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Optimal and finite positive operator valued measurements on a finite nuvhbkidentically prepared
systems have recently been presented. With physical realization in mind, we propose here optimal and
minimal generalized quantum measurements for two-level systems. We explicitly construct them up to
N = 7 and verify that they are minimal up t8§ = 5. [S0031-9007(98)06751-9]

PACS numbers: 03.65.Bz, 03.67.—a

Measurements disclose unknown information. Theymark’s theorem [3,4] this corresponds to a von Neumann
should disclose as much information as possible by usingneasurement in an infinitely dimensional extension of the
the least amount of physical resources. We present hergljlbert space of|/¥)". This makes the procedure aca-
for the first time, the most efficient measurements for thedemic, since it cannot be realized physically.
simplest quantum systems. The next step was taken by Derka, Buzek, and Ekert

Consider a spiriz- particle (or any other two-level [5]. They explicitly construct an optimdinite POVM,
system) which is in a pure stafel’) about which we thus making the procedure, in principle, accessible to the
do not know anything, that is, its spin points with laboratory, and thus of relevance to quantum computation
equal probability into any direction. By performing a and quantum communication. They quantify the acquired
measurement on the system, one learns something abduatowledge about¥) by the mean fidelity,f, whose
| W), that is, thea priori uniform probability distribution maximal value obtained by their procedure is
becomes posterioria nonuniform distribution. Suppose _ N + 1
now we haveN identical copies of ¥), |[¥)V = |¥) ® Fmax = N+2
V) @ |P).--- ® |¥) (N times). Measurements on this
enlarged system allow one to learn more abplty.  Their POVM requires a finite number = (N + 1)? of
The amount of knowledge that measurements allow ongrojectors in the Hilbert space ¢fF')V. It is thus an
to extract from |¥)Y about |¥) is a monotonically optimal, finite, generalized quantum measurement. But it
increasing function ofN. Only in the limit N — o isnot minimal: Optimal POVMs with a smaller number of
can |V) be determined exactly. This is because onlyprojectors exist, as we will show. They allow one to learn
in this limit are |¥)¥ and |¥/)¥ orthogonal whenever the same by reading a smaller output. When it comes to
[¥) # [¥/), and thus distinguishable by an adequatephysical realizations this should be an advantage.
measurement. Here we present explicit results on optimal, finite, and,

For finite N, Massar and Popescu [1] (see also Holevduthermore, minimal POVMs. The number of projectors
[2]) obtained theoptimalmeasurement procedure for spin- n they require is roughly one-third the number needed
% particles. Their procedure, leading to the maximalby the only optimal and finite measurements known up
knowledge abou{¥), corresponds to a positive opera-to now [5]. We have proceeded fromv =2 up to
tor valued measurement (POVM) consisting ofiafinite N = 5 case-by-case, because we do not know how to
isotropic set of projectors in the Hilbert space [d&)Y¥.  build the POVM algorithmically. They are optimal and
It is a measurement on th@mbinedsystem. By Neu- minimal. Then we construct optimal POVMs fof = 6

(1)
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and N = 7 which we strongly believe to be minimal. can be shown to be equivalent to

This belief is based on a bit of mathematical intuition and n

some numerical frustration, but we have not been able to Z =N +1,
rigorously exclude POVMs with one projector less. We

finally propose and explain a formula which gives the

2 —
minimal n as a function ofN and which reproduces all Z ¢ina(r) =0,
of our explicit results. n
Let us first introduce some notation (we will try Z Ang(ring(r) = N_H(;aﬁ’ (6)
to follow Ref.[5] whenever possible). Our POVM =1 3
is given by a finite set ofn one-dimensional projec- =,
tors built from the states of maximal spis,= N/2, Z cyna(r)ng(rin, (r) =0,
and maximal spin component in some direction, r=1
|0r, ¢V>Nl r = 1""’”! Wherea— : ﬁ(r)lel" wr>1 ﬁ(r) =
(S|£10, cosy,, siné, sin ¢, cosé,) and such that which, in compact form, reads
> 20, N0l = 15TV o< =1, n 1+ (=17 N+ 1
r=1 Z czﬁ(r)" = 5 1 19,
(2) = q+ @)
Here the right-hand side represents the identity in the g=20,....,N,

maximal spin space. Notice thathas to be larger than
the dimension of the maximal spin spad¥,+ 1, as o) ; X

n =N + 1 would require then projectors of Eq. (2) and 'Y is the invariant symmetrlg rank tens%, trace
to be orthogonal, which they are not. The extensmrﬂormanzed tog +1, 10 =1, 1 ap = Oaps lapys =

of Eq. (2) to the complet@”-dimensional Hilbert space 3(8.58,5 + 8aySp5 + Sasdpy), €IC. In order to sim-
is straightforward, but irrelevant, as the correspondingplify our future discussion we also note that Eq. (7) can
projectors, being orthogonal {&)", do not allow us to  be contracted withi(i)? leading to

increase our knowledge abolok).

