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Chain Collapse and Counterion Condensation in Dilute Polyelectrolyte Solutions
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A guantitative theory for polyelectrolytes in salt-free dilute solutions is developed. Depending on

the electrostatic interaction strength, polyelectrolytes in solutions can undergo strong stretching (with
polyelectrolyte dimensiorR, ~ lll;/SN, where Iy is the Bjerrum length andv is the number of the
chain segments) or strong compression (With~ l;mN'”). A strong polymer collapse occurs as a

first-order phase transition due to accompanying counterion condensation. [S0031-9007(98)06754-4]

PACS numbers: 61.25.Hq, 36.20.-r, 64.10.+h

Many important synthetic and biological macro- (monomers) with the bond length Let each monomer
molecules are polyelectrolytes, and their properties diffehave a unit charge (say, positive) so tha¥V counterions
significantly from that of the neutral polymers [1]. Im- of the opposite charge (say, negative) are present. Let
portance of the former stimulates a variety of their ana = (477 /3)R; be the volume per chain. We assume that
lytical [2] and numerical [3] studies. However, even for the solution is very dilute, so that the conditifp < Ry
a simple system of a salt-free solution of linear flexiblealways holds R, is the gyration radius of the chain) and
polyelectrolytes (an electroneutral system of chargedve can concentrate on the one-chain problem. We write
chains and counterions), many fundamental properties afer the Bjerrum lengthiz = Be?/s (e is the dielectric
still unclear. permittivity of the solvent,3~! = kzT) and adopt the

The neutral chains undergo a collapse transition as thgoint-counterion approximation.
solvent quality decreases [1,4], but collapse and stretch- We write the Hamiltonian for the one-chain problem:
ing of polyelectrolytes follow quite different laws. This _
happens due to a particular role of the counterions in H = Huch + Heten + He + Heen. (1)
these processes, which cannot be reduced only to a simpiere H, .1, is the Hamiltonian of the neutral chain, which
electrostatic screening and to an increase of the persigccounts for all non-Coulombic interactions between the
tence length [5]. Under conditions of extreme dilution, monomers of the chaif/.; ., accounts for the Coulombic
for weakly charged polyelectrolytes, the counterions ocinteractions between the monomers of the chain, pd
cupy the whole volume almost uniformly, with a very contains the ideal counterion part and the Coulombic
low concentration, owing to the entropy “forces.” Under part of the counterion-counterion interactions; finally,
these conditions, polyelectrolytes tend to strong stretchindf.—.n accounts for the Coulombic interactions between
caused by the strong (weakly screened) intersegment rée counterions and the chain. It is convenient to write
pulsions; the end-to-end distance of the chain in this caséhe Coulombic interactions in terms of the microscopic
is proportional to the number of charged segments. Undensities of counterionsp.(r) = Zﬁil 6(r — r;), and
der a strong polyelectrolyte charge, when the electrostatiof monomersp,,(r) = Zle 8(r — R;), where{r;} and
energy of polymer-counterion attraction is larger than thgR;} are coordinates of the counterions and of the
corresponding loss of entropy due to the counterion localmonomers, respectivelyH., ., and H._., read in this
ization, an essential part of the counterions localizes in theotation [7]
close vicinity of the polyelectrolytes. This effect, called I
counterion condensation (e.g., [6]), leads to an effective BH.cn = — ]dr dr' o(r — ')p,,(0)p,(x’), (2
polymer charge screening and can cause a decrease of the 2
polymer size. This chain collapse can be even stronger
than for the neutral chains. BHc ch = —le drdr' o(r — r')p,(r)p.(r'), (3)

In this Letter we present a new quantitative theory of
polyelectrolytes in salt-free dilute solutions. We describewhere (e?/&)¢(r) = (e?/er) is the Coulomb potential.
the polyelectrolyte dimension for a wide range of parame¥or the subsequent analysis it is worthwhile to map the
ters, covering the area of the counterion condensation, armbunterion part,H,, onto the Hamiltonian of the one-
analyze the nature of the condensation. component plasma (OCP) [8]. The OCP model is for-

Consider a dilute solution (electroneutral as a wholemulated as follows: the point charges are immersed into
of charged chains, each composedNof> 1 segments the structureless compensating background of the opposite
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charge. The background charge densityadr), and the  system,F(R,), as a function of the gyration radiug,.
average local density of the point charges (i.e., countetWe define an effective Hamiltonian of the neutral chain,
ions) is equal tg(r) [8]. The OCP Hamiltonian reads  H, .y, as exp—B8H,.cp) = D(R,) exp(— BH,.chn), Where
the conditional functionD(R,) is equal to unity if the
Hocelp(r)] = He + Huplp(®)] + Huclp®], (4 coordinates of the monomers are consistent with the
where BHy, = (I5/2) [drdr' ¢(r — r')p(r)p(r’) de- condition for the gyration radius to bk,, otherwise it
scribes the background self-interaction, whige,. =  €duals zero. Since for the systems with Hamiltonians
—1Ip [drdr o(r — r')p(r)p.(r') gives the energy of Hncn @ndHocp reliable estimates for the free energy are
the background-counterion interaction. From Eq. (4) itknown, it is reasonable to write the total Hamiltonian as a
follows thatH, = Hocp — Hpe — Hpp. sum of two parts: the reference part,
To address the problem of the gyration radius of the Hy = Hoen(Ry) + Hocp[p(r)], (5)
chain, we consider theonditional free energy of the

| and the perturbation part,

l
g’ = 2 [ drar' o = ) pn®pne) = ppCN] ~ 1y [ drdr’ o = ) [pulr) = p(pE), @
and to use then the Gibbs-Bogoljubov inequality: | a few accurate Padé fits exist (e.g., [10,11] and refer-

