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Universal Law of Fractionation for Slightly Polydisperse Systems
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By perturbing about a general monodisperse system, we provide a complete description of two-phase
equilibria inany system which is slightly polydisperse in some property (e.g., particle size, charge, etc.).
We derive a universal law of fractionation which is corroborated by comprehensive experiments on a
model colloid-polymer mixture. We furthermore predict that phase separation is an effective method
of reducing polydispersity only for systems with a skewed distribution of the polydisperse property.
[S0031-9007(98)06841-0]

PACS numbers: 82.70.Dd, 05.20.-y, 64.10.+h

Complex fluids contain mesoscopic units that are alenergy of a polydisperse ideal gas of the given species
most inevitably polydisperse, i.e., colloidal or polymeric distribution and the excess due to interactions. The ideal
particles have some characteristic, such as radius, chargsart, Fi¢, is a functional of the distributiorf (), where
mass, or oblateness, which varies quasicontinuously frorfi(e)de particles have the polydisperse propestyn the
one to another. A truly polydisperse system contains infange ¢ to € + de. No matter what the systenfid
finitely many species with a distribution of properties andalways takes the same form (in unitsigfT),
could separate into arbitrarily many coexisting phases. ‘ £(e)

The onset of phase separation is at the “cloud curve,” the Fid = / de f(s)[ln —_— - 1}, 1)
boundary of coexistence with an infinitesimal amount of 4

a second phase on the “shadow curve.” In contrast twhere the integrand is the ideal gas free energy of each
simple systems, a complete description of phase equilibrigpecies in volume/. The total number of particles is
entails determining not just these limiting curves but alsoV = [f(e)de. Nontrivially, Eq. (1) holds whether or
the different compositions (described by a distribution) ofnot the members of each species are quantum mechani-
arbitrary coexisting phases. cally indistinguishable [8]. At equilibrium, the chemical

Experimentally, phase equilibria have been completelyotential for each specigs(e) = 6 F'*'/8 f(¢) is equal in
determined for polydisperse polymers [1]. In contrastany pair of coexisting phases. That is,
most experiments on colloidal phase behavior have ignored _ id ex(y _
polydispersity, despite pragmatic interest in using phase Ap(e) = Ap'(e) + AuT(e) =0 foralle, (2)
separation to fractionate suspensions [2]; limited data omwhich is an infinite number of equilibrium conditions
particulate systems derive only from simulations [3,4].(with A indicating a difference between phases). From
Many calculations of two-phase equilibria have beenEq. (1), the ideal part ig!d(e) = In[ f()/V]. Applying
attempted for specific polydisperse systems ([5] andhe equilibrium constraints [Eq. (2)] allows ratios of
references therein), especially polymers (which admitensities in coexisting phasdsandB,
mean-field analysis). The popular but arbitrary method Fale)/V
of discretizing the distribution [6], though efficacious, JAI A
gives little insight. The infinity of coexistence conditions fB(e)/Vp
hampers the formulation of truly polydisperse statisticalto be found fromFe*. To reduce the infinity of simulta-
mechanics (discussed in [5,7,8]), especially in non-meameous equations for coexistence to a finite set, Guaderi
field systems, for which exact phase calculations aral. assumed ™ was a function of finitely many moments.
consequently scarce [9]. The approach of Gualeei@l. Recent work [8,10] has clarified the status of the moments
[5] for calculating two-phase coexistence is applicable taneglected inF** in this type of approach, but the “finite
a large class of model systems but gives rise to formidablenoment” assumption remains arbitrary and is unlikely to
nonlinear equations. They calculate cloud/shadow curvese true for real systems.
for a polydisperse van der Waals model but give no gen- Our ab initio approach imposes no special structure on
eral result. We present a simpler treatment, applicable t&**. Our starting point is the observation that aimost
real systems, and use it to solve the two-phase coexistenpaire ensemble [one with a narrow normalized distribution
problem completely in the limit of small polydispersities. p(g) = f(g)/N] should behave similarly to a monodis-
A universal law of fractionation is derived. We show perse system [for which(g) = §(¢), the Dirac delta func-
significant consistency with comprehensive measurementfon], despite having a very different formal description
of phase equilibria in a model polydisperse colloid. (being a mixture of infinitely many species). Therefore,

