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Universal Law of Fractionation for Slightly Polydisperse Systems
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By perturbing about a general monodisperse system, we provide a complete description of two-ph
equilibria inanysystem which is slightly polydisperse in some property (e.g., particle size, charge, etc
We derive a universal law of fractionation which is corroborated by comprehensive experiments on
model colloid-polymer mixture. We furthermore predict that phase separation is an effective meth
of reducing polydispersity only for systems with a skewed distribution of the polydisperse proper
[S0031-9007(98)06841-0]

PACS numbers: 82.70.Dd, 05.20.–y, 64.10.+h
ies
eal

ch

ani-
l

m

f

i
.
ts

to

n

n
-

n
,

into
ay
Complex fluids contain mesoscopic units that are a
most inevitably polydisperse, i.e., colloidal or polymeri
particles have some characteristic, such as radius, cha
mass, or oblateness, which varies quasicontinuously fr
one to another. A truly polydisperse system contains
finitely many species with a distribution of properties an
could separate into arbitrarily many coexisting phase
The onset of phase separation is at the “cloud curve,” t
boundary of coexistence with an infinitesimal amount
a second phase on the “shadow curve.” In contrast
simple systems, a complete description of phase equilib
entails determining not just these limiting curves but als
the different compositions (described by a distribution)
arbitrary coexisting phases.

Experimentally, phase equilibria have been complete
determined for polydisperse polymers [1]. In contras
most experiments on colloidal phase behavior have igno
polydispersity, despite pragmatic interest in using pha
separation to fractionate suspensions [2]; limited data
particulate systems derive only from simulations [3,4
Many calculations of two-phase equilibria have bee
attempted for specific polydisperse systems ([5] a
references therein), especially polymers (which adm
mean-field analysis). The popular but arbitrary metho
of discretizing the distribution [6], though efficacious
gives little insight. The infinity of coexistence condition
hampers the formulation of truly polydisperse statistic
mechanics (discussed in [5,7,8]), especially in non-mea
field systems, for which exact phase calculations a
consequently scarce [9]. The approach of Gualtieriet al.
[5] for calculating two-phase coexistence is applicable
a large class of model systems but gives rise to formida
nonlinear equations. They calculate cloud/shadow curv
for a polydisperse van der Waals model but give no ge
eral result. We present a simpler treatment, applicable
real systems, and use it to solve the two-phase coexiste
problem completely in the limit of small polydispersities
A universal law of fractionation is derived. We show
significant consistency with comprehensive measureme
of phase equilibria in a model polydisperse colloid.

Following Gualtieri et al. [5], we divide the total
free energy,Ftot ­ Fid 1 Fex into two parts: the free
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energy of a polydisperse ideal gas of the given spec
distribution and the excess due to interactions. The id
part, Fid, is a functional of the distributionfs´d, where
fs´dd´ particles have the polydisperse property´ in the
range ´ to ´ 1 d´. No matter what the system,Fid

always takes the same form (in units ofkBT ),

Fid ­
Z

d´ fs´d
∑
ln

fs´d
V

2 1

∏
, (1)

where the integrand is the ideal gas free energy of ea
species in volumeV . The total number of particles is
N ­

R
fs´d d´. Nontrivially, Eq. (1) holds whether or

not the members of each species are quantum mech
cally indistinguishable [8]. At equilibrium, the chemica
potential for each speciesms´d ; dFtotydfs´d is equal in
any pair of coexisting phases. That is,

Dms´d ­ Dmids´d 1 Dmexs´d ­ 0 for all ´ , (2)

which is an infinite number of equilibrium conditions
(with D indicating a difference between phases). Fro
Eq. (1), the ideal part ismids´d ­ lnffs´dyV g. Applying
the equilibrium constraints [Eq. (2)] allows ratios o
densities in coexisting phasesA andB,

fAs´dyVA

fBs´dyVB
­ expDmexs´d , (3)

to be found fromFex. To reduce the infinity of simulta-
neous equations for coexistence to a finite set, Gualtieret
al. assumedFex was a function of finitely many moments
Recent work [8,10] has clarified the status of the momen
neglected inFex in this type of approach, but the “finite
moment” assumption remains arbitrary and is unlikely
be true for real systems.

