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We show that the monopole problem in grand unified theories as well as the domain wall problem
may be easily solved if the lepton number asymmetry in the Universe is large enough. [S0031-
9007(98)06829-X]
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Introduction.—Monopole and domain wall problems
are some of the central issues in the modern astroparti
physics. The problem of monopoles is especially serio
since it is generic to the idea of grand unification [1
The popular solution based on the idea of inflation cann
be implemented in the minimal grand unified theorie
(GUTs), and even if it does work it would imply a sad
prediction of essentially no monopoles in the Universe, a
thus eliminate a prospect of observing this exciting aspe
of charge quantization. Of course, it is hard to imagin
a universe without ever having passed through an era
inflation; we simply take here the point of view that this
may have happened before the time of grand unificati
in the thermal history of the Universe. Similarly, the
problem of domain walls [2] in theories with a spontaneou
breaking of discrete symmetries requires inflation to tak
place after the phase transitions that cause the produc
of these defects, which is difficult to achieve in genera
Recently, a possible solution of the monopole problem w
suggested [3], based on the possibility that unstable dom
walls sweep away the monopoles.

There is another possible way out of these problem
and it is based on an unusual picture of nonrestorati
of symmetries at high temperatures. It has been know
for a long time that in theories with more than on
Higgs multiplet, which seems to be a necessary featu
of all theories beyond the standard model (SM), broke
symmetries may remain broken at high temperatureT
in some regions of the parameter space, and even
unbroken ones may get broken as the system in quest
is heated up [4,5].

The idea of symmetry nonrestoration provides a simp
way out of the domain wall problem [6,7], but unfortu-
nately in the case of the monopole problem the situatio
is far from clear [8], since next-to-leading-order effect
tend to invalidate this picture for local symmetries [9]
While in the case of discrete symmetries the original la
tice calculations spoke against nonrestoration at highT
[10], the latest results give full support of this idea [11]
as do the other nonperturbative results [12]. However,
can be shown that this scenario does not work in sup
symmetry. More precisely, there is a rigorous proof a
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the renormalizable level [13,14], and the simple counte
examples at the nonrenormalizable level [15] have bee
shown not to work [16].

A manifestation of nonrestoration is an old idea [17
of Us1dem breaking at temperatures aboveMW . Unfor-
tunately, this suffers from the same next-to-leading-orde
effects mentioned above [7]. There is a simple variatio
of this scenario where Us1dem is broken only in a very nar-
row range of temperatures around the electroweak sca
[18,19]. In this case the monopoles get produced with th
hope of being annihilated fast enough through the string
attached to monopole-antimonopole pairs. However, the
is a serious question whether the annihilation does the j
[20,21].

The situation becomes much more promising if one a
cepts the possibility of having a large background charg
in the Universe, large in the sense of being comparab
to the entropy [22]. The presence of some sizable char
asymmetry may postpone symmetry restoration in no
supersymmetric theories [23] or, even more remarkabl
it can lead to symmetry breaking of internal symmetrie
at high temperature [24]. Furthermore, the phenomeno
of symmetry nonrestoration at highT in the presence
of large charge asymmetries has been recently shown
work in supersymmetry, too [25]. The principal candidat
for a large charge is the lepton number which today cou
reside in the form of neutrinos. This has inspired Lind
in his original work to point out that a large enough lepton
number of the Universe would imply the nonrestoration o
symmetry even in the SM [26]. While one could naively
think that the large lepton number would be washed o
by the sphaleron effects at the temperature above the we
scale, it turns out that the nonrestoration of symmetry pr
vents this from happening [27], and remarkably enoug
up to this day this still remains a consistent possibility. In
deed, the successful predictions of primordial nucleosy
thesis are not jeopardized as long as the lepton number
smaller than,7T3 at temperatures of the order of 1 MeV
[28]. It is therefore natural to ask ourselves whether
large lepton asymmetry in the Universe may play any sig
nificant role in solving the monopole problem. The main
point we make in this Letter is that the answer may b
© 1998 The American Physical Society 1355
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positive if these two basic requirements are satisfied:
large lepton asymmetry leads to the symmetry nonresto
tion of the SM gauge symmetry and some charge fie
condensation takes place. While it is not clear wheth
this happens in SM, it is certainly true for its minimal ex
tensions (such as an additional charged scalar). Thus
the lepton number of the Universe were to turn out larg
there would be no monopole problem whatsoever.