Following Gualtieri et al.[5], we divide the total although a general polydisperse system could separate into
free energy,F'° = Fid + F* into two parts: the free arbitrarily many coexisting phases (see, e.g., [10]), we may

= expAu(e), 3)
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restrict our attention to two-phase coexistence. We apreference and a perturbation. Using Eq. (1), the free
ply thermodynamic perturbation theory to a monodispersenergy is evaluated from a configurational integral [12]
reference system [11], using as a small, dimensionless as
variable assigned to each parti¢le= 1...N. We ascribe ex  _ pex _
no specific physical meaning t9 at this stage but it may Froty = Finono = IN(€Xp=H1)mono, (7)
be, e.g., the fractional deviation of a particle’s radius fromwhich resembles the usual expression [15] for the free
the mean. With this approach, we derive a number of reenergy of a perturbed system, but applasly to the
sults which are exact and universal in the limit of a nar-excess parts Thermal averages with respect to the
row distribution. Such distributions are ubiquitous, beingmonodisperse reference system are dendtedmono-
the typical product of chemical syntheses aimed at producAssuming the Hamiltoniad,, ({r;, £;}) is differentiable
ing monodisperse systems. Details of the calculations arith respect to the:;’s, we expand it to first order to find
given elsewhere [12]. One universal (but perhaps unsur- N
prising) result to emerge is that, fiest order in polydisper- Hi = &iKi{r), (8)
sity, the shadow and cloud curves are not perturbed from j=1
the coexistence boundary (the _binodal) of _the monodiswhere K;({r;}) = (0Hpo1y/9€)lis =10y and {r;} are the
perse reference system. Coexisting polydisperse phasparticle positions. We have not assunaey special prop-
in general exhibifractionationand have different distribu- erties of the Hamiltonian (not even pairwise additivity of
tions from the parent sample, e.g., the denser phase miginteractions) except differentiability K; is a property of
favor larger particles. We derive universal results relatingoarticle j. Substituting Eq. (8) into (7) gives
the moments in the daughter phases to those of the parent, N
using the location of the monodisperse binodal as an input  F5iy = Frono + Z g {K;({ri}))mono t+ 0(?).
parameter. j=1
We begin by noting [8,10,13] that “moment densities,” As the thermal average is taken in the reference system
e of identical particles, it is independent ¢f We write
Pa = _f e“f(e)de, (4)  (Kj)mono = {K)mono, Which is the mean rate of change of
V /- total energy from varying the property of any particle.
being linear combinations of conserved species densitiegquation (7) therefore yields
are themselves conserved and, accordingly, respect the ex _ pex 2
usual equilibrium conditions. For instance, each “moment poty/ V' = Fraono/V F (Khmonop1 + 0(2%). (9)
chemical potential,” defined by, = 9(F/V)/dpa, is A strength of the perturbative approach is that high mo-
equal in coexisting phases. This is clear from expandingnents are of high order in small quantities, 53, trun-

the species chemical potential in partial derivatives cates naturally. (We have stopped at first order.) In
- previous approaches [5,10] such truncation was necessary

OF  _ Z IF 6pa _ tas®. (5) but arbitrary. Sinceu, = SF/8pa =0 for & > 1,
5f(e) “Zyopa 6f(e) = the infinite sum in Eq. (6) becomes finite and the equa-
: : - . tions are tractable. Equation (9) yielfsg', u{*} in terms
Thus equality of u(g) in coexisting phases requires : . )
equality of .. Note thatp, — £%p S0 thatpy is the of {po, p1}, thus, with Egs. (4) and (6), solving the prob

overall particle density. The meanvth power ofe, 5@ lem. The solution involves linearizing the factor multi-
is the ath moment of thenormalizeddistribution p(e). plying f»(2) in Eq. (6), butnotin any way approximating

