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Charge-Fluctuation-Induced Nonanalytic Bending Rigidity
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In this Letter, we consider a neutral system of mobile positive and negative charges confined o
surface of curved films. This may be an appropriate model for (i) a highly charged membrane w
counterions are confined to a sheath near its surface and (ii) a membrane composed of an equ
mixture of anionic and cationic surfactants in aqueous solution. We find that the charge fluctua
contribute a nonanalytic term to the bending rigidity that varies logarithmically with the radius
curvature. This may lead to spontaneous vesicle formation, which is indeed observed in similar sys
[S0031-9007(98)06810-0]
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Electrostatics of charged objects such as polyelectroly
and membranes in aqueous solution plays an import
role in many biological systems [1]. The fundament
description of these systems has been the mean-field
proaches—the Poisson-Boltzmann (PB) or Debye-Hück
(DH) theory (for a review, see [2]). However, for a highly
charged surface, the Manning theory of counterion co
densation [3] provides an analytically tractable approx
mation to the PB theory. Indeed, it has been demonstra
rigorously from the solutions to the PB equation [4] tha
the electrostatic potential far away from the charged su
face is independent of the charge density above a cert
critical value, implying that the counterions are confine
to a thin layer close to the charged surface. Howev
like the PB theory, it fails to capture the correlation e
fects of the counterions since it expressly assumes that
“condensed” counterions are uniformly distributed. O
physical grounds, we should expect that at low enou
temperatures the fluctuations of these condensed coun
ions about a uniform density would give rise to new ph
nomena. Indeed, recent simulations [5,6] show that t
effective force between two like-charged rods and pl
nar surfaces actually becomes attractive at short distan
These surprising results shed new light on the understa
ing of the electrostatic adhesion between cells [7] and t
puzzling problem of DNA condensation [8]. In this Let
ter, we examine the effect of fluctuations of these co
densed counterions on the bending rigidity of a charg
membrane.

The elastic properties of a fluid membrane are charact
ized by three macroscopic parameters—a bending ela
modulusk, a Gaussian moduluskG , and a spontaneous
curvatureH0. The deformation free energy per unit area
expressed in terms of the mean curvatureH and Gauss-
ian curvatureK may be given by the Helfrich free energy
[9,10]:

f ­
k

2
sH 2 H0d2 1 kGK . (1)

Within an additive constant, the free energy of a sphe
with radius R is given by fs ­ s2 k 1 kGdyR2 2
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2kH0yR and of a cylinder with radiusR by fc ­
ky2R2 2 kH0yR. Therefore, the parameterskH0 and
k 1 kG may be determined fromfs andfc.

The problem of the electrostatic contribution to the
bending constants of layered membranes within the P
mean-field approach has been studied [11]. The electr
static renormalization of the bending rigidity turns out to
be positive; hence electrostatics augments the rigidity o
charged membranes. Here we go beyond these PB a
proaches by assuming that the surface charge densityn0 is
sufficiently high that the condensed counterions are co
fined to a layer of thicknessl ø L, wherel is the Gouy-
Chapman length, which scales inversely withn0 andL is
the linear size of the charged membrane. By considerin
the in-plane fluctuations of the condensed counterions a
charges on the membranes, we model the system effe
tively as a 2D Coulomb gas interacting with ar21 poten-
tial. Here we have assumed no salt added to the aqueo
solution in which the charged membrane is embedde
Under real experimental conditions, the screening of sa
might be important. However, as the present analys
focuses on the fundamental effects on the bending co
stants due to charge fluctuations, the issue of Deby
screening will be addressed in a later publication. Th
present treatment therefore is valid provided that the 3
screening length is larger than the Gouy-Chapman lengt
Note that this model has yet another experimental realiz
tion—a neutral membrane composed of a dilute mixtur
of anionics2d and cationics1d surfactants in pure water.

