the critic
point could in principle be extracted from the Landau–d
Gennes Hamiltonian. A careful analysis of the physic
properties around the critical point was given [19]. Fu
phase diagrams, however, have not been calculated.

The most natural way to include fluctuations wa
proposed by Brazovskiĭ and co-workers already in 1975
[20,21]. The authors predicted the existence of one
more phases between the isotropic and the cholesteric s
But their treatment of fluctuations was limited to a sem
quantitative analysis of the isotropic two-point correlatio
function. In this Letter we follow the ideas of Brazovskiĭ
and study the influence of fluctuations on the phase d
gram of the BPs. However, with the cumulant expansio
which has recently been used to calculate the phase d
gram of copolymers [22], we employ a different metho
than Brazovskiĭ. The importance of fluctuations for

FIG. 1. Sketch of the experimental phase diagram of chi
nematic liquid crystals,k andt in arbitrary units.
© 1998 The American Physical Society 1457
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chiral nematic liquid crystals is undoubted, as can be se
from pretransitional effects [23]. It has been noted, th
“neglecting the fluctuations. . . may be a bad approxi-
mation” [24]. Even the existence of the blue fog ough
to be explained by increasing fluctuations for high ch
ralities, which destroy the periodic structure of BP
and II.

The order of BPs can be described by a symmetr
and traceless quadrupolar tensor order parameter fi
Qsrd. Expanding it into spin tensor modes ofL ­ 2 and,
cf. [11].
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furthermore, into plane waves one obtains

Qsrd ­
X
k

X
m

mmskdMmsk̂de2ik?r , (1)

wherek ­ jkj. For practical purposes and in agreemen
with experiment, we restrict ourselves to them ­ 2 mode
and use a simplified notation:m2skd ­ mk andM2sk̂d ­
Msk̂d.

We start from the mesoscopic Landau–Ginzburg–d
Gennes Hamiltonian density
H ­
1
4

X
q

ft 1 sq 2 kd2gmqm2q 2
1
2

X
k1k2k3

mk1 mk2 mk3TrfMsk̂1dMsk̂2dMsk̂3dgdk11k21k3,0

1
l

4!

X
k1k2k3k4

mk1 mk2 mk3 mk4TrfMsk̂1dMsk̂2dgTrfMsk̂3dMsk̂4dgdk11k21k31k4,0 . (2)
d
n

t

e

k is the chirality,t ­ t 2 k2 is a rescaled temperature
q is scaled by the inverse of the correlation lengthjR.
The amplitudes differ by a factor of1y

p
24 and the

Hamiltonian by a factor of 24 compared to Ref. [11
Substituting equilibrium values of the amplitudes leads
the mean field energy, from which the results of Greb
et al. [11] can be derived.

The free energy densityF follows from the logarithm
of the partition function Z ­

R
D m exps2bH fmgd,

whereb21 ­ kBTyV , andV is the system volume. We
divide m ­ m 1 m0 into the equilibrium order paramete
m and a fluctuating partm0 and accordingly separat
H fmg into H fmg ­ H0f m g 1 H̃ f m, m0g. Thus,

F ­ 2b21 ln Z

­ FMFf m g 2 b21 ln
Z

D m0 e2bH̃ f m,m0 g. (3)

FMFf m g ­ H0f m g is the mean field free energy densit
We treat the path integral by averaging over a tr

Hamiltonian density

FIG. 2. Phase diagram recalculated from Landau the
,
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H 0fm0g ­
1
4

X
q

fD 1 sq 2 kd2gm0
qm0

2q . (4)

D is a variational parameter, sometimes also calle
renormalized temperature. The free energy density the
reads

F ­ FMFf m g 2 b21 ln Z0

2 b21 3 lnke2bsH̃ f m,m0 g2H 0fm0 gdlH 0 , (5)
where we introduced the partition functionZ0 of H 0.
We expand the last term into momenta of̃H f m, m0g 2

H 0fm0g, also called cumulants, and keep terms of firs
order only [25]:

F ø FMFf m g 2 b21 ln Z0

2 kH 0fm0g 2 H̃ f m, m0glH 0 . (6)
Terms proportional tokm03l and km04l are simplified by
Wick’s theorem [25]. Because of the ultraviolet diver-
gence of the resulting integrals a cutoffL is introduced as
L ­ nqc since the natural scale of the system is the wav
numberqc ­ k. n should be a small number but equal
to or greater than 1. In the casen ­ 1 we completely ne-
glect fluctuations within the unit cell as previously done
[21]. For largen we arrive at molecular dimensions, and
the mesoscopic theory breaks down.

The two-point correlation function for the (chiral)
nematic order parameter reads

km0
qm0

2qlH 0 ­
2b21

D 1 sq 2 kd2 ­ b21xsqd , (7)

where D21y2 is the correlation length andxsqd is the
wave vector dependent susceptibility ofmq [25].

Neglecting all constant contributions we can write the
free energy as

F ­ FMFf m g 1
Z D

0
SsD̃d dD̃

1

∑
t 2 D 1

14l

15
SsDd

∏
SsDd

1
7l

15

X
k

mkm2kSsDd , (8)
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with a self-energy function

SsDd ­
b21

4p2

Z nk

0

q2 dq
D 1 sq 2 kd2

­
b21

4p2 k

(
n 2 ln

√
1 1

k2

D

1 1
k2

D sn 2 1d2

!
2

p
D

k

√
1 2

k2

D

! "
arctan

√
k

p
D

!
1 arctan

√
k

p
D

sn 2 1d

!#)
. (9)
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Note that the cubic invariant of the Hamiltonian onl
contributes to the mean field free energy densityFMF .

