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Resonant Scattering and Spontaneous Emission in Dielectrics:
Microscopic Derivation of Local-Field Effects
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Resonant classical light scattering by impurity atoms inside dielectric cubic lattices is investigated in
the point-dipole limit. Modifications to resonance frequencies and linewidths are shown to be different
for substitutional and interstitial impurities. Spontaneous emission rates inside dielectrics exhibit
the well-known empty-cavity and Lorentz local-field factors for substitutional and interstitial atoms,
respectively. The results are generalized to disordered dielectrics, indicating that the substitutional case
occurs prevalently for impurity atoms. [S0031-9007(98)06814-8]
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The properties of light in modulated dielectric struc
tures have become a subject of intense interest. For
stance, the fabrication of photonic band gap materials
aimed at achieving a gap in the optical band structure [1
At the band gap the radiative density of states (RDO
is zero and, therefore, spontaneous emission of exci
atoms embedded in these materials is expected to be
hibited at those frequencies, since then coupling to prop
gating modes is absent. At other frequencies it has be
shown that spontaneous emission can be either redu
or enhanced [1,2]. Note that the atoms in question a
different from the ones constituting the dielectric. Quite
generally, luminescence ratesG can be modified by ma-
nipulating the optical mode structures. This has also be
demonstrated experimentally and theoretically for seve
other systems, e.g., for excited atoms that are placed
cavities [3] consisting of metallic or dielectric mirrors or
in systems [4,5] with dielectric interfaces. The placeme
of excited atoms inside a macroscopically homogeneo
dielectric with dielectric constant́ also leads to a modi-
fication ofG, which is then expected to follow the

p
´ de-

pendence of the RDOS [6].
The latter problem has recently been reexamine

in connection with possible local-field corrections tha
should enter expressions forG. The microscopic, or
local, electric field an atom feels is usually different from
the one following from classical and quantum-mechanic
descriptions where the dielectric is considered on
coarse-grained or macroscopic scale. Determining t
local field is an old problem in physics, for which Lorentz
has given a mean-field-like argument in terms of
“virtual” cavity surrounding a dipole of the dielectric
[7]. The resulting ratio of local and macroscopic fields i
given by the Lorentz local-field factor

LLor  s´ 1 2dy3 , (1)

which appears in expressions for several physical quan
ties, e.g., the Lorentz-Lorenz relation (LLR) or Clausius
Mossotti equation for the dielectric constant [7,8].

In the Onsager-Böttcher (OB) local-field approac
[7] a cavity with volume V , in which a dipole with
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polarizabilitya is placed, is considered inside a dielectr
described by the macroscopic Maxwell’s equation
The local-field correction pertaining to the field in th
cavity is

LOBsayV d 
3´

2´ 1 1 2 2sayV d s´ 2 1dy3
. (2)

In contrast to the Lorentz approach, two cases can now
distinguished: The dipole inside the cavity is eith
equivalent to or different from the ones forming th
dielectric. In the former case, Eq. (2) reduces to the a
propriate Lorentz factorLLor when ayV satisfies the
LLR. Hence,V 21 is equal to the density of dipoles insid
the dielectric. In experiments [9] involving onlypure
systems, i.e., onlyonekind of atom or molecule is present
the observed local-field effects agree very well with t
Lorentz description. If desired the influence of partic
interactions not included in the LLR can be captur
phenomenologically [7] using other values forV .

Considering the case of an impurity dipole insid
the cavity one sometimes neglects the response of
dielectric ona. Equation (2) then simplifies to the, so
called, empty-cavity factor [10,11]

Lemp  3´ys2´ 1 1d . (3)

It has been proposed theoretically [10–17] that one of
factors,LLor or Lemp , should be included in a descriptio
of G of impurity atoms inside dielectrics. The majorit
of researchers in this field [11–15], in fact, endorse t
Lorentz factor. On the other hand, experimental resu
[16] on atoms inside complexes indicate that the emp
cavity factor should be employed. These factors diff
very much, especially for frequencies near a band gap
a material resonance wherécan become very large. I
is not clear from the literature [10–17] which argume
enables one to make a correct choice between the
factors. For pure systems, straightforward applicati
of LLor generally allows for an excellent description
Obviously, a microscopic theory is desired to clarify th
issue for the case of impurity atoms.
© 1998 The American Physical Society 1381
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To this end, we present in this Letter a microscop
analysis based on resonant classical light scattering by i
purity atoms inside dielectric cubic lattices. The atom
forming the lattice, as well as the impurity atoms, are d
scribed by point dipoles, so that exact solutions can
obtained. In addition, we discuss how these results app
to the case of disordered dielectrics. By considering on
elastic scattering the resonance linewidths are interpre
to equal the spontaneous emission rates of the impuriti
The optical theorem, i.e., the equivalence of the amou
of light taken out of the incident waves (extinction) an
the amount of light redistributed over all angles (scatte
ing), may be viewed as a microscopic analogon of Ei
stein’s thermodynamic arguments relating extinction (an
absorption), stimulated and spontaneous emission. P
vided one distinguishes between interstitial and substit
tional impurities, it will follow that the application of the
factorsLLor andLemp , respectively, is appropriate.