Our ab initio approach imposes no special structure o
Fex. Our starting point is the observation that analmost
pure ensemble [one with a narrow normalized distributio
ps´d ; fs´dyN ] should behave similarly to a monodis
perse system [for whichps´d ­ ds´d, the Dirac delta func-
tion], despite having a very different formal descriptio
(being a mixture of infinitely many species). Therefore
although a general polydisperse system could separate
arbitrarily many coexisting phases (see, e.g., [10]), we m
© 1998 The American Physical Society
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restrict our attention to two-phase coexistence. We a
ply thermodynamic perturbation theory to a monodisper
reference system [11], usinǵi as a small, dimensionless
variable assigned to each particlei ­ 1 . . . N . We ascribe
no specific physical meaning tói at this stage but it may
be, e.g., the fractional deviation of a particle’s radius from
the mean. With this approach, we derive a number of r
sults which are exact and universal in the limit of a na
row distribution. Such distributions are ubiquitous, bein
the typical product of chemical syntheses aimed at produ
ing monodisperse systems. Details of the calculations a
given elsewhere [12]. One universal (but perhaps uns
prising) result to emerge is that, tofirst order in polydisper-
sity, the shadow and cloud curves are not perturbed fro
the coexistence boundary (the binodal) of the monod
perse reference system. Coexisting polydisperse pha
in general exhibitfractionationand have different distribu-
tions from the parent sample, e.g., the denser phase mi
favor larger particles. We derive universal results relatin
the moments in the daughter phases to those of the par
using the location of the monodisperse binodal as an inp
parameter.

We begin by noting [8,10,13] that “moment densities,

ra ;
1
V

Z `

2`

´afs´d d´ , (4)

being linear combinations of conserved species densiti
are themselves conserved and, accordingly, respect
usual equilibrium conditions. For instance, each “mome
chemical potential,” defined byma ; ≠sFyV dy≠ra , is
equal in coexisting phases. This is clear from expandi
the species chemical potential in partial derivatives

ms´d ;
dF

dfs´d
­

X̀
a­0

≠F
≠ra

dra

dfs´d
­

X̀
a­0

ma ´a . (5)

Thus equality of ms´d in coexisting phases requires
equality of ma . Note thatra ­ ´ar so thatr0 is the
overall particle densityr. The meanath power of´, ´a ,
is theath moment of thenormalizeddistributionps´d.

Substituting Eq. (5) into (3) and demanding that, a
coexistence, the distributions in the two phasesA and B
sum to the parentfPs´d from which they came yields

fAs´d ­
fPs´d

1 1
VB

VA
expf2

P`
a­0 Dmex

a ´ag
, (6)

which expresses a daughter distribution in terms of th
parent and excess moment chemical potentials in t
daughter phases. HereDmex

a ­ m
ex
asBd 2 m

ex
asAd andVA,B

are the phase volumes. Equation (6) was express
in Ref. [5] in terms of species chemical potentials.
simply ensures equality of all chemical potentials in th
coexisting phases. We can obtain allrasAd from Eqs. (4)
and (6), givenhmex

0 , m
ex
1 , . . .j, for which we requireFex.

To find Fex, let us write the polydisperse Hamiltonian
asHpoly ­ Hmono 1 H1, the sum [14] of a monodisperse
p-
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e-
r-
g
c-
re

ur-

m
is-
ses

ght
g

ent,
ut

”

es,
the
nt

ng

t

e
he

ed
It
e

reference and a perturbation. Using Eq. (1), the fr
energy is evaluated from a configurational integral [1
as

Fex
poly ­ Fex

mono 2 lnkexp2H1lmono, (7)

which resembles the usual expression [15] for the fr
energy of a perturbed system, but appliesonly to the
excess parts. Thermal averages with respect to th
monodisperse reference system are denotedk. . .lmono.
Assuming the HamiltonianHpolyshri , ´ijd is differentiable
with respect to thé i ’s, we expand it to first order to find

H1 ­
NX

j­1

´jKjshrijd , (8)

where Kjshrijd ­ s≠Hpolyy≠´jdjh´i j­h0j and hrij are the
particle positions. We have not assumedanyspecial prop-
erties of the Hamiltonian (not even pairwise additivity o
interactions) except differentiability.Kj is a property of
particlej. Substituting Eq. (8) into (7) gives

Fex
poly ­ Fex

mono 1

NX
j­1

´jkKjshrijdlmono 1 Os´2d .