Substituting Eq. (5) into (3) and demanding that atfp(S) itself. Consequently, so long as the distribution

) N 4 is narrow, it can have any shape, including the case of
coexistence, the distributions in the two phadeand B SR ;
! . ) m mponent ring in finite amount ntribut-
sum to the parenfp () from which they came yields S0me components appearing e amounts (contribu

ing delta spikes), which was treated separately in Ref. [5].
fr(e) Defining the origin ofe so its mean vanishes in the par-
A exd— >, Aucrea]’ (6) ent,gp = 0, we flnd that normalized distributions in the
Va a=0 2Ha daughter phases differ byp(e) — —& pp(e) AK )mono-
which expresses a daughter distribution in terms of thédence theirath moments differ by
parent and excess moment chemical potentials in the &, _atl
daughter phases. Heteu® = ugg — Mo andVag As op " AKmong (10)
are the phase volumes. Equation (6) was expressemse» — 0, which is proportional to th@extmoment of
in Ref. [5] in terms of species chemical potentials. Itthe parent distribution. Equation (10) constitutes a full so-
simply ensures equality of all chemical potentials in thelution [16] of the two-phase coexistence problem to low-
coexisting phases. We can obtain all4) from Egs. (4) est order in polydispersity. Taking = 1, we find that
and (6), given{ug', ui", ...}, for which we requirerex. the separatioA of daughter distributions is proportional
To find F*, let us write the polydisperse Hamiltonian not to thewidth but to thevariance of the parent. For
asHpoly = Hpono + Hj, the sum [14] of a monodisperse « = 2, Eq. (10) prescribes the daughters’ variances. (In

wu(e) =

fale) =
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fact, Eq. (10), with closure by conservation of matter [16], The resultant effective “depletion” pair potential between
gives thesecond momentsf the phasess?, 5. To lowest the particles is attractive and a function of individual
order, “variance”a? = 2 — g2 and “second moment” colloidal radii. The topology of the phase diagram of
are interchangeable since the differercg;, is of fourth  such a mixture withmonodispers&eomponents depends
order in the width of the parent.) Equation (10) assert®n the polymer-colloid size rati¢ = r,/R [19]. When
that purification (which requires one daughter to have & = 0.25, the phase behavior resembles that of a simple
smaller variance than the parent, resulting [16] in a finiteatomic substance (e.g., argon). In particular, samples
Ae€?) of a slightly polydisperse sample by phase separawith suitable concentrations of colloid and polymer show
tion (e.g., [2]) is ineffective unless the sample’s distribu-coexistence between colloidal gas and liquid phases.
tion is strongly skewedsp # 0. To test Eq. (11) fora =2, B =1, a parent stock

The system-dependent constant of proportionalit)Pf polydisperse PMMA colloid was first characterized

A(K )mono in Eq. (10) is a function of properties of the two PY measuring the sizes of 830 particles from a dried
coexisting phases, but not of [17]. Hence, to lowest sample imaged in a transmission electron ‘microscope.
To check that our counting was representative, we also

