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Charge-Fluctuation-Induced Nonanalytic Bending Rigidity
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In this Letter, we consider a neutral system of mobile positive and negative charges confined on the
surface of curved films. This may be an appropriate model for (i) a highly charged membrane whose
counterions are confined to a sheath near its surface and (ii) a membrane composed of an equimolar
mixture of anionic and cationic surfactants in aqueous solution. We find that the charge fluctuations
contribute a nonanalytic term to the bending rigidity that varies logarithmically with the radius of
curvature. This may lead to spontaneous vesicle formation, which is indeed observed in similar systems.
[S0031-9007(98)06810-0]

PACS numbers: 87.22.Bt, 61.20.Qg, 87.15.Da

Electrostatics of charged objects such as polyelectrolytedx« H,/R and of a cylinder with radiusk by f. =
and membranes in aqueous solution plays an important/2R> — xHy/R. Therefore, the parametemsH, and
role in many biological systems [1]. The fundamentalk + kg may be determined frorfi; andf..
description of these systems has been the mean-field ap-The problem of the electrostatic contribution to the
proaches—the Poisson-Boltzmann (PB) or Debye-Hickdbending constants of layered membranes within the PB
(DH) theory (for a review, see [2]). However, for a highly mean-field approach has been studied [11]. The electro-
charged surface, the Manning theory of counterion constatic renormalization of the bending rigidity turns out to
densation [3] provides an analytically tractable approxi-be positive; hence electrostatics augments the rigidity of
mation to the PB theory. Indeed, it has been demonstratectharged membranes. Here we go beyond these PB ap-
rigorously from the solutions to the PB equation [4] thatproaches by assuming that the surface charge densisy
the electrostatic potential far away from the charged sursufficiently high that the condensed counterions are con-
face is independent of the charge density above a certaifined to a layer of thickness < L, whereA is the Gouy-
critical value, implying that the counterions are confinedChapman length, which scales inversely withand L is
to a thin layer close to the charged surface. Howeverthe linear size of the charged membrane. By considering
like the PB theory, it fails to capture the correlation ef-the in-plane fluctuations of the condensed counterions and
fects of the counterions since it expressly assumes that theharges on the membranes, we model the system effec-
“condensed” counterions are uniformly distributed. Ontively as a 2D Coulomb gas interacting withra' poten-
physical grounds, we should expect that at low enoughial. Here we have assumed no salt added to the aqueous
temperatures the fluctuations of these condensed countesslution in which the charged membrane is embedded.
ions about a uniform density would give rise to new phe-Under real experimental conditions, the screening of salt
nomena. Indeed, recent simulations [5,6] show that thenight be important. However, as the present analysis
effective force between two like-charged rods and plafocuses on the fundamental effects on the bending con-
nar surfaces actually becomes attractive at short distancestants due to charge fluctuations, the issue of Debye
These surprising results shed new light on the understandereening will be addressed in a later publication. The
ing of the electrostatic adhesion between cells [7] and theresent treatment therefore is valid provided that the 3D
puzzling problem of DNA condensation [8]. In this Let- screening length is larger than the Gouy-Chapman length.
ter, we examine the effect of fluctuations of these conNote that this model has yet another experimental realiza-
densed counterions on the bending rigidity of a chargedion—a neutral membrane composed of a dilute mixture
membrane. of anionic(—) and cationid +) surfactants in pure water.

The elastic properties of a fluid membrane are character- The electrostatic free energy of the system is the sum of
ized by three macroscopic parameters—a bending elasttbe entropy of the charges and the electrostatic interaction
modulusk, a Gaussian moduluss, and a spontaneous energy among them:
curvatureH,. The deformation free energy per unit area,

expressed in terms of the mean curvatiteand Gauss- Fo= [ d2x n: Infa:(x) A21 = 1

ian curvatureK may be given by the Helfrich free energy RF. Z X ni(x) Il (x) A7] )

[9,10]: Iy Z]dz fdz , ni(x)n;(x)
f——(H—Ho)2+KGK (1) et x — x/|

Within an addltlve constant, the free energy of a sphere _ lB[ x fdz ) ne(x)n—(x') @

with radius R is given by f, = 2k + kg)/R* — x — x/|
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where A7 is the de Broglie wavelength of the charges,tance dependence of a dipolar field, whagg plays the

Ig = % ~ 7 A is the Bjerrum length for an aqueous role of the dipole moment. ' _
solution of dielectric constane = 80 (H,0), g8~ = For the case of charges confined on a sphere of radius
ksT, kg is the Boltzmann constart; is the temperature, R. after following a similar procedure to that described
and n;(x) is the coarse-grained density of the charges ofibove we obtain

speciesi. The domain of the integral in Eq. (2) spans

the entire charged membrane. In order to calculate the _ 1 < 2 + 1
. . Bgsp ) Z( + 1)
change in the free energy due to fluctuations, we assume 8TR* =
that n;(x) = ng + 6n;(x) and expand the electrostatic R/\p R/\p
free energy to second order &w; [13]: X {'”[1 T 1} YR 1}~ (6)

2 -
BAF, = B f d*x dzx’[ s — + O (x X)} It is easy to show that by setting= [/R and taking the
2 Ix = x| Zno limit R — oo, we recover the planar result. Equivalently
X do(x)do(x)), (3) we may write Eq. (5) as

wheredo = ény — 8n—_. The first term in the bracket 1 *
is the Coulomb interaction of the charges. The second Bgp = g o3 L a2l + 1)
term comes from the second variation of the ideal gas

entropy of the charges. The change in the free energy % {In[l + R/Ap } _ R/ } 7)

is obtained by summing all fluctuations weighted by the 20+ 1 20+ 1

Boltzmann factor: The differenceg,, — gp1, can be evaluated as an asymp-

totic expansion inl/R using the Euler-MacLaurin sum-

BG. = —In[] d5U(X)eXp—,3AFe] (4)  mation formula [17] with (1) = (21 + 1)In(2l + 1 +

