
VOLUME 81, NUMBER 7 P H Y S I C A L R E V I E W L E T T E R S 17 AUGUST 1998

ermany
sia
Chain Collapse and Counterion Condensation in Dilute Polyelectrolyte Solutions
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A quantitative theory for polyelectrolytes in salt-free dilute solutions is developed. Depending on
the electrostatic interaction strength, polyelectrolytes in solutions can undergo strong stretching (with
polyelectrolyte dimensionRg , l

1y3
B N , where lB is the Bjerrum length andN is the number of the

chain segments) or strong compression (withRg , l
21y2
B N1y3). A strong polymer collapse occurs as a

first-order phase transition due to accompanying counterion condensation. [S0031-9007(98)06754-4]

PACS numbers: 61.25.Hq, 36.20.–r, 64.10.+h
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Many important synthetic and biological macro
molecules are polyelectrolytes, and their properties diff
significantly from that of the neutral polymers [1]. Im
portance of the former stimulates a variety of their an
lytical [2] and numerical [3] studies. However, even fo
a simple system of a salt-free solution of linear flexib
polyelectrolytes (an electroneutral system of charg
chains and counterions), many fundamental properties
still unclear.

The neutral chains undergo a collapse transition as
solvent quality decreases [1,4], but collapse and stret
ing of polyelectrolytes follow quite different laws. This
happens due to a particular role of the counterions
these processes, which cannot be reduced only to a sim
electrostatic screening and to an increase of the per
tence length [5]. Under conditions of extreme dilution
for weakly charged polyelectrolytes, the counterions o
cupy the whole volume almost uniformly, with a very
low concentration, owing to the entropy “forces.” Unde
these conditions, polyelectrolytes tend to strong stretch
caused by the strong (weakly screened) intersegment
pulsions; the end-to-end distance of the chain in this ca
is proportional to the number of charged segments. U
der a strong polyelectrolyte charge, when the electrosta
energy of polymer-counterion attraction is larger than th
corresponding loss of entropy due to the counterion loc
ization, an essential part of the counterions localizes in t
close vicinity of the polyelectrolytes. This effect, calle
counterion condensation (e.g., [6]), leads to an effecti
polymer charge screening and can cause a decrease o
polymer size. This chain collapse can be even strong
than for the neutral chains.

In this Letter we present a new quantitative theory
polyelectrolytes in salt-free dilute solutions. We describ
the polyelectrolyte dimension for a wide range of param
ters, covering the area of the counterion condensation, a
analyze the nature of the condensation.

Consider a dilute solution (electroneutral as a whol
of charged chains, each composed ofN ¿ 1 segments
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(monomers) with the bond lengtha. Let each monomer
have a unit chargee (say, positive) so thatN counterions
of the opposite charge (say, negative) are present.
V ­ s4py3dR3

0 be the volume per chain. We assume th
the solution is very dilute, so that the conditionRg ø R0
always holds (Rg is the gyration radius of the chain) an
we can concentrate on the one-chain problem. We wr
for the Bjerrum lengthlB ­ be2y´ (´ is the dielectric
permittivity of the solvent,b21 ; kBT ) and adopt the
point-counterion approximation.

We write the Hamiltonian for the one-chain problem:

H ­ Hn.ch 1 Hel.ch 1 Hc 1 Hc2ch . (1)

HereHn.ch is the Hamiltonian of the neutral chain, which
accounts for all non-Coulombic interactions between t
monomers of the chain,Hel.ch accounts for the Coulombic
interactions between the monomers of the chain, andHc
contains the ideal counterion part and the Coulomb
part of the counterion-counterion interactions; finall
Hc2ch accounts for the Coulombic interactions betwee
the counterions and the chain. It is convenient to wr
the Coulombic interactions in terms of the microscop
densities of counterions,̂rcsrd ­

PN
i­1 dsr 2 rid, and

of monomers,r̂msrd ­
PN

j­1 dsr 2 Rjd, wherehrij and
hRjj are coordinates of the counterions and of th
monomers, respectively.Hel.ch and Hc2ch read in this
notation [7]

bHel.ch ­
lB

2

Z
dr dr0 wsr 2 r0dr̂msrdr̂msr0d , (2)

bHc2ch ­ 2lB

Z
dr dr0 wsr 2 r0dr̂msrdr̂csr0d , (3)

where se2y´dwsrd ­ se2y´rd is the Coulomb potential.
For the subsequent analysis it is worthwhile to map t
counterion part,Hc, onto the Hamiltonian of the one-
component plasma (OCP) [8]. The OCP model is fo
mulated as follows: the point charges are immersed in
the structureless compensating background of the oppo
© 1998 The American Physical Society 1433
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charge. The background charge density isersrd, and the
average local density of the point charges (i.e., count
ions) is equal torsrd [8]. The OCP Hamiltonian reads