The electrostatic free energy of the system is the sum
the entropy of the charges and the electrostatic interactio
energy among them:

bFe ­
X
i­6

Z
d2x nisxd hlnfnisxd l2

T g 2 1j

1
lB

2

X
i­6

Z
d2x

Z
d2x0 nisxdnisx0d

jx 2 x0j

2 lB

Z
d2x

Z
d2x0 n1sxdn2sx0d

jx 2 x0j
, (2)
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where lT is the de Broglie wavelength of the charge
lB ; e2

ekBT ø 7 Å is the Bjerrum length for an aqueous
solution of dielectric constante ­ 80 (H2O), b21 ;
kBT , kB is the Boltzmann constant,T is the temperature,
and nisxd is the coarse-grained density of the charges
speciesi. The domain of the integral in Eq. (2) span
the entire charged membrane. In order to calculate
change in the free energy due to fluctuations, we assu
that nisxd ­ n0 1 dnisxd and expand the electrostatic
free energy to second order indni [13]:

bDFe ­
1
2

Z
d2x d2x0

"
lB

jx 2 x0j
1

d2sx 2 x0d
2n0

#
3 dssxddssx0d , (3)

whereds ­ dn1 2 dn2. The first term in the bracket
is the Coulomb interaction of the charges. The seco
term comes from the second variation of the ideal g
entropy of the charges. The change in the free ene
is obtained by summing all fluctuations weighted by th
Boltzmann factor:

bGe ­ 2 ln

∑Z
ddssxd exp2bDFe

∏
. (4)

It should be mentioned that Eq. (4) contains a diverge
self-energy term which has to be subtracted out. Th
means that we have to discard the first two terms
the expansion forlB ! 0, as can be seen easily by
considering the zero temperature limit. AsT ! 0, the
free energy is reduced to the electrostatic energy which
first order inlB. Since the self-energy is just a constan
independent of temperature, it must be linear inlB. In
the following, we employ this “subtraction scheme” [12
together with Eq. (4) to calculate the free energy whe
charges are confined to the surfaces of three geometr
(i) a plane, (ii) a sphere, and (iii) a cylinder.

For the case of charges confined to a planeDFe in
Eq. (3) can be diagonalized by Fourier transform and
quadratic inds. Performing the Gaussian integrals i
Eq. (4) and subtracting out the self-energy term, we obta
the free energy per unit area due to fluctuations [13,14]

bgpl ­ 1y2
Z d2q

s2pd2

Ω
ln

∑
1 1

1
2 jqj lD

∏
2

1
2 jqj lD

æ
,

(5)

where b ­ 1ykBT and 1ylD ­ 8pn0lB, which scales
like the Gouy-Chapman length, is a length scale ana
gous to the Debye screening length in 3D. This result c
also be obtained by solving the Debye-Hückel equation
2D [15]. Note that Eq. (5) is ultravioletly divergent be
cause of the infinite energy associated with the collapse
opposite charges. Thus a microscopic cutoff is necessa
In Ref. [16], the author shows by partial summation o
the Mayer series that the resulting free energy is conv
gent and indeed equivalent to a microscopic cutoff. Fro
Eq. (5), one can deduce that the screening of the char
is weak and the potential to the lowest order has the d
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tance dependence of a dipolar field, wherelD plays the
role of the dipole moment.

For the case of charges confined on a sphere of radiu
R, after following a similar procedure to that described
above we obtain

bgsp ­
1

8pR2

X̀
l­0

s2l 1 1d

3

Ω
ln

∑
1 1

RylD

2l 1 1

∏
2

RylD

2l 1 1

æ
. (6)

It is easy to show that by settingk ­ lyR and taking the
limit R ! `, we recover the planar result. Equivalently
we may write Eq. (5) as

bgpl ­
1

8pR2

Z `

21y2
dl s2l 1 1d

3

Ω
ln

∑
1 1

RylD

2l 1 1

∏
2

RylD

2l 1 1

æ
. (7)

The differencegsp 2 gpl, can be evaluated as an asymp-
totic expansion in1yR using the Euler-MacLaurin sum-
mation formula [17] withfsld ­ s2l 1 1d lns2l 1 1 1

RylDd. The result is

b sgsp 2 gpld ­ 2
11

96pR2 lns RylD d 1 . . . . (8)

In deriving the result above, we have regularized the
integral in Eq. (7) and the sum in Eq. (6) by an ultraviolet
cutoff L. However, the leading term in Eq. (8) is cutoff
independent and those higher order cutoff dependen
terms tend to zero asL ! `.

