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Resonant Scattering and Spontaneous Emission in Dielectrics:
Microscopic Derivation of Local-Field Effects
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Resonant classical light scattering by impurity atoms inside dielectric cubic lattices is investigated in
the point-dipole limit. Modifications to resonance frequencies and linewidths are shown to be different
for substitutional and interstitial impurities. Spontaneous emission rates inside dielectrics exhibit
the well-known empty-cavity and Lorentz local-field factors for substitutional and interstitial atoms,
respectively. The results are generalized to disordered dielectrics, indicating that the substitutional case
occurs prevalently for impurity atoms. [S0031-9007(98)06814-8]
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The properties of light in modulated dielectric struc- polarizability « is placed, is considered inside a dielectric
tures have become a subject of intense interest. For irdescribed by the macroscopic Maxwell's equations.
stance, the fabrication of photonic band gap materials i¥he local-field correction pertaining to the field in the
aimed at achieving a gap in the optical band structure [1]cavity is
At the band gap the radiative density of states (RDOS) 3e
is zero and, therefore, spontaneous emission of excited  Log(a/V) = .2
atoms embedded in these materials is expected to be in- 2¢ + 1= 2a/V)(e = 1)/3

hibited at those frequencies, since then coupling to propan contrast to the Lorentz approach, two cases can now be
gating modes is absent. At other frequencies it has beegistinguished: The dipole inside the cavity is either
shown that spontaneous emission can be either reduceguivalent to or different from the ones forming the
or enhanced [1,2]. Note that the atoms in question argjelectric. In the former case, Eq. (2) reduces to the ap-
differentfrom the ones constituting the dielectric. Quite propriate Lorentz factorf;,, when «/V satisfies the
generally, luminescence ratéscan be modified by ma- || R. Hence,v ! is equal to the density of dipoles inside
nipulating the optlcal_ mode structures. Thls has also beeghe dielectric. In experiments [9] involving onlgure
demonstrated experimentally and theoretically for severa_},ystem& i.e., onlgnekind of atom or molecule is present,
other systems, e.g., for excited atoms that are placed ifhe observed local-field effects agree very well with the
cavities [3] consisting of metallic or dielectric mirrors or | grentz description. If desired the influence of particle
in systems [4,5] with dielectric interfaces. The placemeninteractions not included in the LLR can be captured
of excited atoms inside a macroscopically h0m09€neouﬁhenomenologicaIIy [7] using other values for

dielectric with dielectric constant also leads to a modi- ~ considering the case of an impurity dipole inside
fication of I', which is then expected to follow th¢e de-  the cavity one sometimes neglects the response of the
pendence of the RDOS [6]. dielectric ona. Equation (2) then simplifies to the, so-

The latter problem has recently been reexamineggled, empty-cavity factor [10,11]
in connection with possible local-field corrections that
should enter expressions fdf. The microscopic, or Lemp = 3e/(2e + 1). 3)

local, electric field an atom feels is usually different from .
the one following from classical and quantum—mechanicat has been proposed theoretlca_lly [10_1.7] that one qf the
actors, L or or Lenp, should be included in a description

descriptions where the dielectric is considered on fT of i itV at inside dielectri Th orit
coarse-grained or macroscopic scale. Determining th@ 1 Of Impurity atoms Inside dielectrics. € majority

local field is an old problem in physics, for which Lorentz of researchers in this field [11-15], in fac_t, endorse the
has given a mean-field-like argument in terms of Lorentz factor. On the other hand, experimental results

“virtual” cavity surrounding a dipole of the dielectric 8116]. on atoms inside complexes indicate that the empty-
[7]. The resulting ratio of local and macroscopic fields iscavity factor shoqld be employed.' These factors differ
given by the Lorentz local-field factor very mu_ch, especially for frequencies near a band gap or
a material resonance whegecan become very large. It
Lior = (e +2)/3, (1) is not clear from the literature [10—-17] which argument
which appears in expressions for several physical quantenables one to make a correct choice between the two
ties, e.g., the Lorentz-Lorenz relation (LLR) or Clausius-factors. For pure systems, straightforward application
Mossotti equation for the dielectric constant [7,8]. of L1, generally allows for an excellent description.
In the Onsager-Bottcher (OB) local-field approachObviously, a microscopic theory is desired to clarify this
[7] a cavity with volumeV, in which a dipole with issue for the case of impurity atoms.
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To this end, we present in this Letter a microscopicis the complex dynamic polarizability of a single point
analysis based on resonant classical light scattering by indipole, and is assumed scalar for simplicity. The lattice
purity atoms inside dielectric cubic lattices. The atomst-matrix 7, defined by
forming the lattice, as well as the impurity atoms, are de-
scribed by point dipoles, so that exact solutions can be G=Go+ G- T - G. (4)
obtained. In addition, we discuss how these results appli gasily obtained in momentum space from the expansion
to thg case of _dlsordered dlelectrlg:s. I_3y conS|d¢r|ng onlyp, Go andr, and reads
elastic scattering the resonance linewidths are interpreted
to equal. the spontaneous emission rates of the impurities. T(w:k, k') = Z Ti(@)e! & KR (5)

The optical theorem, i.e., the equivalence of the amount R

of light taken out of the incident waves (extinction) and i,

the amount of light redistributed over all angles (scatter-

ing), may be viewed as a microscopic analogon of Ein-

stein’s thermodynamic arguments relating extinction (and Tv(w) = [
absorption), stimulated and spontaneous emission. Pro-

vided one distinguishes between interstitial and substituwhere {R} are lattice vectors,] is the unit dyadic in
tional impurities, it will follow that the application of the polarization space, and* = » + i0. The solutions
factors L1 and Ly, respectively, is appropriate. (k) follow from considering the poles df.