Now, if Nature has chosen the option that the lepto
number is large enough so that SM symmetry is not
stored at highT , but without any charge field condensation
even in this case the cosmological consequence would
remarkable, for this would suffice to nonrestore the sym
metry in the minimal model of spontaneousCP violation
with two Higgs doublets [29]. Namely, without the exter
nal charge, in this particular modelCP is necessarily re-
stored at high temperature [7] leading to the domain w
problem.

As we mentioned before, it was shown recently that t
phenomenon of nonrestoration at highT in the presence
of a large charge works in supersymmetry, too. We ha
exemplified our findings on simple U(1) models [25].
can be shown that this is true in general, and all th
we say above works also in the minimal supersymmet
standard model (MSSM). In this Letter we avoid an
model building but rather concentrate on SM showing th
its cosmology may be something entirely different fro
what one normally imagines.

Large L and high T symmetry nonrestoration.—Let
us now discuss in some detail what happens at h
temperature if the lepton number is large. Notice first th
since we can assume that the lepton numberL is conserved
(the sphaleron effects are suppressed [27]), the ratio of
lepton densitynL to entropy densitys is constant, too.
Now we are interested in the temperatures above the w
scale when the number of light degrees of freedom gro
by another order of magnitude with respect toT . 1 MeV.
Thus, the above cited limitnLyT3 , 7 at the time of
nucleosynthesis becomes for us an order of magnitu
bigger:nLyT3 , 70.

In order to study symmetry breaking, we need to com
pute the effective potential at highT and high chemical
potential. We employ the approximationmL , T (where
mL is the chemical potential associated with the lept
number), since in this case one can obtain the solutio
in a closed form. With increasedmL the physical effect of
symmetry breaking gets only stronger [26].

The baryon number of the Universe is negligible
nBys . 10211; thus we work in the approximationB ­
0. Since the gauge potentials act essentially as
chemical potentials at highT , we include them in our
VeffsT , md. A word of caution is in order. Although
B ­ 0, since the quarks carry a nontrivial baryon numbe
one must include the associated chemical potentialmB,
and we will see below that it does not vanish. We w
see that quarks carry a nonvanishing electric charge
1356
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high T , similarly to theW bosons and the charged Higgs
scalar.

Using the techniques of [23,24], the effective potentia
at high T (T . m ¿ MW ) and largenL for the Higgs
doubletH in the direction of its neutral vacuum expecta-
tion valueH ­ s0, yy

p
2 dT reads

Veff ­ l
y4
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(1)

where Aa
m and Bm are the SUs2dL and Us1dY gauge

potentials. In the above we have usedg0Bi ­ gA3
i which

follows from the equation of motion forBi and

l0 ­
1
12

"
6l 1 y2

e 1 3y2
u 1 3y2

d 1
3
4

s g02 1 3g2d

#
,

(2)

where yf are the fermionic Yukawa couplings. For
simplicity, we take only the third generation of fermions
since its couplings are dominant. The inclusion of the firs
two generations is straightforward and does not chang
our conclusions.