For the case of a cylinder, we obtain the free energy:

bgcyl ­
1

4pR

X
m$0

Z `

0
dq

3
2
p

Ω
ln

∑
1 1

R
lD

ImsqRdKmsqRd
∏

2
R

lD
ImsqRdKmsqRd

æ
, (9)

whereIm andKm are modified Bessel functions of order
m. The evaluation of the integrals here is relatively
difficult. However, we argue thatgcyl 2 gpl has the
following asymptotic expansion:

b sgcyl 2 gpld ­ 2
1

48pR2 lns RylD d 1 . . . , (10)

for R ! `. First, we note that the only relevant contri-
butions to theq integral in Eq. (9) are sharply peaked at
q ø 0 with width Dq ø myR. Hence, the Bessel func-
tions can be approximated byImsqRdKmsqRd , 1y2m,
yielding

bgcyl ­
1

4pR2

X
m$0

m

∑
ln

µ
1 1

RylD

2m

∂
2

RylD

2m

∏
1 Os1yR3d . (11)
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Equation (10) can now be obtained by using the Eule
MacLaurin summation formula withfsmd ­ m lns2m 1

RylDd.
The modifications to the bending constants can b

obtained from Eqs. (8) and (10) to yield

Dk ­ 2
kBT
24p

lnsRylDd ,

DkG ­ 2
kBT
12 p

lnsRylDd . (12)

We thus find that the contribution to the membrane elas
constants due to charge fluctuations is nonanalytic. Th
kind of nonanalyticity in the bending constants exists i
the literature in other situations—for example, in a syste
consisting of a membrane and rodlike cosurfactants [18
In the present case, this nonanalyticity can be consider
a signature of 2D charged systems. The DH theory
3D yields an expression for the change in the free ener
per unit volume [19]Df3D , 2l

23
D 1 . . . . In contrast,

Eq. (5) has a similar expansion for the free energy p
unit area but contains a logarithmic term [15]:Df2D ,
2l

22
D lnflDyag 1 . . . . Therefore, it is not unexpected

to find logarithmic corrections to the bending constant
Typically, for RylD , 104 106 the factor lnsRylDd is of
order 10 and thusDk andDkG are of the order ofkB T .

Second, we remark that bothDk andDkG are negative,
in contrast to the mean-field PB contributions, where th
renormalization of the bending moduli is always positiv
and the Gaussian moduli may be negative in some cas
In a system in whichRylD ¿ 1, Dk is large compared
to the mean-field contribution and the membrane becom
more flexible. Therefore, charge fluctuations induce ben
ing of a charged membrane. This conclusion can be se
physically in light of the recent works [13,14] on attractive
interactions between two planar charge-fluctuating mem
branes. It is found that for large distanceh separating the
two membranes, the attractive force per unit area scales
h23. Now, a sphere or a cylinder can be approximated
two flat planar surfaces in the limitR ! ` and their inter-
action free energies per unit area therefore should scale l
f , 2 R22. Hence negative contribution to the bending
modulus.

The negative contribution ofDkG from charge fluc-
tuations has interesting experimental consequences si
strongly negative values ofkG favor the formation of
many disconnected pieces with no rims, like spheric
vesicles. Therefore, when the surface charge dens
is made sufficiently large, the membrane might spont
neously form vesicles, due to fluctuations of condense
counterions. Experiments [20] on charged surfactant sy
tems support this conclusion.

The result presented in this Letter is particularly rele
vant to recent experiments [21] where the authors fin
the formation of vesicles by mixing anionic and cationi
surfactants. In the regions of the phase diagram whe
vesicles form spontaneously, the composition of eac
1340
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of the vesicles in oppositely charged species is alm
equimolar [22]. Two aspects of their experiment can
qualitatively accounted for by the present model. Th
find, in equilibrium, large vesicles withR , 1000 Å and
substantial size polydispersity. Indeed, the vesicle fr
energy per unit area given by

fves ­ kbyR2 2
11kB T
96pR2 lns RylD d , (13)

where kb is the bare value of the bending rigidity
including possibly the mean-field contribution due to th
small excess charges on the vesicle, has an equilibri
value Rp , lD expskbykBT d, which can be large even
for a moderate value ofkb of the order ofs5 7dkBT .
Furthermore, the second derivative of the free ener
f 00sRpd , e2kbykBT is exponentially small. Hence the
variance or fluctuations inR, ksDRd2l , 1yf 00sRpd is
large, implying size polydispersity.

In conclusion, by studying fluctuations of charges o
curved films, we have deduced nonanalytic contributio
to the bending energy of a membrane. Our calculation
applicable to condensed counterions on a highly charg
membrane, and mixing of surfactants of opposite charg
For the latter case, we find qualitative agreements w
experiments.
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