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Differences between the Pole and On-Shell Masses and Widths of the Higgs Bos
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The differences between the on-shell mass and width of the Higgs boson and their pole counterpa
are evaluated in leading order. For a heavy Higgs boson, they are found to be sensitive functions
the gauge parameter and become numerically large over a class of gauges that includes the uni
gauge. For a light Higgs boson, the differences remain small in all gauges. The pinch-technique ma
and width are found to be close to their pole counterparts over a large range of Higgs boson mass
[S0031-9007(98)06892-6]

PACS numbers: 11.15.Bt, 12.15.Lk, 14.80.Bn
,

dent
t

ery
en
h as

r,
nd
ly,

ay
a

ary

tri-
The mass and width of an unstable scalar particle a
conventionally defined by the expressions [1]

M2 ­ M2
0 1 ReAsM2d, MG ­ 2

Im AsM2d
1 2 ReA0sM2d

,

(1)

whereM0 is the bare mass,Assd is the self-energy, and the
prime indicates differentiation with respect tos. Different
and, in fact, more fundamental definitions are based on
complex-valued position of the propagator’s pole [2]:

s̄ ­ M2
0 1 Ass̄d . (2)

Writing s̄ ­ m2
2 2 im2G2, in this formulation one may

identify the mass and width of the unstable particle wi
m2 andG2, respectively, so that

m2
2 ­ M2

0 1 ReAss̄d, m2G2 ­ 2Im Ass̄d . (3)

Given m2 and G2, other definitions are possible. Fo
instance, it has been shown that, in theZ-boson case, the
alternative expressions

m1 ­
q

m2
2 1 G

2
2 , G1 ­

m1

m2
G2 (4)

lead to a Breit-Wigner resonance with ans-dependent
width and can be identified with the mass and wid
measured at the CERNe1e2 collider (LEP) [3]. We will
refer to Eq. (1) as the on-shell definitions of mass a
width, and to Eq. (3) or Eq. (4) as their pole counterpar
Identical formulas hold for spin-1 particles ifAssd is
identified with their transverse self-energy, and analogo
expressions can be written down for spin-1y2 particles.
Most calculations of radiative corrections and widths
the literature employ the on-shell formulation of Eq. (1
On the other hand, in the case of gauge theories,
pole definitions have an important advantage: gene
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arguments imply that the pole positions̄ and, therefore,
alsom2, G2, m1, andG1 are gauge invariant. By contrast
it has been shown that the on-shell definitions ofMW ,
MZ , and unstable-quark masses become gauge depen
in O s g4d andO sasg2d [3–5]. It has also been pointed ou
that the on-shell definition of width is inadequate ifAssd is
not analytic in the neighborhood ofM2. This occurs, for
example, when the mass of the decaying particle lies v
close to a threshold [6] or, in the resonance region, wh
the unstable particle is coupled to massless quanta, suc
in the case of theW boson and unstable quarks [5].

The aim of this Letter is to discuss, in leading orde
the differences between the on-shell mass and width a
their pole counterparts for a very important case, name
the Higgs boson. The fact that the width difference m
be numerically large for a heavy Higgs boson over
large class of gauges is strongly suggested by prelimin
arguments in Ref. [7].

Expanding Eqs. (1) and (3) abouts ­ m2
2 and combin-

ing the results, one readily finds

M 2 m2

m2
­ 2

G2

2m2
Im A0sm2

2d 1 O s g6d ,

G 2 G2

G2
­ Im A0sm2

2d

√
G2

2m2
1 Im A0sm2

2d

!
(5)

2
m2G2

2
Im A00sm2

2d 1 O s g6d ,

where g2 is a generic coupling ofO sG2ym2d. As
the right-hand sides of Eq. (5) are ofO s g4d, we may
evaluate them using the lowest-order expressions forG2,
Im A0sm2

2d, and ImA00sm2
2d.