HOCPfrsrdg ­ Hc 1 Hbbfrsrdg 1 Hbcfrsrdg , (4)

where bHbb ­ slBy2d
R

dr dr0 wsr 2 r0drsrdrsr0d de-
scribes the background self-interaction, whilebHbc ­
2lB

R
dr dr0 wsr 2 r0drsrdr̂csr0d gives the energy of

the background-counterion interaction. From Eq. (4)
follows thatHc ­ HOCP 2 Hbc 2 Hbb.

To address the problem of the gyration radius of th
chain, we consider theconditional free energy of the
1434
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system,FsRgd, as a function of the gyration radiusRg.
We define an effective Hamiltonian of the neutral cha
Hn.ch, as exps2bHn.chd ; DsRgd exps2bHn.chd, where
the conditional functionDsRgd is equal to unity if the
coordinates of the monomers are consistent with
condition for the gyration radius to beRg, otherwise it
equals zero. Since for the systems with Hamiltonia
Hn.ch andHOCP reliable estimates for the free energy a
known, it is reasonable to write the total Hamiltonian as
sum of two parts: the reference part,

H0 ­ Hn.chsRgd 1 HOCP frsrdg , (5)

and the perturbation part,
bH 0 ­
lB

2

Z
dr dr0 wsr 2 r0d fr̂msrdr̂msr0d 2 rsrdrsr0dg 2 lB

Z
dr dr0 wsr 2 r0d fr̂msrd 2 rsrdgr̂csr0d , (6)
er-
me
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and to use then the Gibbs-Bogoljubov inequality:

FsRgd # Fn.chsRgd 1 FOCP frsrdg 1 kH 0lH0 . (7)

HereFn.chsRgd is the free energy of the neutral chain with
the gyration radiusRg. FOCP frsrdg is the free energy
of the inhomogeneous OCP with the background char
densityrsrd. Finally, kH 0lH0 is obtained by averaging the
perturbation part,H 0, given by Eq. (6), over the reference
Hamiltonian,H0, given by Eq. (5). Minimizing the right-
hand side of Eq. (7) with respect to the average dens
of the counterionsrsrd, one obtains an estimate of the
conditional free energyFsRgd. Minimizing then FsRgd
with respect toRg, one finds the gyration radius.

The free energy of the neutral polymer is a sum
the elastic part, written in the Flory-type approximatio
[1] as kBTgsa2 1 a22d and the interaction part, written
on the level of the second virial approximation [1] a
kBTBN2ys4pR3

gy3d. Here a is the chain expansion
factor, a2 ; R2

gyR2
g.id, with Rg.id being the mean-square

gyration radius of the ideal chain,R2
g.id ­ Na2y6, g .

9y4 for Gaussian polymers [4], andB is the second
virial coefficient. Here we consider the case of a goo
solvent, B . 0. With the reduced coefficientBp ;
63y2Bys3pa3d, we write forFn.chsRgd

bFn.chsRgd .
9
4

sa2 1 a22 1 BpN1y2a23d . (8)

The OCP part of the free energy in the local densi
approximation [8,9] reads

bFOCP ­
Z

dr rsrd hCid
OCP frsrdg 1 Ccor

OCP frsrdgj ,

(9)

whereC
id
OCP frsrdg ; lnfL3

crsrdg 2 1 refers to the ideal
part of the OCP-free energy per ion (Lc is the thermal
wavelength of the counterions), whileCcor

OCP frsrdg refers
to the excess or “correlation” part of the free energy [8
This may be expressed in terms of the (local) “plasm
parameterG ­ lByac, whereac ­ h3yf4prsrdgj1y3 is the
(local) ion-sphere radius of the counterion. ForC

cor
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a few accurate Padé fits exist (e.g., [10,11] and ref
ences therein). These, however, are rather cumberso
and contain many (e.g., six in [10]) empirical paramete
Here we use a simple and accurate first-principle expr
sion forC

cor
OCP which has been obtained recently [11]:

Ccor
OCP sGd ­

3
4

flns1 1 cGd 2 cGg

2
3
2

scGd3y2 arctan
1

p
cG

, (10)

with c ; s2y3d s2yp2d1y3. This agrees within1% to 2.5%
with the Monte Carlo data for most of the range ofG, and
has a maximal deviation ofø8% for 0.1 , G , 0.5 [11].