We first discuss the case of the pure lattice in terms
a Green’s function formalism [18]. The Green’s functio
G describing all dynamic properties of light in a periodic
lattice of identical point dipoles can be expressed in term
of the free-space dyadicG0 and thet-matrix elementt of a
single dipole. The scattering to all orders in the potenti
is represented [18] bytsvd  2svyc0d2asvd, wherea
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is the complex dynamic polarizability of a single poin
dipole, and is assumed scalar for simplicity. The latti
t-matrix T , defined by

G  G0 1 G0 ? T ? G0 , (4)

is easily obtained in momentum space from the expans
in G0 andt, and reads

T sv; k, k0d 
X
R

Tk0svdeisk2k0d?R, (5)

with

Tksvd 

"
t21svdI 2

X
Rfi0

eik?RG0sv1; Rd

#21

, (6)

where hRj are lattice vectors,I is the unit dyadic in
polarization space, andv1 ; v 1 i0. The solutions
vskd follow from considering the poles ofTk.

From now on we consider lattices having cubic sym
metry and frequencies lying in the lowest branch
the band structure, i.e.,vayc0 ø 1 and a is the lat-
tice constant. The dispersion relation and the dyadicTk
can be determined explicitly in this case. The discre
Fourier transform appearing inTk may be simplified us-
ing [12,14,18,19]
V
X

Rfi0
eik?RG0sv1; Rd

vayc0ø1,kaø1
!

1
sv1yc0d2I 2 k2I 1 kk

2
I

3svyc0d2 1 i
VvI

6pc0
, (7)
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whereV is the volume of the unit cell. The first term on
the right-hand side equals the continuum Fourier tran
form of G0, while the other terms express the exclu
sion of the singularity in the dipole-dipole part and th
finite transverse part ofG0sv1; R  0d, respectively.
The latter term exactly cancels the imaginary part
t21, since for arbitraryt satisfying the optical theo-
rem for a single dipole,2c0 Im tyv  jtj2y6p, one has
Im t21  vy6pc0. From the poles ofTk it then fol-
lows thatfkc0yvskdg2 ; ´ satisfies the well-known LLR
[12,14,18,19]

´svd  1 1
ã

V
3 LLor , (8)

whereã21  2svyc0d2t̃21 ; a21 1 isvyc0d3y6p is a
real quantity. We assume that́ describing the lat-
tice does not have a resonance for the frequenc
studied here.

It is expedient to introduce a real “bare” polarizabi
ity ab that may be used to define the strengthyb 
2svyc0d2ab of a point-dipole potentialybI dsr 2 Rd en-
tering the Maxwell-Helmholtz equation [18]. In this cas
one finds that the correspondingt-matrix element reads

tsvdI  fy21
b I 2 G0sv1; 0dg21, (9)

whereG0sv1; rd needs to be regularized since it diverge
at r  0. The latter can be done [18]. Here, it is no
necessary to explicitly computeyb . The resonances of
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the impurities turn out not to depend onyb . Equation (9)
enables one to derive

Gsv1; R, R0d  2
1

yb
I dR1,R2

1
V

y
2
b

Z
B.Z.

dk
s2pd3 eik?sR2R0dTksvd ,

(10)

for positions on the lattice. The advantage of this expre
sion lies in the fact that forR  R0 the integral in (10) is
finite due to the finite support of the Brillouin zone. Con-
trary to the case of free space no singularities are prese
in the Green’s functionG . Employing Eqs. (7) and (8) to
calculateTk one finally obtains the microscopic result