We first discuss the case of the pure lattice in terms of From now on we consider lattices having cubic sym-
a Green'’s function formalism [18]. The Green'’s function metry and frequencies lying in the lowest branch of
G describing all dynamic properties of light in a periodic the band structure, i.e@a/co < 1 and a is the lat-
lattice of identical point dipoles can be expressed in termgice constant. The dispersion relation and the dy&gic
of the free-space dyadi§, and thes-matrix element ofa  can be determined explicitly in this case. The discrete
single dipole. The scattering to all orders in the potentiaFourier transform appearing ifiy, may be simplified us-
is represented [18] by(w) = —(w/co)*a(w), Where | ing [12,14,18,19]

1
tNw)I — Zeik.RGO(w+;R):| , (6)

R+#0

el wa/cy<kl ka1 1 vl . Qwl
Q ik'R +. R — +
R;, ¢ Golw i R) (w*/co)?*T — k2T + kk  3(w/cp)? ! 6mcy

(7)

where() is the volume of the unit cell. The first term oh the impurities turn out not to depend @p. Equation (9)
the right-hand side equals the continuum Fourier transenables one to derive
form of Gy, while the other terms express the exclu-

1
sion of the singularity in the dipole-dipole part and the G(w ™ ;R,R’) = — — I&g, g,
finite transverse part ofGy(w ;R = 0), respectively. b
The latter term exactly cancels the imaginary part of Q dk ik (R-R) T
t~1, since for arbitrarys satisfying the optical theo- v Jez @) ¢ k(@)

rem for a single dipole;—coIlm¢/w = |t|>/67, one has (10)
Imt~! = w/6mcy. From the poles offy it then fol-
lows that[kco/w (k)]* = & satisfies the well-known LLR
[12,14,18,19]

for positions on the lattice. The advantage of this expres-
sion lies in the fact that foR = R’ the integral in (10) is
finite due to the finite support of the Brillouin zone. Con-
®) trary to the case of free space no singularities are present

8(&)): I+ g X £Lor,

Q in the Green'’s functiog. Employing Egs. (7) and (8) to
wherea ™! = —(w/co)?T ! = a~! + i(w/co)} /67 is a calculateTk one finally obtains the microscopic result
real quantity. We assume that describing the lat- G, *: R, R) = (@/ap)? L2, Gael(w ;R — RY),
tice does not have a resonance for the frequencies
studied here. (11)
It is expedient to introduce a real “bare” polarizabil- where R # R’ and Ggiei|(w*;1) = Go(Jew™;r) de-
ity «, that may be used to define the strength=  scribes [12,14,19] an ordered dielectric on a macroscopic

—(w/co)*ay,, of a point-dipole potentiab, I §(r — R)en-  scale. Generally, neither the facté/a;)? in (11)
tering the Maxwell-Helmholtz equation [18]. In this case nor the expression (10) fa§ are given in the literature
one finds that the correspondingnatrix element reads  [12,14,19]. The electric field solutions can be obtained
R +.m1-1 from G. Note that the field solutiorE at the position
o)l =lv, T = Golw ™3 011, © R of a dipole includes depolarization effects and, there-
whereGy(w *;r) needs to be regularized since it divergesfore, is unequal to the conventionally used fidid*®
at r = 0. The latter can be done [18]. Here, it is not which excites the dipole [20]. Both fields are related
necessary to explicitly compute,. The resonances of through expressions for the dipole momeht= & E®*¢

1382



VOLUME 81, NUMBER 7 PHYSICAL REVIEW LETTERS 17 AGusT 1998

andd = a,E, so &/a, is an internal-field factor [18]. a; = Log(a;/Q) Lempar — (8 — D LempQ,  (19)
Equation (11), except for the factofis’ a, appropriate for . ) e
lattice positions, also applies to other positions with cubidVhere the terms, respectively, describe the polarizabilities
symmetry in the unit cell, or in an averaged sense fof @ dielectric-modified impurity and of a cavity inside
all space wherexcludingthe depolarization fields 4R}. & macroscopic dielectric. ~Second, within the OB ap-
These results show that the microscopic and macroscopRfoach the combined polarizability of dipale and cavity

field solutions differ by a factory,, in accordance with With volume (), observed outside the cavity, corresponds
textbook derivations. exactly with oy, demonstrating that the case of a substi-