Taking into account thatkr̂csrdlH0 ­ rsrd, we finally
write the following for the perturbation part:

bkH 0lH0 ­
lB

2

Z
dr dr0 fwsr 2 r0dg2sr, r0d

2 2wsr 2 r0dg1srdrsr0d

1 wsr 2 r0drsrdrsr0dg , (11)

where g2sr, r0d ­ kr̂msrdr̂msr0dlH0 is the monomer
pair correlation function andg1srd ­ kr̂msrdlH0 is the
monomer average density inside the macroion’s core, i
in the volume confined by the gyration radius.

Now we note that the part of the free energy whic
depends onrsrd may be written as follows (see, e.g., [9])Z

dr rsrd
∑

2efextsrd 1
e
2

fintsrd

1 Ccor
OCP 1 Cid

OCP

∏
, (12)

where ´fextsrd ­ e
R

dr0 wsr0 2 rdg1sr0d is the “exter-
nal” field provided by the charged chain and´fintsrd ­
2e

R
dr0 wsr0 2 rdrsr0d is the “internal” field which

describes on the mean-field level interactions betwe
counterions [9]. Discarding the correlation termCcor

OCP
in (12) one obtains the Poisson-Boltzmann (PB), i.e., t
mean-fielddescription of the system.
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For the counterion density distribution we adopt here
simplified model. We introduce two characteristic den
sities: rin, the average counterion density inside th
macroion’s core, androut, that for the outer region. This
approximation implies that the size of the transient r
gion where the density of the counterions changes fro
its in-core value to the bulk one is small compared
the gyration radius. From the normalization condition
s4py3d sR3

0 2 R3
gdrout 1 s4py3dR3

grin ­ N, rout is de-
termined byrin. It is convenient to use a dimensionles
density,r ; rinyn, wheren ­ NyVg is the average in-
core monomer density andVg ­ s4py3dR3

g is the gyration
volume. The monomer correlation functions are approx
mated asg1 ø n, and g2 ø n 3 n ­ n2. Using these
approximations one can find all contributions to the fre
energy (7); in particular,

bkH 0lH0

N
­

3
5

√
lB

Rg

!
s1 2 rd2

√
1 2

2Rg

3R0

!
N , (13)

where the termsO sR3
gyR3

0d are omitted. The OCP part
is also easily computed; it is somewhat cumbersome
be written explicitly for the general case. We analyz
the behavior of the system in the limitR0 ¿ Rg and
N ¿ 1. Keeping for the free energy only leading term
with respect to vanishingRgyR0 and 1yN , analyzing the
relative contribution of different addendums, and omittin
less significant ones, we finally arrive at the followin
result for the total (conditional) free energy:

bFsa, rd
N

.
9

4N

(
a2 1

1
a2 1

BpN1y2

a3

)

2 3s1 2 rd ln Rp
0 2

3
2

√
2

p2

!1y3
lp
Br4y3

N1y6a

1
3
5

lp
BN1y2

a
s1 2 rd2, (14)

with dimensionlesslp
B ; lB61y2ya and Rp

0 ; R0ya. In
the PB approximation the third term in (14) is omitted.

The equilibrium state of the system is determined by t
free energy minimum with respect to both variablesa and
r. Equation (14) clearly demonstrates a competition f
the equilibrium “in-core” counterion densityr between
the two largest (atr , 1) terms, which are the second
and fourth on the right-hand side of Eq. (14). Th
second, negative term, large forRp

0 ¿ 1, accounts for
the counterion entropy. It tends to minimize the fre
energy by minimizingr; i.e., it drives the counterions
away from the polyelectrolyte in order to fill uniformly the
space of the one-chain cell. The positive fourth term (al
large atN ¿ 1) accounts for the free energy of screene
Coulombic interaction between monomers. It is minim
if all of the counterions are condensed on the polyme
i.e., whenr ­ 1. Thus mainly this two-term competition
determines the equilibrium counterion density. The thi
term on the right-hand side of Eq. (14), which accoun
for the counterion correlations, becomes important on
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if r ! 1. The following asymptotic cases give explicit
solutions.