As the thermal average is taken in the reference syst
of identical particles, it is independent ofj. We write
kKjlmono ­ kKlmono, which is the mean rate of change o
total energy from varying the propertý of any particle.
Equation (7) therefore yields

Fex
polyyV ­ Fex

monoyV 1 kKlmonor1 1 Os´2d . (9)

A strength of the perturbative approach is that high m
ments are of high order in small quantities, soFex

poly trun-
cates naturally. (We have stopped at first order.)
previous approaches [5,10] such truncation was necess
but arbitrary. Sincema ; dFexydra ­ 0 for a . 1,
the infinite sum in Eq. (6) becomes finite and the equ
tions are tractable. Equation (9) yieldshmex

0 , m
ex
1 j in terms

of hr0, r1j, thus, with Eqs. (4) and (6), solving the prob
lem. The solution involves linearizing the factor multi
plying fPs´d in Eq. (6), butnot in any way approximating
fPs´d itself. Consequently, so long as the distributio
is narrow, it can have any shape, including the case
some components appearing in finite amounts (contrib
ing delta spikes), which was treated separately in Ref. [

Defining the origin of́ so its mean vanishes in the par
ent, ´P ; 0, we find that normalized distributions in the
daughter phases differ byDps´d ! 2´ pPs´d DkKlmono.
Hence theirath moments differ by

D´a ! 2´
a11
P DkKlmono (10)

as ´
2
P ! 0, which is proportional to thenext moment of

the parent distribution. Equation (10) constitutes a full s
lution [16] of the two-phase coexistence problem to low
est order in polydispersity. Takinga ­ 1, we find that
the separationD´ of daughter distributions is proportiona
not to thewidth but to thevarianceof the parent. For
a ­ 2, Eq. (10) prescribes the daughters’ variances. (
1327
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fact, Eq. (10), with closure by conservation of matter [16
gives thesecond momentsof the phases,́2

A,B. To lowest
order, “variance”s2 ; ´2 2 ´2 and “second moment”
are interchangeable since the difference,´

2
A,B, is of fourth

order in the width of the parent.) Equation (10) asser
that purification (which requires one daughter to have
smaller variance than the parent, resulting [16] in a fini
D´2) of a slightly polydisperse sample by phase separ
tion (e.g., [2]) is ineffective unless the sample’s distribu
tion is strongly skewed,́3

P fi 0.
The system-dependent constant of proportionali

DkKlmono in Eq. (10) is a function of properties of the two
coexisting phases, but not ofa [17]. Hence, to lowest
order, the ratio of differences of any two moments in th
daughter phases,

D´ayD´b ­ ´
a11
P y ´

b11
P (11)

is, surprisingly, independent of any properties of the phas
themselves (even the nature of the interactions). It reli
only on the parent from which they came. As Eq. (11
contains no system-dependent parameters, it constitute
universal law of slightly polydisperse systems. We resta
that the small numbeŕmay beanydistinguishing property
of the particles, such as relative size, charge, or mass,
pressed dimensionlessly. Having identified no particul
physical scale for the property, we must clarify what con
stitutes “small.” Linearization of the distribution’s pre-
factor in Eq. (6), and of Eq. (7), to produce Eq. (9), is
good approximation over some range of´. This range de-
fines the maximum width ofps´d for which the calcula-
tion is valid. Theextra assumption that the Hamiltonian
may be expanded as Eq. (8) is not vital to the final resu
Even hard spheres, whose interactions are nondiffere
tiable, have a linearizable excess free energy [as Eq. (9
Their moments therefore obey Eq. (10), but withDkKlmono
an unknown[12] constant of proportionality, which still
cancels to give Eq. (11).