Notice the point we made before. Although we take
B ­ 0, the associated chemical potential plays an impor
tant role in the above expression. The equations of motio
for the gauge fieldsAa

m show that the solution discussed in
[26]—all gauge potentials zero except forA3

0 andA1
1 —is

consistent with the above constraints.
Using the constraints≠Veffy≠x ­ 0 for x ­ mL, mB,

g0B0, andgA3
0 we can rewrite the effective potential as a

function ofy andC ­ kA1
1l only:

Veff ­
l

4
y4 1

l0

2
T2y2 1

g2

8
y2C2 1

n2
L

T2

1
4n2

Ls3y2 1 12C2 1 14T2d
54y2C2 1 s87y2 1 96C2dT2 1 112T4 . (3)

The effective potential is manifestly bounded from below
and it is a simple exercise to minimize it. We work with a
small sHyHd2 coupling—only for the sake of presenting
simple analytic expressions. We find the results presente
below. In discussing them, it will turn out useful to have
the individual distribution of the various charges. Namely
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here lies an important point that was overlooked befo
[26] and that plays a significant role for our consideratio
about the monopole problem, i.e., the fact that quar
the charged Higgs, andW carry electromagnetic charg
in spite of having lepton number zero. Since them-
dependent part of the effective potential can be writt
[23,24]

V
smd
eff ­ 2

T2

12

X
f

m2
i 2

T2

6

X
b

m2
i 2

X
b

m2
i jfij

2

1 mLnL , (4)

one can find for the distribution of fermionic and boson
charges

sQa
Fdi ­ qa

i mi

√
T2

6

!
, (5)

sQa
Bdi ­ qa

i mi

√
T2

3
1 2jfij

2

!
, (6)

where qa
i denote the transformation propertywi !

eiqa
i Ta

wi , wi stands for any field,a goes over all the
relevant charges (L, B, Yy2, T3W ), andmi ­

P
a qa

i ma.
Let us first briefly discuss the case of small le

ton asymmetry or, more precisely,nL , snLd1 ;
s4y3d

p
l0 T3. In such a case only the trivial solution i

possible:y ­ C ­ 0. This is the usual scenario of sma
charge densities.

It is an easy exercise to compute the distribution
charges. One findsLsnLd ­ LseLd ­

3
8 L andLseRd ­

2
8 L

for the L number distribution [notice thatLsnLd ­ LseLd
since SUs2d is not broken]. For the electromagnetic char
(we list only the nonvanishing ones)

QseLd ­ 2
3
8 L, QseRd ­ 2

2
8 L

QsuRd ­
2
8 L, QsdRd ­

1
8 L, Qsh1d ­

2
8 L ,

(7)

so that Qtot ­ 0 as it should be, but the charge
distributed among both fermions and charged Hig
bosons (we find laterW6 participating, too).

Let us now focus on the following intermediate rang
snLd1 , nL , snLd2 ; snLd1s1 1

203
192 g2yl0d. It is easy

to show that nowy fi 0, but C still vanishes,

Veffsy fi 0d ­ Veffsy ­ 0d 2
21

58T2 fnL 2 snLd1g2,

y2 ­
112
87

nL 2 snLd1

snLd1
T2, C ­ 0 .

(8)

Clearly, SUs2dL 3 Us1dY is spontaneously broken dow
to Us1dem, but there isno condensation ofW bosons.
This means that for such values of the lepton numbe
is energetically preferable for the system to cancel
electric charge by means of the asymmetries in the qua
and charged Higgs boson, but no spontaneous breakin
electromagnetism takes place.

Finally, let us consider the case of large lepton asy
metry, nL . snLd2. Now, on top of the Higgs mecha
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nism, we have also theW condensation [26]:C fi 0.
Notice thatsnLd2 depends very mildly on the Higgs mas
in the physically interesting range between 80 GeV a
500 GeV:snLd2 ø s2.0 2.5dT3. This is clearly much be-
low the upper limit70T3. Strictly speaking, fornL .

snLd1 we have mL . T so that our analytic formulas
are not exact. Thus, we have also performed nume
cal computations for the case of large chemical potenti
and finitel, which prevents exact analytic results. Thi
amounts to including the terms in the effective potenti
of the order ofm4. Our findings from this standard pro-
cedure are shown in Table I below, where we give th
corrections to the critical densities calculated analyticall

Clearly, the numerical study confirms our analytica
findings of symmetry breaking for large densities. A
though the precise value of the second critical dens
(the first critical density is almost unchanged) is increas
about 30% for a reasonable value of the Higgs mass, t
does not affect the possibility of symmetry nonrestoratio
Namely, the critical density remains still an order of mag
nitude below the allowed value of70T 3.

