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Optimal and finite positive operator valued measurements on a finite numberN of identically prepared
systems have recently been presented. With physical realization in mind, we propose here optim
minimal generalized quantum measurements for two-level systems. We explicitly construct them u
N ­ 7 and verify that they are minimal up toN ­ 5. [S0031-9007(98)06751-9]
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Measurements disclose unknown information. The
should disclose as much information as possible by us
the least amount of physical resources. We present he
for the first time, the most efficient measurements for th
simplest quantum systems.

Consider a spin-12 particle (or any other two-level
system) which is in a pure statejCl about which we
do not know anything, that is, its spin points with
equal probability into any direction. By performing a
measurement on the system, one learns something ab
jCl, that is, thea priori uniform probability distribution
becomesa posterioria nonuniform distribution. Suppose
now we haveN identical copies ofjCl, jClN ; jCl ≠
jCl ≠ jCl · · · ≠ jCl (N times). Measurements on this
enlarged system allow one to learn more aboutjCl.
The amount of knowledge that measurements allow o
to extract from jClN about jCl is a monotonically
increasing function ofN. Only in the limit N ! `

can jCl be determined exactly. This is because on
in this limit are jClN and jC0lN orthogonal whenever
jCl fi jC0l, and thus distinguishable by an adequa
measurement.

For finite N , Massar and Popescu [1] (see also Holev
[2]) obtained theoptimalmeasurement procedure for spin
1
2 particles. Their procedure, leading to the maxim
knowledge aboutjCl, corresponds to a positive opera
tor valued measurement (POVM) consisting of aninfinite
isotropic set of projectors in the Hilbert space ofjClN .
It is a measurement on thecombinedsystem. By Neu-
0031-9007y98y81(7)y1351(4)$15.00
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mark’s theorem [3,4] this corresponds to a von Neuma
measurement in an infinitely dimensional extension of t
Hilbert space ofjClN . This makes the procedure aca
demic, since it cannot be realized physically.

The next step was taken by Derka, Buzek, and Ek
[5]. They explicitly construct an optimalfinite POVM,
thus making the procedure, in principle, accessible to t
laboratory, and thus of relevance to quantum computat
and quantum communication. They quantify the acquir
knowledge aboutjCl by the mean fidelity,f, whose
maximal value obtained by their procedure is

fmax ­
N 1 1
N 1 2

. (1)

Their POVM requires a finite numbern ­ sN 1 1d2 of
projectors in the Hilbert space ofjClN . It is thus an
optimal, finite, generalized quantum measurement. Bu
is not minimal: Optimal POVMs with a smaller number o
projectors exist, as we will show. They allow one to lear
the same by reading a smaller output. When it comes
physical realizations this should be an advantage.

Here we present explicit results on optimal, finite, an
futhermore, minimal POVMs. The number of projector
n they require is roughly one-third the number neede
by the only optimal and finite measurements known u
to now [5]. We have proceeded fromN ­ 2 up to
N ­ 5 case-by-case, because we do not know how
build the POVM algorithmically. They are optimal and
minimal. Then we construct optimal POVMs forN ­ 6
© 1998 The American Physical Society 1351
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and N ­ 7 which we strongly believe to be minimal.
This belief is based on a bit of mathematical intuition an
some numerical frustration, but we have not been able
rigorously exclude POVMs with one projector less. W
finally propose and explain a formula which gives th
minimal n as a function ofN and which reproduces all
of our explicit results.

Let us first introduce some notation (we will try
to follow Ref. [5] whenever possible). Our POVM
is given by a finite set ofn one-dimensional projec-
tors built from the states of maximal spin,s ­ Ny2,
and maximal spin component in some directio
jur , cr lN , r ­ 1, . . . , n, where $s ? n̂srd jur , cr l, n̂srd ­
ssinur coscr , sinur sin cr , cosur d and such that

nX
r­1

c2
r jur , cr lNN kur , cr j ­ I ss­Ny2d, 0 , c2

r # 1 .

(2)

Here the right-hand side represents the identity in t
maximal spin space. Notice thatn has to be larger than
the dimension of the maximal spin space,N 1 1, as
n ­ N 1 1 would require then projectors of Eq. (2)
to be orthogonal, which they are not. The extensio
of Eq. (2) to the complete2N -dimensional Hilbert space
is straightforward, but irrelevant, as the correspondin
projectors, being orthogonal tojClN , do not allow us to
increase our knowledge aboutjCl.