F(R,) = Fyon(Ry) + Focp[p(®)] + (H' . (7)  €nces therein). These, however, are rather cumbersome
&/ ety ‘" 7 and contain many (e.g., six in [10]) empirical parameters.
HereF, cn(Ry) is the free energy of the neutral chain with yere e use a simple and accurate first-principle expres-

the gyration radiusk,. Focelp(r)] is the free energy gjon for W&, which has been obtained recently [11]:
of the inhomogeneous OCP with the background charge

densityp(_r). Finally, <_H’>HU is obtained by averaging the V() = 3 [In(1 + ¢T) — ¢I]

perturbation partd’, given by Eq. (6), over the reference 4

Hamiltonian,Hy, given by Eq. (5). Minimizing the right- 3 32 1

hand side of Eq. (7) with respect to the average density Y (cI)”/" arcta Nk (10)

of the counterionso(r), one obtains an estimate of the _ N1/3 . o

conditional free energy"(R,). Minimizing then F(R,) with ¢ = (2/3) (2/%)"/". This agrees within % t0 2.5%

with respect taR,,, one finds the gyration radius. with the Mpnte Carllo Qata for most of the rangelgfand
The free energy of the neutral polymer is a sum of1@S @ maximal deviation of8% for O'i< I' < 05[11].

the elastic part, written in the Flory-type approximation 1aking into account thatp.(r))x, = /’(r)v_ we finally

[1] as kzTy(a? + a~2) and the interaction part, written write the following for the perturbation part:

on the level of the second virial approximation [1] as NI , ) /

ksTBN?/(4wR}/3). Here a is the chain expansion B{H Y n, = 5 | drdr [o(r — r)g(r.1")

factor, a? = Ré/Ré_id, with R, iq being the mean-square

— 2¢(r — r)g1(r)p(r')
gyration radius of the ideal chaimé.id = Na?/6, y =

9/4 for Gaussian polymers [4], an® is the second + e = r)pm)p()], (11)
virial coefficient. Here we consider the case of a goodwhere g(r,r’) = (9, (r)p,(x"))y, is the monomer
solvent, B > 0. With the reduced coefficien3* = pair correlation function and(r) = (p,,(r))y, is the
6°2B/(3ma’), we write for Fy cn(R,) monomer average density inside the macroion’s core, i.e.,
9 L or1/2. =3 in the volume confined by the gyration radius.
BFnen(Ry) = - (a” + a =+ BN"a™). (8) Now we note that the part of the free energy which

The OCP part of the free energy in the local densitydeloends o (r) may be written as follows (see, e.g., [9]):
[ ar o] ~ete®) + £ gute)

approximation [8,9] reads

BFocr = ] dr p(r) (Widp[p(0)] + VLo ()]}

)
where Wcp[p(r)] = IN[A3p(r)] — 1 refers to the ideal where eey(r) = e [dr' o(r' — r)g,(r') is the “exter-
part of the OCP-free energy per ion [ is the thermal nal” field provided by the charged chain an@;,(r) =

wavelength of the counterions), whitegEp[p(r)] refers  —e [dr' o(x' — r)p(r’) is the “internal” field which
to the excess or “correlation” part of the free energy [8].describes on the mean-field level interactions between
This may be expressed in terms of the (local) “plasma’counterions [9]. Discarding the correlation tenhoep
parametel’ = l/a., wherea, = {3/[4mp(r)]}'? isthe in (12) one obtains the Poisson-Boltzmann (PB), i.e., the

or

(local) ion-sphere radius of the counterion. cp  Mmean-fielddescription of the system.
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For the counterion density distribution we adopt here af p — 1. The following asymptotic cases give explicit
simplified model. We introduce two characteristic den-solutions.
sities: pi,, the average counterion density inside the (i) If IzN'/2 < « InR;, the second (negative) entropic
macroion’s core, ang,,, that for the outer region. This term is the most important in Eq. (14) angd— 0 as
approximation implies that the size of the transient re—~(R,/Ro)*. This case corresponds to the unscreened
gion where the density of the counterions changes fron€oulombic interactions between the chain segments, so
its in-core value to the bulk one is small compared tothat the polyelectrolyte tends to expand, and> 1. We
the gyrat|on radius. From the normalization condition,can write the leading terms as
(47/3) (RO - R3)p0ut + (477/3)Rgpm N, Pout is.de— BF 9a2 3 ZENI/Z
termined byp;,. It is convenient to use a dimensionless — = + =
density,p = pin/n, wheren = N/V, is the average in- N lp—o 4N 5
core monomer density arid, = (477/3)R; is the gyration  Thus the equilibriumx andR, are, respectively,
volume. The monomer correlation functlons are approxi-

+ const  (15)

1/3
mated asg; =~ n, andg, = n X n = n?. Using these a = <£> 121/31\,1/2 or 121/3 (16)
approximations one can find all contributions to the free 15
energy (7); in particular, This is a regime of strong stretching of the polyelectrolyte.