For D ø k2yn2 the dominant part of the self energy is

SsDd , k2y
p

D . (10)

This is fulfilled for sufficiently small n. All further
calculations in this paper are carried out withn ­ 1. We
have checked, however, that the qualitative results a
valid up ton ­ 4, which may become important becaus
the higher stars of the ordered structure lie outside t
shell ofn ­ 1.

We determine the value of the variational parameterD

by minimizingF and obtain

2D 1 t 1
28l

15
SsDd 1

7l

15

X
k

mkm2k ­ 0 . (11)

Substituting Eq. (11) into the free energy (8) leads
the simple expression

F ­ FMFf m g 1
Z D

0
SsD̃d dD̃ 2

14l

15
S2sDd . (12)

The minimization procedure follows Grebelet al. [11],
but we have to pay attention to the fact that nowm and
D are related via Eq. (11). We treata := b21y60p2 as a
free parameter fixing the energy scale of the fluctuation
The resulting effect of fluctuations on the phase diagra
is seen in Fig. 3.

With increasinga the temperature for the phase tran
sition from the isotropic phase into the ordered phases
lowered destabilizing theO5 structure. For a , 0.075,
however, O5 remains present. Equations (9) and (10
show that the fluctuations increase with chirality due
the growing phase volume

R
k q2 dq ~ k3. Consequently,

FIG. 3. Effect of fluctuations on the phase diagram of chir
nematic liquid crystals (a ­ 0.2, l ­ 1, n ­ 1).
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the transition line isotropic-ordered, which rises likek2 in
mean field, is bent down, very similar to the experime
tal situation. At chiralityk ø 10, BP II disappears from
the phase diagram. Extending the mean-field results
Grebelet al. [11] to very high chiralities it can be shown
that the phase transition line betweenO8 and O2 goes
through a minimum atk ø 5. Fluctuations lower the co-
existence line with the isotropic phase, render BP II u
stable, and, finally, also yield a direct transition betwee
BP I and the isotropic phase. Furthermore, BP I u
dergoes a transition fromO8

c to a different phase which
we identify as theO8

b structure of Grebelet al. [11].
For increasinga the coexistence line bends down furthe
and, consequently,O2 vanishes at lower chiralities. For
a * 0.5 it completely disappears from the phase diagra

Additionally, we have investigated the inverse correl
tion length

p
D as a function of temperature. In Fig. 4 i

is sketched on a single logarithmic scale. For low ch
ralities there are two regimes: one of smallD for t & 0,
and one of largeD for t * 0, corresponding, respectively
to a strongly correlated metastable and a weakly cor
lated stable isotropic phase. Neart ­ 0 there is a smooth
transition between both regimes, which vanishes for i
creasing chiralityk. This is a hint of the occurrence of a
second isotropic phase and of a critical point at high ch
ralities. However, within our first order cumulant expan
sion we do not obtain two stable isotropic phases. T
test if a chiral system allows for a critical point at al

FIG. 4. Inverse correlation length
p

D versus temperaturet
for chirality k between0.2 and3.0. The area on the right side
of the bold line is the regime for the stable isotropic phase, t
area on the left side for the metastable state. The bold l
corresponds to the bold line of Fig. 3.
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FIG. 5. Squared inverse correlation lengthD versus tempera-
ture in a logarithmic scale for a simplified Landau-Ginzbur
de Gennes Hamiltonian for one chirality below and above
critical point atkc ø 0.8. As an insetD is plotted on a linear
scale allowing for direct comparison with the experimental lig
scattering data at the isotropic—BP III transition [7].

and, hence, for two isotropic phases, we took a sim
fied version of the Hamiltonian in Eq. (2) skipping th
third-order term and the traces. By extending our cum
lant expansion to third order we found indeed a critic
point atkc ø 0.8 (see Fig. 5). The square of the invers
correlation length,D, is proportional to the inverse of th
intensity of the scattered light. Our theoretical predicti
for D, as shown in the inset of Fig. 5, reveals a str
ing agreement with experimental light scattering data
Fig. 1 in Ref. [7]. An appropriate thermodynamic qua
tity that can be used as an order parameter for BP II
the inverse susceptibility, which in the Ornstein-Zernic
approximation of Eq. (7) is proportional toD. The situa-
tion is rather unique as the new order parameter is rela
to the fluctuations of the original one. The new ord
parameter defines a second correlation length which
verges at the BP III-isotropic critical point.

In this paper we have proven that fluctuations a
relevant for BPs in chiral nematic systems. Using a fi
order cumulant expansion we found a direct transiti
of BP II into the isotropic phase. The “artificial”O5

structure is destabilized. Consequently, this structure
not forbidden and could be observed for systems w
small transition temperatures. For very large chiralitie
BP II disappears from the phase diagram according
experiment. In a simplified model we found a seco
isotropic phase and a critical point using higher orders
cumulants. We predict that higher orders also account
a second isotropic phase in BPs and may also yield
correct order of BP I and BP II for small chiralities.

This project is supported by the Deutsche Forschun
gemeinschaft under Grant No. Tr 154/15-1. We tha
A. Rüdinger for useful discussions.
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