We now treat the case of a lattice including eithertutional can be investigated using a standard continuum

a substitutional or interstitial impurity atom. In an description. ,
effective two-level or harmonic-oscillator approach the The desired properties at resonance are as follows. The
polarizability a; of a single impurity in free space is [18] polarizability of the “dressed” impurity near resonance has

) a Lorentzian structure analogous to Eq. (12);(w) =
ar(@) = as(0) X — @b . 12 auOwiE)/wiE) — o> = iToe)o®/w(e)] with pa-
wy — 0? — i(Tyw3/wp) rameters given by
with resonance frequenay, and widthI'y. Invoking the 2 2 211 = 20,0 - L 90 20
optical theorem gives the relatioRy = «;(0)wg/67cp, wole)/w =1 @(0)(& = 1) Lemp/9202], (20)
which is consistent with Fermi’s golden rule result fay a,1(0) = Lop[a;(0)/Q]Lemp X a;(0),
by taking the static polarizabilityr;(0) = 2|u|?/eofiwo a2 2, 2
in terms of the dipole matrix elememt of two atomic = Ly @p/wi(e) X a(0), (21)
levels. One also has an (assumed given) point-potential _ 2y T2 2
strengthu, ;. The Green'’s function Fo(e)/To = Ve Lamp X [wg(e)/ @] (22)
Gn=G+G -T,-G (13) wherewy(1) = wo andI'o(1) = I',. The resonance fre-

in which auency is redshifted and the linewidth behaves in accor-
‘"dance with the empty-cavity description.

For an interstitial at a point with cubic symmetry one
Ty =[(wps — vp)'T — Gl@";RLRY)I™Y,  (14)  obtains any;(w) of the form (12) with parameters

describes the system of lattice and impurity,
respectively, for a substitutional impurity R, (m = )

and for an interstitial impurity at; (m = i) wi(e)/wi =1 — 2a;(0) (e — 1) L1.o:/9eQ], (23)
S ERER
Ti = [v, 11 = Gl irr)] (15) i(0) = L2, 08/ wd(e) X (0, (24)
Note the dependence on the difference of the relevant s 5 s
potential strengths in (14). The removal of a lattice dipole ~ To(e)/To = V& L, X [wy(e)/wi]. (25)

was not considered explicitly in the literature [11-15].
The imaginary parts o§ in (14) and (15) are connected R) appearing in the ternG, - T - Gy of T, have been

to the RDOS and are proportional tge L. On the . . .
other hand, the potentigl tgrms as E/%Eell ;(; the real partrs?placed using expression (7). The width of the resonance

of the doubly on-siteg, differ from one another. Using gomw t'r_'gg/?tesorl;g;en_trzhéocggr'ii Igb;?CFOCrISé ;nStgggsogoihe
Egs. (4), (9), and (10) thematrices can be written as 1Pty "y : P by 'y doe
coincide with the results for a substitutional impurity. For

dk - other interstitial positions in the unit cell the widths will
Bz W T | s follow Eg. (25) apart from possible small corrections to
(16) (23). Obviously, these results apply only when atomic
sizes compared to the lattice parameateare such that
To={'1 =[G T - Gollw™irir)} ', (17) interstitialspmay occur. P
from which the secular equations determining the impu- We now discuss the relevance of our results (20)—(25)
rity resonances readily follow. The resulting resonance$0 impurities in disordered dielectrics. The parameters
turn out to be unequal. For static dipole-dipole interacand) ' are a measure of the mean interparticle distance
tions, these equations were derived in Ref. [19] in the deand the density of particles forming the dielectric, respec-
scription using exciting fields. tively. The LLR (8), witha instead ofa, can be derived
For the substitutional case the polarizabiliiy(w)J =  for disordered media using a microscopic multiple-
—(co/w)*(@ Lo /ap)*T, concurs with usual descrip- scattering theory [8] in which the excluded-volume part
tions. The factor(@ L1 ../a;)* originates fromG - G of many-particle correlations is taken into account to all
[see Eq. (13)]. This polarizability simplifies to orders in the density. The remainder of the correlations as
well as scattering more than once from the same particle,
;(0) = Loplas(0)/Q]Lror X [1(0) = a(0)]. (18)  cqjieq recurrent scattering, is then neglected. For lattice
for o« — 0. Two important remarks concerning are in  systems, however, the latter are taken into account in
order. In the first place, Eq. (18) can be written as Egs. (6), (8), (14), and (15), since these expressions are
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exact. Inside lattices interstitials have a different local en-occurs prevalently. For the case of interstitials textbook
vironment compared to particles residing at lattice pointdocal-field derivations are applicable.

{R}. In particular, they havelawercoordination number. We are grateful to Rodney Loudon, Frank Schuurmans,
A substitutional impurity takes the place of a lattice par-Bar van Tiggelen, and Gerard Wegdam for fruitful discus-
ticle, which then has to be removed. For disordered mediaions. This research has been supported by the “Stichting
it now becomes clear that in order to distinguish betweewoor Fundamenteel Onderzoek der Materie” (FOM),
“interstitial” and “substitutional” positions one has to which is financially supported by the “Nederlandse
consider correlations characterizing the local environmentOrganisatie voor Wetenschappelijk Onderzoek” (NWO).
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