order, the ratio of differences of any two moments in the N )
daughter phases, measured fthe form factor by static light scattering and
L compared it [20] to the average form factor calculated
As®/AeB = 8T/ sff“ (11)  using the measured particle size distribution [21]. These
measurements gave for the stock an average ratjius
is, surprisingly, independent of any properties of the phaseg, nm, a polydispersityrp = gl/z — 0.18, and third
themselves (even the nature of the interactions). It relies — 5
only on the parent from which they came. As Eg. (11)0 Second moment ratla%/sp_= —0.113 = 0‘0126- The
contains no system-dependent parameters, it constitutes & used has molecular weight,, = 6.85 X 10° amu.
universal law of slightly polydisperse systems. We restatd!S polydispersity, given byM, /M, ~ 1.07, does not
that the small number may beanydistinguishing property IMPinge upon this study [22]. In cis-decalin at the
of the particles, such as relative size, charge, or mass, egxPerimental temperatur@( + 2 °C), the PS has a mean
pressed dimensionlessly. Having identified no particulaf@dius of gyrationr, ~ 94 nm. The addition of sufficient
physical scale for the property, we must clarify what con-PS 10 the colloidal stock brings about separation into
stitutes “small.” Linearization of the distribution’s pre- coexisting colloidal gas and liquid phases [23]; the high
factor in Eq. (6), and of Eq. (7), to produce Eq. (9), is aStock polydispersity precluded the formation of.coIIO|daI
good approximation over some rangesof This range de- qrysjals [24_]. Several samples were prepared in the gas-
fines the maximum width op (&) for which the calcula- liquid c_oeX|stence region. In each case, when phase
tion is valid. Theextraassumption that the Hamiltonian Separation was complete, the two phases were separately
may be expanded as Eq. (8) is not vital to the final resultextracted and the particle size distribution in each was
Even hard spheres, whose interactions are nondifferefgnalyzed by fitting a Schultz distribution to measured
tiable, have a linearizable excess free energy [as Eq. (9)form factors. This procedure allows us to esglmate the
Their moments therefore obey Eq. (10), but WK )nonoe ~ JiTEr€NCe in variances of the distributiond,o, and
an unknown[12] constant of proportionality, which still the fractional difference in the meanAR/Rp, in each
cancels to give Eq. (11). pair of coexisting phases. In Flg._]Aa2 is plotted
Equations (10) and (11) can, in principle, be testeoagalnstAR/Rp_, the error ba_rs reflegtlng the tolergnce_of
by observing phase equilibria iany slightly polydis- the fit. Equation (11) predicts a line of proportionality
perse system. Here we report results obtained fromvith slopes}/ e3 which, from our measurements of the
colloidal suspensions with polydisperse particle radiusstock colloid, is not only of the righsign and order of
R. We define the deviation of théth particle e; by = magnitude but is close to the slope of best fit, weighted by
R; = Rp(1 + &;), with Rp the mean radius in the parent inverse-square uncertainties.
sample. To date, experiments on polydisperse colloids Work is in progress to test a particular case of Eqg. (10),
have concentrated on characterization by static or dynamely, Az « o3, using a variety of parent colloidal
namic light scattering; little data on polydisperse colloidalsuspensions. This power law is somewhat surprising, as
phase equilibria exist. We have performed comprehensivene might expect the distance between daughtarso
measurements on two-phase coexistence in a model syscale with the widtlop of the parent, sincep restricts the
tem: mixtures of sterically stabilized polymethylmethacry-available range of species. The reason forekiea factor
late (PMMA) particles and random-coil polystyrene (PS)opr stems from Eq. (3). The excess chemical potential,
dispersed in cis-decahydronaphthalene (cis-decalin). Thaeriving from interactions, causes the concentrations of
particles behave as nearly perfect hard spheres. Exclthe two phases to differ. It is a function of species
sion of polymer molecules from the region between thepropertye. If it depends only weakly oa, we may expect
surfaces of nearby PMMA particles creates an imbalancéttle fractionation between phases, as all species feel
in osmotic pressure, pushing the particles together [18Japproximately the same driving force. So iti$ferences
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FIG. 1. Difference in variances of distributions in daughter
phases vs fractional difference in mean particle radii, for

various fluid-fluid separations of the same parent sample. Line:

Best fit through origin (and uncertainty). Dashed: Gradient
&3/ €5 (and uncertainty). Inset: Enlarged near origin.
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