wherei(r)? = a(r) ® A(r) ® --- ® A(r) with g factors,

1+ (-1D4N+1

We know from Refs. [1,2,5] that a POVM of the type Z Alalr) - a1 = -2,
we are considering is optimal. This means that the mean ;= 2 g +1 (8)
f'de“ty! i=1,...,n, qg=0,...N

= Z 4— f d cosé Let us pause and reflect on the meaning of the above

o set of equations. ASV increases, more equations in
Xf dylN W16,y PR 6,, 0012, (3) the hierarchy of Eq. (6) must be verified forcing the
0 ' distribution of ¢2 and #(r) to approach the form of a
where |W)=16,¢)=d - il6,¢), @ = (sind cosy, continuous uniform angular distribution. Thus, for finite
sin@ siny, cosd). It was also shown in Ref. [5] that for N, we do expect to obtain highly symmetric solutions. No
optimal POVMs Eq. (2) can be substituted by the muchalgorithm to find the minimak which produces a solution

simpler one, of the truncated set of equations has emerged from our
n efforts. We have, therefore, proceeded case-by-case from
> MO, 10, )P =1,  VIo,g). (4 N =2 upwards.
r=1 Let us discuss in some detail the deduction of the
This is therefore the equatlon we want to study and solvegxplicit solution in the cas& = 2. We have to solve
i.e., findc?, 6, andy,, r = 1,2,...,n, for the smallest  the first three sets of equations in Eq. (6) for the minimal
p055|ble possiblen. Using Eq. (8) the manifestly non-negative

It is not difficult to prove from the explicit expression combination
for |N(0, ¢ | 0,, ¢, )V|* and expanding monomials in terms

n

of Legendre ponnomiaLs that Eq. (4) is equivalent to § = Z Ab; + Ali) - )P
2 r#i
=N+1,
,;Cr =b}3 —c?) —2bic? +1—c2=0,

Z c2PY (cosh,)e™¥ = 0, (5) Vi=1,....n 9)
r=l can be evaluated. It reaches its minimum for
L=1,...,N, M=0,...,L ) 5
where the dependence 6nys has been traded for a set of b, = G § = 3~ e =0. (10)

equations. Again, after some algebra, this set of equations 3= 3 — ¢}
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This forcesc? = % and, furthermore, be either 0 or—1. Itis easy to use Eq. (6) to show that
n nminN =3)=6, =23 i=1..,6,
S GB-4ch)=30n -4 =0, (11) mink : ’
i=1 a(i) - a(j) =0, Vi#j, (18)

proving thatn = 4. It is easy to see that a solution excepti(l) - #(6) = A(2) - 2(4) = A(3) - A(5) = —1.

that saturates the bouznd exists. zlnde‘}eq, taking the largeghis solution corresponds to a regular octahedron. Once
possible value for alt, that is,ci = 7, in our original  a4ain a platonic polyhedron underlies the unique, optimal,
expression fors, we get and minimal POVM forN = 3.

For N = 4 we have found it convenient to start from

n 2
S = % Z(% + ﬁ(i)ﬁ(r)) =0, (12) n

= > cHbi + dinli) - a(r) + [aG) - a()PP = 0. (19)
which implies that every term in the sum must vanish and #:
leads to the final result, Minimization with respect td; andd; eventually leads to
5 5
nmin(N = 2) = 4, i- G - ) =0. (20)
=3 i=l,...4, (13) and
N Ag . . — (5
ﬁ(l)-n(])=—%, Vi #j. Z(g—c%>=5(n—9)20, (21)

This solution corresponds to a regular tetrahedron. The . . .izl .
minimal optimal POVM forN = 2 is thus organized as WNich impliesn = 9. Forn =9, the values obtained for

a platonic polyhedrong? playing the role of the distance ¢i» ¢i = 5, anda; - a,, from saturating the bound, do
to the vertices from the center ardi) pointing into the Nt satisfy Eq. (6). Thus > 9 strictly. Analyzing more
directions of the vertices. As anticipated, this solution€laborated bounds, we have been able to prove that, for

is unique by construction and stands as the smalledt = 10, the ¢ cannot all be identical. By means of nu-

discretization of angular integration. merical inspiration, W% have found an explicit solution for
The key idea to find out the above solution was to select = 10. Two of thec; turn out to be equal and smaller

a manifestly positive combination of all of the equationsthan the rest, which are also equal among them, and the

needed at leveN. Let us take advantage of this clue in 7(i) point to the vertices of a figure made as a twisted

the caseN = 3, which corresponds to solving the first Prism with pyramidal caps (its explicit form is given be-

four sets of equations in Eq. (6). We combine them intdow in Table I). We have therefore encountered a some-