In the Higgs-boson case, the one-loop bosonic con
bution to ImAssd in theRj gauge is given by
Im Abosssd ­
G
4

s2

"
2

√
1 2

4M2
W

s
1

12M4
W

s2

! √
1 2

4M2
W

s

!1y2

uss 2 4M2
W d

1

√
1 2

M4
H

s2

! √
1 2

4jW M2
W

s

!1y2

uss 2 4jW M2
W d 1

1
2

sW ! Zd

#
, (6)
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where G ­ Gmys2p
p

2 d, jW is a gauge parameter,
sW ! Zd represents the sum of the preceding term
with the substitutionsMW ! MZ and jW ! jZ , and
we have omitted gauge-invariant terms proportional
uss 2 4M2

Hd. The one-loop contribution due to a fermion
f is

Im Afssd ­ 2
G
2

sNfm2
f

√
1 2

4m2
f

s

!3y2

uss 2 4m2
f d ,

(7)

where Nf ­ 1 (3) for leptons (quarks). As expected
Eq. (6) is gauge invariant ifs ­ M2

H , but it depends on
1374
s

to

,

jW and jZ off shell. The jW dependence in Eq. (6)
is due to the fact that a Higgs boson of masss1y2 .

2j
1y2
W MW has nonvanishing phase space to “decay” in

a pair of “particles” of massj
1y2
W MW . The first term in

Eq. (6) can be verified by a very simple argument [7
only the unphysical longitudinal excitations haveMH-
dependent couplings with the Higgs boson; therefo
if the unphysical particles decouple, which happens f
jW . sys4M2

W d and similarly for theZ boson, ImAssd
can be obtained by substitutingM2

H ! s in the well-
known expressions for the Higgs-boson partial widt
multiplied by MH . Using Eqs. (6) and (7), we find at the
one-loop level
Im A0
bossM

2
Hd ­

G
2

M2
H

"
2

√
1 2

5
4

xW 1
x2

W

4
1

3
16

x3
W

!
s1 2 xW d21y2us1 2 xW d

1 s1 2 jW xW d1y2us1 2 jW xW d 1
1
2

sW ! Zd

#
,

Im A00
bossM

2
Hd ­

G
2

"
2

√
1 2

3
2

xW 1
3
8

x2
W 2

x3
W

4
1

9
32

x4
W

!
s1 2 xW d23y2us1 2 xW d

1 s1 2 jW xW d21y2us1 2 jW xW d 1
1
2

sW ! Zd

#
,

(8)

Im A0
f sM2

Hd ­ 2
G
2

Nfm2
f

√
1 1

xf

2

!
s1 2 xfd1y2us1 2 xfd ,

Im A00
f sM2

Hd ­ 2
3
32

GNfx3
f s1 2 xfd21y2us1 2 xfd ,
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H . Equations (6), (7), and (8) permit
us to evaluate Eq. (5). We also evaluatesMPT 2 m2dym2
and sGPT 2 G2dyG2, whereMPT andGPT are the pinch-
technique (PT) on-shell mass and width obtained fro
Eq. (1) by employing the PT self-energyassd. We recall
that the PT is a prescription that combines convention
self-energies with “pinch parts” from vertex and box
diagrams in such a manner that the modified self-energ
are independent ofji (i ­ W , Z, g) and exhibit desirable
theoretical properties [8]. In the Higgs-boson case,assd
can be extracted from Ref. [9], and we find

Im a0
bossM

2
Hd ­

3
2

GM2
W

√
1 2 xW 2

x2
W

4

!
3 s1 2 xW d21y2us1 2 xW d

1
1
2

sW ! Zd ,

Im a00
bossM

2
Hd ­

G
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xW

√
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4
2

x2
W

2
2

9
16

x3
W

! (9)
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sW ! Zd .

Identifying MH with m2 and, for simplicity, setting
j ­ jW ­ jZ , our results forsM 2 m2dym2 and sG 2
m

al

ies

G2dyG2 are illustrated in Figs. 1(a)–1(c) as functions
j, for three values ofm2. We have employedMW ­
80.375 GeV, MZ ­ 91.1867 GeV, andmt ­ 175.6 GeV
and have neglected contributions from fermions oth
than the top quark. The two deep abysses in the
ures are associated with the unphysical thresholdsj ­
m2

2ys4M2
Zd, m2

2ys4M2
W d, where the expansions in Eq. (5

obviously fail. For small Higgs mass (m2 ­ 200 GeV),
we see from Fig. 1(a) that, aside from the neighborhoo
of the abysses,M and G remain numerically very close
to m2 andG2. In the intermediate case (m2 ­ 400 GeV),
the relative differences reach 0.6% in the mass and 3
in the width. However, for a heavy Higgs boson (m2 ­
800 GeV), the differences become very large, reach
11% in the mass and 44% in the width. The large
differences occur forj . m2