N 5 3R segment screened-Coulombic interaction term in Eq. (14)

3R

° is essentially larger than the counterion entropic term,
where the terms‘Q(R3/R0) are omitted. The OCP part p = 1 anda < 1. Thus, in this case,
is also easily computed it is somewhat cumbersome to . /3
be written explicitly for the general case. We analyze BE .2 3 <i> s (17)
the behavior of the system in the limR, > R, and N lpmi 4N'V2a3 2 \@%) NVoa
N > 1. Keeping for the free energy only leading terms
with respect to vanishin®, /Ry and1/N, analyzing the
relative contribution of different addendums, and omitting _ 3<1>1/3 B!/ or Re _ B*1/2N1/3
less significant ones, we finally arrive at the following 4 121/2 #1/2

o N1/6 a Iy
result for the total (conditional) free energy: (18)

#a71/2
BE(a.p) -2 [az + iz + B N3 ] This is a regime of strong collapse of the polyelectrolyte.
N 4N « @ Note that the second (negative) term in (17) accounts for
. 32 l* 4/3 the counterion correlations; without this term (in the PB
—3(1=p)InRy — — | =

H, 7R .. #2712 * .. . g
B(H Y, 3(1}_!;)(1 B p)2<] B g>N, 13) (i) If [;NV2 > a InR;, the fourth positive, inter

so that the equilibriuma andR, read

2 N1/6gy approximation) no chain collapse would be observed.
3 ENL2 For the general case we solved the minimization
=B (1 - p), (14)  problem numerically (again for the conditioly > R,

andN > 1). We analyzed the dependencesRgfon /

with dimensionlesgy = 136'/?/a and R; = Ro/a. In  atfixedB*, Ry, andN. TheR,(l/3) dependence for some
the PB approximation the third term in (14) is omitted.  particularB*, Ry, andN is shown in Fig. 1. For small and

The equilibrium state of the system is determined by thdarge values of the reduced Bjerrum length, the radius
free energy minimum with respect to both variabdeand R, changes in accordance with the asymptotic Egs. (16)
p. Equation (14) clearly demonstrates a competition forand (18). Our findings are in qualitative agreement with
the equilibrium “in-core” counterion density between the results of the numerical studies [3], where the same
the two largest (ap < 1) terms, which are the second two different regimes in theR,(/3) dependence were
and fourth on the right-hand side of Eq. (14). Theobserved. For intermediaté we find a sharp bend in
second, negative term, large f&) > 1, accounts for the dependence of the equilibrium free energypand a
the counterion entropy. It tends to minimize the freediscontinuity of its first-order derivatives.
energy by minimizingp; i.e., it drives the counterions  We interpret this as a first-order phase transition from
away from the polyelectrolyte in order to fill uniformly the the strong stretching regime, witl > 1, to the strong
space of the one-chain cell. The positive fourth term (als@ollapse regime, withh < 1. This phase transition is
large atN > 1) accounts for the free energy of screenedaccompanied (or driven) by the process of counterion
Coulombic interaction between monomers. It is minimalcondensation, when the counterion density changes from
if all of the counterions are condensed on the polymerp <« 1 (counterions are uniformly spread over the bulk)
i.e., whenp = 1. Thus mainly this two-term competition to p = 1 (practically all counterions are confined inside
determines the equilibrium counterion density. The thirdthe polyelectrolyte globule). After the counterion conden-
term on the right-hand side of Eq. (14), which accountssation the polyelectrolyte dimensions become significantly
for the counterion correlations, becomes important onlysmaller than they would be for a neutral chain with the
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102 change of the regime in th&,(/3) dependence did not
occur as a phase transition in [3], where simulations were
performed for chains of 32 and 64 monomers. Since the
present theory applies to the lim > 1, we cannot

E conclude whether the transition (which becomes less sharp
with decreasingV) disappears at some critical larger
than that used in [3]. We also believe that the phase
A transition found within the simple two-level model for the
counterion density will persist for more realistic density
distribution (at least fov > 1) [12].

In conclusion, we developed a simple theory of dilute
salt-free linear polyelectrolyte solutions. We analyzed the
dependence of the gyration radius of the chain on the
Bjerrum length,lz, which characterizes the strength of
the Coulombic interactions in the system, and found two
different regimes in this dependence, the same as were
observed in numerical studies. Additionally, we detected
a first-order phase transition from chain stretching to
strong collapse, which is accompanied by the counterion
condensation on the polyelectrolyte.

Helpful discussions with B. Weyerich are highly
appreciated.
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