" N = 4 case. Themodus operandis always related to
S = Z A1+ al) - al)][b; + al) - alr)P exploiting a manifestly non-negative combination of all
= of the equations to be solved.
4 4 For N = 5 our starting point is
= b4 — 2¢}) + 2b,~<§ - 2c§> + (§ - 2c$> n
D U+ ay - a)[b + dify Ay + (R 2T =0,
= 0, Yi=1,...,n. (14) r#i 22)
The minimum ofS corresponds to
12— 3¢} 8 2 — 3¢} - - _
b = —— =9 =— . (15) TABLE I.  Minimal optimal POVMs forN = 2, 3, 4, 5.
3 2-¢7 9 2—¢?
N r c? cos, L,
We, thus, deduce that alf =< 3, and 1 ; ) .
3 2 = 1 2
n 2-4 4 3 3("2)
2 -3cH)=20n—-6)=0. (16) 1 1 0
i=1 3 2 % -1 0
The bound is them = 6. A solution that saturateszthe 3-6 0 3(r = 3)
bound exists and can be found by setting &ll= 3, I 5 I 0
leading to 4 s 2 1[1 Loy
7-10 3 et PES
§ =2l + al) - A][AG) - AP =0. (17) : 3 0
r#i 5 2 1 7]1 5 0
: . 3-7 2 = 2(r-3)
Every term in the sum must vanish; thus, the scalar prod- §-12 ,% 2r-k)

ucts of any pair of vectorsi(i) - 7(r), are constrained to
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which, after minimization, leads to TABLE Il. Optimal POVMs forN = 6,7.
1 n N r ¢? cosf, Ly,
<c,.2— —)zo:Z(l —2c2)=n—-12=0. (23)
2 i=1 ; % *1 0
3-6 7(410++/30) 4 V/13+2V30 %(r—S)
Thusn = 12. Forn = 12 we obtain a solution that does © oo 7200 =7 N
saturate the bound (in analogyAb= 2,3). The explicit, 11-14 7(410-30) - V1342430 -1
unigue, minimal solution is made with alif = 1 and T e 7 10-3)
a@i) - a(j) = —1, 1/4/5, —1/4/5, which corresponds to 2 7 -1 . 0
an icosahedron. Again, we defer the detailed structure of, o 147105 SRR R ) 0
the solution to Table II. ‘ ? » f(”T)
Starting from expressions such as Egs. (19) and (22), 3o 1474(%@ SN IR g(big

but with a cubic instead of quadratic polynomial, one
can prove thak > 16 andn > 20 for N = 6 and 7, re-
spectively. Exhaustion has prevented us from filling the

gap between these lower bounds and the solutions with We have summarized all of our result in the two tables.
n = 18 and n = 22, respectively, which we have been We have also checked that they all satisfy the equations
able to build explicitly. Notice that, of the four cases, for optimal POVMs of Ref. [5]. Having in our hands all
N = 2, 3, 4, and 5, for which we give a complete proof, of these concrete solutions, it is possible to speculate on
for three of them, all butv = 4, our solution is also which nn, corresponds to a giveN. The formula we
unique and corresponds to constaht | propose is

2
SEPOSR N FESTETES R 4 P T o R

where square brackets mean integer part. To justiM it, This means that one can do with roughly one-third
let us first note that the number of independent equationthe number of projectors required by the procedure of
in Eq. (5) or (7) is(N + 1)>. The number of unknown Ref. [5]. It turns out that forN even the minimum is
variables in these equations ¥ — 3, where rotation the first expression and fav¥ odd the second. Alsan,
invariance has been used to fix = ; = ¢, = 0. Let is always even.
us clearly state that the problem of finding rigorously the Let us wind up by noting that we have used here the
minimal n, which for eachN allows one to solve the mean fidelity as a measure of acquired knowledge, but we
nonlinear system of Eq. (6), is beyond our mathematicatould have used the more information-theoretic decrease
skills. However, the explicit case¥ = 2 to 7 seem to in Shannon entropy, as, e.g., done in a related problem
suggest that for this system one can always find a solutiohy Peres and Wootters [6]. Our conclusion would have
when the number of unknown variables is at least equal tbeen the same: We would have built the same optimal,
the number of equations, minimal POVMs.
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