2ys4M2
W d, i.e., when the un-

physical excitations decouple, a range that includes
unitary gauge. We recall that the latter retains only t
physical degrees of freedom and, in this sense, it m
be regarded as the most physical of all gauges. T
large effects can be easily understood from Eq. (6).
j . sys4M2

W d, the second term in Eq. (6) does not co
tribute, so that ImAbosssd ~ s2. For a heavy Higgs boson
this implies large values of ImA0sm2

2d and ImA00sm2
2d. For

j , sys4M2
Zd, the gauge-dependent terms contribute a

cancel the leadings2 dependence of ImAbosssd, so that the
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FIG. 1. Relative deviations ofM andG from m2 andG2, respectively, as functions ofj ­ jW ­ jZ in the Rj gauge, assuming
(a) m2 ­ 200 GeV, (b) 400 GeV, and (c) 800 GeV. The horizontal lines across the figures indicate the corresponding dev
in the PT framework.
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magnitudes of ImA0sm2
2d and ImA00sm2

2d drop sharply and
the differences become much smaller. Of course, the 44
effect in the width forj . m2

2ys4M2
W d may cast doubts

on the convergence of the expansions in Eq. (5). As th
is a leading-order calculation and higher-order terms m
be not negligible, we regard this result as an indicatio
of large corrections, rather than a precise evaluation
sG 2 G2dyG2.

Our results go beyond those reported in the literatu
[10]. The reason is easy to understand: in Ref. [10], th
limits MW ! 0 andg ! 0 are simultaneously considered
keeping the Higgs self-couplingl ~ g2M2

HyM2
W fixed. If

the gauge parameterj is also kept fixed, the gauge depen
dence of Eq. (6) is lost, and one obtains ans-independent
result for ImAbosssd, which does not contribute to the
right-hand sides of Eq. (5). Thus, the above approxim
tion, although interesting and useful, does not exhibit th
gauge dependence and the large effects discussed her

From the horizontal lines across Figs. 1(a)–1(c), we s
that the PT mass and width remain very close tom2 and
G2 for all values ofm2, the maximum departures being
0.7% for MPT and 20.7% for GPT at m2 ­ 800 GeV.
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The differences vary somewhat ifM andG are compared
with m1 and G1. Through O s g6d, sM 2 m1dym1 and
sG 2 G1dyG1 are obtained fromsM 2 m2dym2 andsG 2

G2dyG2 by subtracting the gauge-invariant termG2
2ys2m2

2d.
For m2 ­ 800 GeV, sM 2 m1dym1 and sG 2 G1dyG1
amount to 5.6% and 38% in the unitary gauge (rather th
11% and 44%) and to24.8% and26.6% in the ’t Hooft-
Feynman gauge (rather than 0.9% and20.8%). For the
same value ofm2, the differencessMPT 2 m1dym1 and
sGPT 2 G1dyG1 are25.1% and26.5% (rather than 0.7%
and20.7%).

In summary, we have shown that, in leading orde
the differences between the on-shell mass and width
a heavy Higgs boson and their pole counterparts
sensitive functions of the gauge parameter, and reach la
numerical values in a class of gauges that includes
unitary gauge. For other frequently employed gaug
such asj ­ 1 (’t Hooft-Feynman gauge) andj ­ 0
(Landau gauge), the differences are very small w
respect tom2 and G2, but are not negligible relative to
m1 and G1. For intermediate (light) Higgs bosons, th
differences are reasonably (very) small for all values
1375
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j, except in the abysses described above. The PT o
shell mass and width remain close tom2 and G2 in the
range200 # m2 # 800 GeV. These results give further
support to the proposition that a consistent definition o
two of the most important concepts in particle physics
namely, those of mass and width of an unstable particl
must ultimately be based on the pole position rather tha
the on-shell approach [3–7,11]. For many purposes, th
well-known and convenient machinery of the latter can
be employed, but physicists should become aware of i
limitations and potential pitfalls.
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