G sv1; R, R0d  sãyabd2L 2
LorGdielsv1; R 2 R0d ,

(11)

where R fi R0 and Gdielsv1; rd  G0s
p

´ v1; rd de-
scribes [12,14,19] an ordered dielectric on a macroscop
scale. Generally, neither the factorsãyabd2 in (11)
nor the expression (10) forG are given in the literature
[12,14,19]. The electric field solutions can be obtaine
from G . Note that the field solutionE at the position
R of a dipole includes depolarization effects and, there
fore, is unequal to the conventionally used fieldEexc

which excites the dipole [20]. Both fields are related
through expressions for the dipole momentd  ãEexc



VOLUME 81, NUMBER 7 P H Y S I C A L R E V I E W L E T T E R S 17 AUGUST 1998

s

-

-
m

he
s

r-

e

)

e
-

t
l
s

e,
e
in
re
and d  abE, so ãyab is an internal-field factor [18].
Equation (11), except for the factorsãyab appropriate for
lattice positions, also applies to other positions with cub
symmetry in the unit cell, or in an averaged sense f
all space whenexcludingthe depolarization fields athRj.
These results show that the microscopic and macrosco
field solutions differ by a factorLLor in accordance with
textbook derivations.

We now treat the case of a lattice including eithe
a substitutional or interstitial impurity atom. In an
effective two-level or harmonic-oscillator approach th
polarizabilityaI of a single impurity in free space is [18]

aI svd  aI s0d 3
v

2
0

v
2
0 2 v2 2 isG0v3yv

2
0d

, (12)

with resonance frequencyv0 and widthG0. Invoking the
optical theorem gives the relationG0  aI s0dv4

0y6pc3
0,

which is consistent with Fermi’s golden rule result forG0
by taking the static polarizabilityaI s0d  2jmj2y´0h̄v0
in terms of the dipole matrix elementm of two atomic
levels. One also has an (assumed given) point-poten
strengthyb,I . The Green’s function

Gm  G 1 G ? Tm ? G (13)

describes the system of lattice and impurity, in whic
respectively, for a substitutional impurity atRs sm  sd

Ts  fsyb,I 2 ybd21I 2 G sv1; Rs, Rsdg21, (14)

and for an interstitial impurity atri sm  id

Ti  fy21
b,I I 2 Gsv1; ri , ridg21. (15)

Note the dependence on the difference of the releva
potential strengths in (14). The removal of a lattice dipo
was not considered explicitly in the literature [11–15
The imaginary parts ofG in (14) and (15) are connected
to the RDOS and are proportional to

p
´ L

2
Lor . On the

other hand, the potential terms, as well as the real pa
of the doubly on-siteG , differ from one another. Using
Eqs. (4), (9), and (10) thet-matrices can be written as

Ts  y2
b

"
s1yt̃ 2 1yt̃Id21I 2 V

Z
B.Z.

dk
s2pd3 Tk

#21

,

(16)

Ti  ht21
I I 2 fG0 ? T ? G0g sv1; ri , ridj21, (17)

from which the secular equations determining the imp
rity resonances readily follow. The resulting resonanc
turn out to be unequal. For static dipole-dipole intera
tions, these equations were derived in Ref. [19] in the d
scription using exciting fields.

For the substitutional case the polarizabilityassvdI ;
2sc0yvd2sãLLoryabd2Ts concurs with usual descrip-
tions. The factorsãLLoryabd2 originates fromG ? G
[see Eq. (13)]. This polarizability simplifies to

ass0d  LOBfaIs0dyVgLLor 3 faI s0d 2 as0dg , (18)

for v ! 0. Two important remarks concerningas are in
order. In the first place, Eq. (18) can be written as
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as  LOBsaIyVdLempaI 2 s´ 2 1dLempV , (19)

where the terms, respectively, describe the polarizabilitie
of a dielectric-modified impurity and of a cavity inside
a macroscopic dielectric. Second, within the OB ap
proach the combined polarizability of dipoleaI and cavity
with volumeV, observed outside the cavity, corresponds
exactly with as demonstrating that the case of a substi
tutional can be investigated using a standard continuu
description.

The desired properties at resonance are as follows. T
polarizability of the “dressed” impurity near resonance ha
a Lorentzian structure analogous to Eq. (12):as,I svd 
as,I s0dv2

0s´dyfv2
0s´d 2 v2 2 iG0s´dv3yv

2
0s´dg with pa-

rameters given by

v2
0s´dyv2

0  f1 2 2aI s0d s´ 2 1dLempy9´Vg , (20)

as,I s0d  LOBfaI s0dyVgLemp 3 aI s0d ,

 L 2
empv2

0yv2
0s´d 3 aI s0d , (21)

G0s´dyG0 
p

´ L 2
emp 3 fv2

0s´dyv2
0g , (22)

wherev0s1d  v0 andG0s1d  G0. The resonance fre-
quency is redshifted and the linewidth behaves in acco
dance with the empty-cavity description.