The consequences: monopole and domain wall pro
lems.—We have seen that a large enough lepton dens
implies symmetry breaking at high temperature, whic
opens the door for the solution of the monopole proble
The simplest possibility is to follow the scenario [17] fo
the highT breaking of Us1dem. The essential point here
is that if the Us1dem symmetry is broken due to a large
external charge, it would be broken for the whole param
ter space of the theory and for all temperatures abo
MW all the way to the GUT scale. Thus, monopoles ma
never be created and there would obviously be no probl
at all. Even if they did get produced they would sure
have time to annihilate. In this sense it is only our sc
nario that guarantees the solution to the monopole pro
lem. Of course one must make sure that Us1dem is really
broken. If we restrict ourselves to the SM and work i
the regime ofW condensation, it is not clear to us wha
the precise situation is. First of all, the fact that theW
has condensed implies the breakdown of the rotational
variance, and the description of the formation, if any,
the monopoles at the GUT scale might be completely d
ferent from the usual one. Second, if monopoles do g
formed, they might not annihilate rapidly enough or migh

TABLE I. The ratios between the exact numerical solution
(numerators) and the approximate analytic solutions (denom
nators) described in the text as functions of the Higgs ma
y

snumd
2 is the Higgs vacuum expectation value (VEV) fo

nL ­ snLdsnumd
2 .

mH (GeV) snLdnum
1 ysnLd1 snLdnum

2 ysnLd2 y
num
2 yy2

100 1.05 1.28 1.01
200 1.07 1.34 0.92
400 1.13 1.52 0.96
600 1.21 1.66 1.06
1357
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not annihilate at all due to the antiscreening effects of th
W background. These issues are extremely important a
certainly deserve a separate investigation. We point o
however, that the situation is more transparent if we co
sider a simple extension of the SM where an electrical
charged fieldS is present (a similar extension would be to
add another doublet). In a grand unified theory this si
glet would be embedded in a larger representation, su
as an SUs5d 10 (a doublet would belong to another5).
The idea of one singlet in addition to the SM Higgs wa
already pursued in [18,19]. However, as we explained
the introduction, without the external charge, this mech
nism may not work [20,21].

We have explicitly checked that, for a large enoug
lepton number, the SM gauge group is broken at hig
T . Moreover, since the fieldS gets a VEV, Us1dem
is spontaneously broken. More important, similarly t
what we have described before for the SM, there exis
a range of values of the lepton number for whic
the W condensation doesnot take place. Under these
conditions, the monopole problem is solved. Namely,
T . MX when the GUT symmetry [say SUs5d] breaks
down, Us1dem is broken and there will be no creation o
monopoles. It is intriguing that a realization of this ide
may take place within the MSSM where charged Higg
fields are present. The only price to pay is to accept t
idea that the lepton number may be large enough. On
this step is made, the monopole problem is no longer w
us. This is a remarkable result.

What about the domain wall problem? Clearly, th
presence of large lepton number asymmetry through t
nonrestoration at high temperature solves the doma
wall problem in an analogous manner. For exampl
this would solve the well-known domain wall problems
associated with the spontaneous violation ofCP [29] or
theZ2 natural flavor conservation symmetry [30].

Summary and outlook.—We have argued that a large
lepton asymmetry in the Universe may mean an aut
matic solution of the monopole and domain wall problem
through symmetry nonrestoration at highT . As far as the
monopole problem is concerned, this idea works for simp
extensions of the SM and in particular in the MSSM.

For all we know the lepton number of the Univers
may be comparable to, if not bigger than, the entrop
of the Universe. The fact that the large lepton numb
can be consistent with the small baryon number in th
context of grand unification has been pointed out a lon
time ago [31] and recently a model for producing largeL
and smallB has been presented [32]. We stress, howev
that our findings should remain valid if, instead of th
lepton number, we consider any other conserved cha
in the system under consideration.
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