Equations (10) and (11) can, in principle, be teste
by observing phase equilibria inany slightly polydis-
perse system. Here we report results obtained fro
colloidal suspensions with polydisperse particle radiu
R. We define the deviation of theith particle ´i by
Ri ; RPs1 1 ´id, with RP the mean radius in the paren
sample. To date, experiments on polydisperse colloi
have concentrated on characterization by static or d
namic light scattering; little data on polydisperse colloida
phase equilibria exist. We have performed comprehens
measurements on two-phase coexistence in a model s
tem: mixtures of sterically stabilized polymethylmethacry
late (PMMA) particles and random-coil polystyrene (PS
dispersed in cis-decahydronaphthalene (cis-decalin). T
particles behave as nearly perfect hard spheres. Exc
sion of polymer molecules from the region between th
surfaces of nearby PMMA particles creates an imbalan
in osmotic pressure, pushing the particles together [1
1328
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The resultant effective “depletion” pair potential betwee
the particles is attractive and a function of individua
colloidal radii. The topology of the phase diagram o
such a mixture withmonodispersecomponents depends
on the polymer-colloid size ratio,j ­ rgyR [19]. When
j * 0.25, the phase behavior resembles that of a simp
atomic substance (e.g., argon). In particular, sampl
with suitable concentrations of colloid and polymer show
coexistence between colloidal gas and liquid phase
To test Eq. (11) for a ­ 2, b ­ 1, a parent stock
of polydisperse PMMA colloid was first characterized
by measuring the sizes of 830 particles from a drie
sample imaged in a transmission electron microscop
To check that our counting was representative, we als
measured the form factor by static light scattering an
compared it [20] to the average form factor calculate
using the measured particle size distribution [21]. Thes
measurements gave for the stock an average radiusRP ­

167 nm, a polydispersitysP ; ´
2
P

1y2
­ 0.18, and third

to second moment ratió3
Py ´

2
P ­ 20.113 6 0.012. The

PS used has molecular weightMw ­ 6.85 3 106 amu.
Its polydispersity, given byMwyMn ø 1.07, does not
impinge upon this study [22]. In cis-decalin at the
experimental temperature (20 6 2 ±C), the PS has a mean
radius of gyrationrg ø 94 nm. The addition of sufficient
PS to the colloidal stock brings about separation int
coexisting colloidal gas and liquid phases [23]; the hig
stock polydispersity precluded the formation of colloida
crystals [24]. Several samples were prepared in the ga
liquid coexistence region. In each case, when pha
separation was complete, the two phases were separa
extracted and the particle size distribution in each wa
analyzed by fitting a Schultz distribution to measure
form factors. This procedure allows us to estimate th
difference in variances of the distributions,Ds2, and
the fractional difference in the means,DRyRP , in each
pair of coexisting phases. In Fig. 1,Ds2 is plotted
againstDRyRP, the error bars reflecting the tolerance o
the fit. Equation (11) predicts a line of proportionality

with slope´
3
Py ´

2
P which, from our measurements of the

stock colloid, is not only of the rightsign and order of
magnitude but is close to the slope of best fit, weighted b
inverse-square uncertainties.

Work is in progress to test a particular case of Eq. (10
namely, D´ ~ s

2
P, using a variety of parent colloidal

suspensions. This power law is somewhat surprising,
one might expect the distance between daughtersD´ to
scale with the widthsP of the parent, sincesP restricts the
available range of species. The reason for theextra factor
sP stems from Eq. (3). The excess chemical potentia
deriving from interactions, causes the concentrations
the two phases to differ. It is a function of species
property´. If it depends only weakly oń, we may expect
little fractionation between phases, as all species fe
approximately the same driving force. So it isdifferences
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FIG. 1. Difference in variances of distributions in daughter
phases vs fractional difference in mean particle radii, fo
various fluid-fluid separations of the same parent sample. Line
Best fit through origin (and uncertainty). Dashed: Gradien
´

3
Py ´

2
P (and uncertainty). Inset: Enlarged near origin.

in Dmex for different ´’s which bias the shapes of the
distributions, making one species partition itself differently
from another. As all species are similar, these difference
are small (of ordersP dDmexyd´). This small “biasing
force” on the shapes of the distributions is the source o
the extra factorsP in the power law. So Eq. (10) is
understood fora ­ 1. Heuristically, Eq. (10) is at least
reasonable fora ­ 2. For a symmetric parent, the biasing
force happens to leave the variances of both daughte
equal to that of the parent. One phase may prefer larg
particles, accentuating the high-´ end of its distribution,
but this is exactly balanced by loss from the low-´ end.
It seems reasonable, however, that the daughters’ widt
should differ if one end of the parent distribution is more
“compact” than the other. That is, one daughter will be
purer than the other if their parent is skewed.

To summarize, we have derived universal laws gov
erning two-phase coexistence in slightly polydisperse sys
tems [Eqs. (10) and (11)], which show that skewness i
the parent is required for purification and that fraction
ation, D´, is dependent on variance rather than width
Experimental results provide support for Eq. (11) and
demonstrate how measurements of one moment permit t
inference of another. It is remarkable that the complexi
ties of polydisperse statistical mechanics should give ris
to universal results of such mathematical simplicity and
experimental utility.
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