We know from Refs. [1,2,5] that a POVM of the type
we are considering is optimal. This means that the me
fidelity,

f ;
nX

r­1

1
4p

Z 1

21
d cosu

3
Z 2p

0
dcjN kC j ur , cr lN j2c2

r j kC j ur , cr lj2, (3)

where jCl ; ju, cl ­ $s ? n̂ju, cl, n̂ ­ ssinu cosc,
sinu sinc, cosud. It was also shown in Ref. [5] that for
optimal POVMs Eq. (2) can be substituted by the muc
simpler one,

nX
r­1

c2
r jN ku, c j ur , cr lN j2 ­ 1, ;ju, cl . (4)

This is therefore the equation we want to study and solv
i.e., findc2

r , ur andcr , r ­ 1, 2, . . . , n, for the smallestn
possible.

It is not difficult to prove from the explicit expression
for jN ku, c j ur , cr lN j2 and expanding monomials in terms
of Legendre polynomials that Eq. (4) is equivalent to

nX
r­1

c2
r ­ N 1 1 ,

nX
r­1

c2
r PM

l scosur deiMcr ­ 0 , (5)

L ­ 1, . . . , N , M ­ 0, . . . , L ,

where the dependence onu, c has been traded for a set o
equations. Again, after some algebra, this set of equatio
1352
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can be shown to be equivalent to
nX

r­1

c2
r ­ N 1 1 ,

nX
r­1

c2
r nasrd ­ 0 ,

nX
r­1

c2
r nasrdnbsrd ­

N 1 1
3

dab , (6)

nX
r­1

c2
r nasrdnbsrdngsrd ­ 0 ,

...

which, in compact form, reads
nX

r­1

c2
r n̂srdq ­

1 1 s21dq

2
N 1 1
q 1 1

I sqd,

q ­ 0, . . . , N ,
(7)

where n̂srdq ; n̂srd ≠ n̂srd ≠ · · · ≠ n̂srd with q factors,
and I sqd is the invariant symmetric rankq tensor, trace
normalized to q 1 1, I s0d ; 1, I

s2d
ab ; dab, I

s4d
abgd ;

1
3 sdabdgd 1 dagdbd 1 daddbgd, etc. In order to sim-
plify our future discussion we also note that Eq. (7) ca
be contracted witĥnsidq leading to

nX
rfii

c2
r fn̂srd ? n̂sidgq ­

1 1 s21dq

2
N 1 1
q 1 1

2 c2
i ,

i ­ 1, . . . , n, q ­ 0, . . . N .
(8)

Let us pause and reflect on the meaning of the abo
set of equations. AsN increases, more equations in
the hierarchy of Eq. (6) must be verified forcing th
distribution of c2

r and n̂srd to approach the form of a
continuous uniform angular distribution. Thus, for finit
N, we do expect to obtain highly symmetric solutions. N
algorithm to find the minimaln which produces a solution
of the truncated set of equations has emerged from o
efforts. We have, therefore, proceeded case-by-case fr
N ­ 2 upwards.

Let us discuss in some detail the deduction of th
explicit solution in the caseN ­ 2. We have to solve
the first three sets of equations in Eq. (6) for the minim
possiblen. Using Eq. (8) the manifestly non-negative
combination

S ;
nX

rfii

c2
r fbi 1 n̂sid ? n̂srdg2

­ b2
i s3 2 c2

i d 2 2bic
2
i 1 1 2 c2

i $ 0 ,

;i ­ 1, . . . , n (9)

can be evaluated. It reaches its minimum for

bi ­
c2

i

3 2 c2
i

) S ­
3 2 4c2

i

3 2 c2
i

$ 0 . (10)
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This forcesc2
i ­

3
4 and, furthermore,

nX
i­1

s3 2 4c2
i d ­ 3sn 2 4d $ 0 , (11)

proving that n $ 4. It is easy to see that a solution
that saturates the bound exists. Indeed, taking the larg
possible value for allc2

i , that is,c2
i ­

3
4 , in our original

expression forS, we get

S ­
3
4

nX
rfii

µ
1
3

1 n̂sidn̂srd
∂2

­ 0 , (12)

which implies that every term in the sum must vanish a
leads to the final result,

nminsN ­ 2d ­ 4 ,

c2
i ­

3
4 , i ­1, . . . , 4 , (13)

n̂sid ? n̂s jd ­ 2
1
3 , ;i fi j .