It should be mentioned that Eq. (4) contains a divergenp/)"))' The resultis

self-energy term which has to be subtracted out. This B(gp — gp1) = _Lln(R/)lD) +.... (8

means that we have to discard the first two terms in 967 R?

the expansion foriz — 0, as can be seen easily by In deriving the result above, we have regularized the
considering the zero temperature limit. As— 0, the integral in Eq. (7) and the sum in Eqg. (6) by an ultraviolet
free energy is reduced to the electrostatic energy which isutoff A. However, the leading term in Eq. (8) is cutoff
first order inlp. Since the self-energy is just a constantindependent and those higher order cutoff dependent
independent of temperature, it must be linear/gn In  terms tend to zero a§ — <.

the following, we employ this “subtraction scheme” [12] For the case of a cylinder, we obtain the free energy:
together with Eq. (4) to calculate the free energy where 1 o

charges are confined to the surfaces of three geometries:  gg. = —— Z f dq

(i) a plane, (ii) a sphere, and (iii) a cylinder. 4mR =)0

For the case of charges confined to a plang, in R
Eq. (3) can be diagonalized by Fourier transform and is X {In[l + Elm(qR)Km(qR)}
quadratic inéo. Performing the Gaussian integrals in R
Eq. (4) and subtracting out the self-energy term, we obtain - — Im(qR)Km(qR)}, 9)
the free energy per unit area due to fluctuations [13,14] Ap
d’q 1 1 wherel,, and K,, are modified Bessel functions of order
Bgp = 1/2f om)? {In[l + 2|q|AD} - 2|q|AD}’ m. The evaluation of the integrals here is relatively

difficult. However, we argue thag., — gp1 has the
() following asymptotic expansion:
where 8 = 1/kgT and 1/Ap = 8wnylp, Which scales |
like the Gouy-Chapman length, is a length scale analo- g (gcyi — gp1) = —-———5In(R/Ap) + ..., (10)
gous to the Debye screening length in 3D. This result can 48mR
also be obtained by solving the Debye-Hiickel equation irffor R — <. First, we note that the only relevant contri-
2D [15]. Note that Eq. (5) is ultravioletly divergent be- butions to theg integral in Eq. (9) are sharply peaked at
cause of the infinite energy associated with the collapse of =~ 0 with width Aq ~ m/R. Hence, the Bessel func-
opposite charges. Thus a microscopic cutoff is necessar{ions can be approximated b¥,(gR)K,,(gR) ~ 1/2m,
In Ref. [16], the author shows by partial summation ofyielding
the Mayer series that the resulting free energy is conver-
gent and indeed equivalent to a microscopic cutoff. From Bge, = % D m[ln<1 + RMD) —~ R/AD}
Eqg. (5), one can deduce that the screening of the charges 4TR 1= 2m 2m
is weak and the potential to the lowest order has the dis- + O(1/R%). (12)
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Equation (10) can now be obtained by using the Eulerof the vesicles in oppositely charged species is almost
MacLaurin summation formula withf(m) = mIn(2m +  equimolar [22]. Two aspects of their experiment can be

R/Ap). qualitatively accounted for by the present model. They
The modifications to the bending constants can bdind, in equilibrium, large vesicles witR ~ 1000 A and
obtained from Egs. (8) and (10) to yield substantial size polydispersity. Indeed, the vesicle free
ener er unit area given b
Ak = =L inR/Ap) v e
7 s = 1p/R? = o 25 IN(R/Ap),  (13)
kBT 967TR2
Akg = _Eln(R//\D)- (12)  where «;, is the bare value of the bending rigidity,

We thus find that the contribution to the membrane elastiénCIUdIng possibly the mean-field contribution due to the

constants due to charge fluctuations is nonanalytic. Th@g}ﬁg Sfcfsi cgf&ges/ ko nT;[hE\}N;]/i:ﬂcLGhﬁz ?gr eeqlgut;:um
kind of nonanalyticity in the bending constants exists in D SAAKD /KB L), 9

the literature in other situations—for example, in asysten{_?r a moderate value ok, of the order of(5-7)ksT.

consisting of a membrane and rodlike cosurfactants [18], ,L,’(rglt?rTor? ;b},i; ? ?:Cg)?dor?::t\i/aaﬁlvesrﬁglfhel_{;iee?ﬁégy
In the present case, this nonanalyticity can be ConSidere\@ariance gr fluctuationsp iR <(A%)2> N i/f”(R*) is
a signature of 2D charged systems. The DH theory "T rge, implying size polydispérsity :

3D yields an expression for the change in the free energfI In conclusion, by studying fluctuations of charges on

: _ 3
Eer lzg)'talgslu;ni#i?ﬁjzg ansié\r? foJrr the frlgecgggfst ecurved films, we have deduced nonanalytic contributions
ur?i.t area but contains aFI)o arithmic term [15) . giy Pl the bending energy of a membrane. Our calculation is
9 2b applicable to condensed counterions on a highly charged

32 .
O . G . e et s estet, membrane, and mixig of urfacints of opposte charges
9 9 For the latter case, we find qualitative agreements with

Typically, for R/Ap ~ 10*-10° the factor I{R/Ap) is of experiments
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In a system in whichlR/Ap > 1, A« is large compared

to the mean-field contribution and the membrane becomes
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