(i) If lp
BN1y2 ø a ln Rp

0 , the second (negative) entropic
term is the most important in Eq. (14) andr ! 0 as
,sRgyR0d3. This case corresponds to the unscreene
Coulombic interactions between the chain segments,
that the polyelectrolyte tends to expand, anda ¿ 1. We
can write the leading terms as

bF
N

Ç
r!0

.
9a2

4N
1

3
5

lp
BN1y2

a
1 const. (15)

Thus the equilibriuma andRg are, respectively,

a .
µ

2
15

∂1y3

l
p 1y3
B N1y2 or

Rg

a
, l

p 1y3
B N . (16)

This is a regime of strong stretching of the polyelectrolyte
(ii) If lp

BN1y2 ¿ a ln Rp
0 , the fourth positive, inter-

segment screened-Coulombic interaction term in Eq. (1
is essentially larger than the counterion entropic term
r . 1 anda ø 1. Thus, in this case,

bF
N

Ç
r!1

.
9Bp

4N1y2a3 2
3
2

√
2

p2

!1y3
lp
B

N1y6a
(17)

so that the equilibriumsa andRg read

a . 3

µ
p

4

∂1y3 Bp 1y2

l
p 1y2
B N1y6

or
Rg

a
,

Bp 1y2N1y3

l
p 1y2
B

.

(18)

This is a regime of strong collapse of the polyelectrolyte
Note that the second (negative) term in (17) accounts f
the counterion correlations; without this term (in the PB
approximation) no chain collapse would be observed.

For the general case we solved the minimizatio
problem numerically (again for the conditionsR0 ¿ Rg
andN ¿ 1). We analyzed the dependences ofRg on lB

at fixedBp, Rp
0 , andN . TheRgslp

Bd dependence for some
particularBp, Rp

0 , andN is shown in Fig. 1. For small and
large values of the reduced Bjerrum length,lp

B, the radius
Rg changes in accordance with the asymptotic Eqs. (1
and (18). Our findings are in qualitative agreement wit
the results of the numerical studies [3], where the sam
two different regimes in theRgslp

Bd dependence were
observed. For intermediatelp

B we find a sharp bend in
the dependence of the equilibrium free energy onlp

B and a
discontinuity of its first-order derivatives.

We interpret this as a first-order phase transition from
the strong stretching regime, witha ¿ 1, to the strong
collapse regime, witha ø 1. This phase transition is
accompanied (or driven) by the process of counterio
condensation, when the counterion density changes fro
r ø 1 (counterions are uniformly spread over the bulk
to r . 1 (practically all counterions are confined inside
the polyelectrolyte globule). After the counterion conden
sation the polyelectrolyte dimensions become significant
smaller than they would be for a neutral chain with th
1435
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FIG. 1. (a) Dependences of the polyelectrolyte expansi
factor a versus the reduced Bjerrum length,lp

B ; lB

p
6ya,

calculated forN ­ 103, Rp
0 ­ 105 with Bp ­ 1. A dramatic

jumplike decrease of the polyelectrolyte size occurs alo
with the first-order phase transition due to the counterio
condensation. (b) Dependences of the near-polyelectrol
counterion density. Dotted curves refer to the numeric
analysis of the simplified Eq. (14). Solid curves account fo
the next-order corrections with respect toRgyR0 and1yN.

same volume interactions (i.e., with the same virial coe
ficients [4]). One can explain this effect as follows: Th
correlation part of the OCP-free energy (ignored in the P
approximation) gives rise to a negative pressure which
lp
B ¿ 1 overcompensates the ideal chain and counterio

entropic pressure. It may be balanced by the intersegm
non-Coulombic repulsion but only at some degree of com
pression. Clearly, the PB approximation misses this ph
nomenon, i.e., it qualitatively fails forlp

B ¿ 1.
As it is seen from Fig. 1, forRp

0 ­ 105 andN ­ 103,
the phase transition occurs atlp

B . 20. We found that with
decreasingRp

0 andN the transition shifts to smallerlp
B and

becomes less pronounced. These values oflp
B seem to be

accessible for real polyelectrolyte solutions, and one c
expect that the transition may be observed experimenta
(we are not, however, aware of such observations). T
1436
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change of the regime in theRgslBd dependence did not
occur as a phase transition in [3], where simulations wer
performed for chains of 32 and 64 monomers. Since th
present theory applies to the limitN ¿ 1, we cannot
conclude whether the transition (which becomes less sha
with decreasingN) disappears at some criticalN larger
than that used in [3]. We also believe that the phas
transition found within the simple two-level model for the
counterion density will persist for more realistic density
distribution (at least forN ¿ 1) [12].

In conclusion, we developed a simple theory of dilute
salt-free linear polyelectrolyte solutions. We analyzed the
dependence of the gyration radius of the chain on th
Bjerrum length,lB, which characterizes the strength of
the Coulombic interactions in the system, and found two
different regimes in this dependence, the same as we
observed in numerical studies. Additionally, we detected
a first-order phase transition from chain stretching to
strong collapse, which is accompanied by the counterio
condensation on the polyelectrolyte.

Helpful discussions with B. Weyerich are highly
appreciated.
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