This solution corresponds to a regular tetrahedron. T
minimal optimal POVM forN ­ 2 is thus organized as
a platonic polyhedron,c2

i playing the role of the distance
to the vertices from the center andn̂sid pointing into the
directions of the vertices. As anticipated, this solutio
is unique by construction and stands as the small
discretization of angular integration.

The key idea to find out the above solution was to sele
a manifestly positive combination of all of the equation
needed at levelN . Let us take advantage of this clue i
the caseN ­ 3, which corresponds to solving the firs
four sets of equations in Eq. (6). We combine them in
the, again, manifestly non-negative expression

S ;
nX

rfii

c2
r f1 1 n̂sid ? n̂srdg fbi 1 n̂sid ? n̂srdg2

­ b2
i s4 2 2c2

i d 1 2bi

µ
4
3

2 2c2
i

∂
1

µ
4
3

2 2c2
i

∂
$ 0, ;i ­ 1, . . . , n . (14)

The minimum ofS corresponds to

bi ­ 2
1
3

2 2 3c2
i

2 2 c2
i

) S ­
8
9

2 2 3c2
i

2 2 c2
i

. (15)

We, thus, deduce that allc2
i #

2
3 , and

nX
i­1

s2 2 3c2
i d ­ 2sn 2 6d $ 0 . (16)

The bound is thenn $ 6. A solution that saturates the
bound exists and can be found by setting allc2

i ­
2
3 ,

leading to

S ­
X
rfii

c2
r f1 1 n̂sid ? n̂srdg fn̂sid ? n̂srdg2 ­ 0 . (17)

Every term in the sum must vanish; thus, the scalar pro
ucts of any pair of vectors,̂nsid ? n̂srd, are constrained to
est
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he
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s

n
t
to

d-

be either 0 or21. It is easy to use Eq. (6) to show that

nminsN ­ 3d ­ 6, c2
i ­ 2

3 , i ­ 1, . . . , 6 ,

n̂sid ? n̂s jd ­ 0, ;i fi j , (18)

exceptn̂s1d ? n̂s6d ­ n̂s2d ? n̂s4d ­ n̂s3d ? n̂s5d ­ 21 .

This solution corresponds to a regular octahedron. On
again a platonic polyhedron underlies the unique, optima
and minimal POVM forN ­ 3.

For N ­ 4 we have found it convenient to start from
nX

rfii

c2
r hbi 1 din̂sid ? n̂srd 1 fn̂sid ? n̂srdg2j2 $ 0 . (19)

Minimization with respect tobi anddi eventually leads to

s 5
4 2 c2

i d s 5
9 2 c2

i d $ 0 . (20)

and
nX

i­1

µ
5
9

2 c2
i

∂
­ 5sn 2 9d $ 0 , (21)

which impliesn $ 9. For n ­ 9, the values obtained for
c2

i , c2
i ­

5
9 , and n̂i ? n̂r , from saturating the bound, do

not satisfy Eq. (6). Thusn . 9 strictly. Analyzing more
elaborated bounds, we have been able to prove that, f
n ­ 10, the c2

i cannot all be identical. By means of nu-
merical inspiration, we have found an explicit solution for
n ­ 10. Two of thec2

i turn out to be equal and smaller
than the rest, which are also equal among them, and t
n̂sid point to the vertices of a figure made as a twiste
prism with pyramidal caps (its explicit form is given be-
low in Table I). We have therefore encountered a some
what irregular but minimal solution to the POVM in the
N ­ 4 case. Themodus operandiis always related to
exploiting a manifestly non-negative combination of al
of the equations to be solved.

For N ­ 5 our starting point is
nX

rfii

c2
r s1 1 n̂i ? n̂r d fbi 1 din̂i ? n̂r 1 sn̂i ? n̂rd2g2 $ 0 ,

(22)

TABLE I. Minimal optimal POVMs forN ­ 2, 3, 4, 5.