For an interstitial at a point with cubic symmetry one
obtains anaisvd of the form (12) with parameters

v2
0s´dyv2

0  f1 2 2aI s0d s´ 2 1dLLory9´Vg , (23)

ais0d  L 2
Lorv

2
0yv2

0s´d 3 aI s0d , (24)

G0s´dyG0 
p

´ L 2
Lor 3 fv2

0s´dyv2
0g . (25)

In the calculation sums such as
P

R eik?sR2ri dG0sv1; ri 2

Rd appearing in the termG0 ? T ? G0 of Ti have been
replaced using expression (7). The width of the resonanc
now includes Lorentz local-field factors instead of the
empty-cavity ones. The polarizabilityai clearly does not
coincide with the results for a substitutional impurity. For
other interstitial positions in the unit cell the widths will
follow Eq. (25) apart from possible small corrections to
(23). Obviously, these results apply only when atomic
sizes compared to the lattice parametera are such that
interstitials may occur.

We now discuss the relevance of our results (20)–(25
to impurities in disordered dielectrics. The parametersa
andV21 are a measure of the mean interparticle distanc
and the density of particles forming the dielectric, respec
tively. The LLR (8), witha instead ofã, can be derived
for disordered media using a microscopic multiple-
scattering theory [8] in which the excluded-volume par
of many-particle correlations is taken into account to al
orders in the density. The remainder of the correlations a
well as scattering more than once from the same particl
called recurrent scattering, is then neglected. For lattic
systems, however, the latter are taken into account
Eqs. (6), (8), (14), and (15), since these expressions a
1383
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exact. Inside lattices interstitials have a different local e
vironment compared to particles residing at lattice poin
hRj. In particular, they have alowercoordination number.
A substitutional impurity takes the place of a lattice pa
ticle, which then has to be removed. For disordered me
it now becomes clear that in order to distinguish betwe
“interstitial” and “substitutional” positions one has to
consider correlations characterizing the local environme
Interstitial behavior occurs when impurities do not influ
ence the many-particle correlations of the other partic
and have lower coordination numbers. These impuriti
then interact with the usual Lorentz local field prese
inside a dielectric medium. On the other hand, an im
purity inside a disordered system may be defined as
substitutional when it has comparable correlations a
coordination numbers as the particles constituting the
electric. A larger coordination number occurs when th
size of the impurity is larger than the volumeV. In the
cases of comparable and larger coordination numb
the macroscopic OB approach is applicable. Sub
quently, the empty-cavity behavior (21) and (22) wi
apply in agreement with recent experimental results [1
At very low densities, the distinction between the tw
types of impurities will not be relevant, since any distin
features in correlations will disappear andLLor ø Lemp

to first order inV21. The presence of interstitials is mos
easily realized in solid dielectrics. In the case of fluid
they will generally not occur.

It is interesting to remark on the effective dielectri
constant of mixtures. To the same level of approx
mation used to obtain the LLR for pure fluids one ca
derive the LLR or Maxwell-Garnett expression [8] for
disordered collection of dipolesA and I with polariza-
bilities a and aI , respectively. To lowest order in the
density rI of dipoles I one getś eff  ´ 1 rIL

2
LoraI ,

where ´ is given by (8), suggesting that usingLLor
seems appropriate for both types of impurities. How
ever, for densities of dipolesA such that dipolesI are
basically immersed in a host with dielectric consta
´ another Maxwell-Garnett expression is appropria
[21]. Assuming for convenience that the dipolesI are
dielectric spheres with volumeVsp one then obtains
the following to lowest order inrI : ´eff  ´ 1 rIa

0
I ,

where a
0
I is the effective polarizability of the dielectric

sphere embedded in the host. Analogous to Eq. (1
a

0
I  LOBsaIyVspdLempaI 2 s´ 2 1dLempVsp, where

aI is the free-space polarizability of the sphere. Th
latter Maxwell-Garnett description coincides with the O
approach and implies that for large volume fractions
dipolesA the impuritiesI have a substitutional character

In summary, we have calculated the modifications
resonance properties of impurities induced by a dielect
host. The local-field corrections given in the literature a
shown to be adequate, while conditions under which th
occur have now been identified. The substitutional ca
1384
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occurs prevalently. For the case of interstitials textbo
local-field derivations are applicable.
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