N r c2
r cosur

1
p cr

2 1
2 4

3
4

1
2

1
3

0
2
3

sr22d

1 1 0
2 21 03

3 6

2
3

0 1
2 sr 2 3d

1
2

5
12

1
21

0
04

3 6
7 10

25
48

1
p

5

2 1
p

5

1
2

sr23d
1
2

sr2 13
2

d

1
2

1
21

0
05

3 7
8 12

1
2 1

p
5

2
1

p
5

2
5

sr23d
2
5

sr2 15
2

d

1353
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which, after minimization, leads toµ
c2

i 2
1
2

∂
$ 0 )

nX
i­1

s1 2 2c2
i d ­ n 2 12 $ 0 . (23)

Thusn $ 12. For n ­ 12 we obtain a solution that does
saturate the bound (in analogy toN ­ 2, 3). The explicit,
unique, minimal solution is made with allc2

i ­ 1
2 and

n̂sid ? n̂s jd ­ 21, 1y
p

5, 21y
p

5, which corresponds to
an icosahedron. Again, we defer the detailed structure
the solution to Table II.

Starting from expressions such as Eqs. (19) and (2
but with a cubic instead of quadratic polynomial, on
can prove thatn . 16 andn . 20 for N ­ 6 and 7, re-
spectively. Exhaustion has prevented us from filling th
gap between these lower bounds and the solutions w
n ­ 18 and n ­ 22, respectively, which we have been
able to build explicitly. Notice that, of the four cases
N ­ 2, 3, 4, and 5, for which we give a complete proof
for three of them, all butN ­ 4, our solution is also
unique and corresponds to constantc2

r .
l

s

1354
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TABLE II. Optimal POVMs forN ­ 6, 7.

N r c2
r cosur

1
p cr

1
2

14
45

61 0
3 6
7 10

7s4101
p

30 d
7200 6

p
1312

p
30

7

1
2

sr23d
1
2

sr2
13
2

d6

11 14
15 18

7s4102
p

30 d
7200 7

p
1312

p
30

7

1
2

sr211d
1
2

sr2
29
2

d
1
2

10
27

61 0
3 7
8 12

1471
p

105
405 6

1
2

r
1 1 3

q
3

35

2
5

sr23d
2
5

sr2
15
2

d7

13 17
18 22

1472
p

105
405 7

1
2

r
1 1 3

q
3

35

2
5

sr213d
2
5

sr2
35
2

d

We have summarized all of our result in the two tables
We have also checked that they all satisfy the equation
for optimal POVMs of Ref. [5]. Having in our hands all
of these concrete solutions, it is possible to speculate o
which nmin corresponds to a givenN . The formula we
propose is
nminsNd ­ min

√
1 1

"
2 1 sN 1 1d2

3

#
, 4 1 2

"
N
2

#
1 2

"
2
3

"
N
2

#2#!
, (24)
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where square brackets mean integer part. To justify
let us first note that the number of independent equatio
in Eq. (5) or (7) issN 1 1d2. The number of unknown
variables in these equations is3n 2 3, where rotation
invariance has been used to fixu1 ­ c1 ­ c2 ­ 0. Let
us clearly state that the problem of finding rigorously th
minimal n, which for eachN allows one to solve the
nonlinear system of Eq. (6), is beyond our mathematic
skills. However, the explicit casesN ­ 2 to 7 seem to
suggest that for this system one can always find a solut
when the number of unknown variables is at least equa
the number of equations,

3n 2 3 $ sN 1 1d2. (25)

The minimal n satisfying Eq. (25) leads to the first ex
pression in Eq. (2). On the other hand, limiting ourselv
to solutions with evenn and for whichn̂r 1 n̂r21 ­ 0,
c2

r ­ c2
r21, r ­ 2, 4, . . . , n, the system of Eq. (6) reduce

then to its evenq part. The assumption that the numbe
of variables is at least the number of equations,

3n
2

2 3 $ 1 1 3

∑
N
2

∏
1 2

∑
N
2

∏2

, (26)

now leads to a minimal evenn given by the second ex-
pression in Eq. (24). This is the justification of Eq. (24
It gives nmins6d ­ 18 and nmins7d ­ 22, which corre-
sponds precisely to the minimal solutions which we ha
been able to construct.
it,
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This means that one can do with roughly one-th
the number of projectors required by the procedure
Ref. [5]. It turns out that forN even the minimum is
the first expression and forN odd the second. Alsonmin

is always even.
Let us wind up by noting that we have used here t

mean fidelity as a measure of acquired knowledge, but
could have used the more information-theoretic decre
in Shannon entropy, as, e.g., done in a related prob
by Peres and Wootters [6]. Our conclusion would ha
been the same: We would have built the same optim
minimal POVMs.
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