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Adiabatic Charge Pumping in Almost Open Dots
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We consider adiabatic charge transport through an almost open quantum dot. We show tha
charge transmitted in one cycle is quantized in the limit of vanishing temperature and one-electron
level spacing in the dot. The explicit analytic expression for the pumped charge at finite temperatu
obtained for spinless electrons. The pumped charge is produced by both nondissipative and diss
currents. The former give a quantized contribution to the transferred charge, whereas the latte
responsible for the corrections to charge quantization which are expressed through the conducta
the system. [S0031-9007(98)06846-X]
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Adiabatic charge pumping occurs in a system subject
to a slow periodic perturbation. Upon the completion o
the cycle, the Hamiltonian of the system returns to it
initial form; however, a finite charge may be transmitte
through some cross section of the system. The natu
question is what is the value of this charge transmitte
through the system during one cycle,Q. This question
does not have a universal answer. Thouless [1] show
that for certain one-dimensional systems with a gap in th
excitation spectrum in the thermodynamic limit the charg
Q is quantized. Such quantized charge pumping could
of practical importance as a standard of electric curre
[2]. The accuracy of charge quantization depends on t
degree of adiabaticity of the process.

The practical attempts at creating a quantized electr
pump use a different approach based on the phenomen
of Coulomb blockade [3,4]. In these kinds of devices, on
uses several single electron transistors (SET) connected
series to increase the accuracy of charge quantization.
least two SET’s are necessary to obtain a nonzero cha
transfer during one cycle.

Recently, another family of the Coulomb blockade de
vices was demonstrated [5]—semiconductor based qua
tum dots. The advantage of these devices is the possibi
of changing not only the gate voltage and thus the avera
electron number in the dot but also the conductance of t
quantum point contacts (QPC’s) separating the dot fro
the leads. By doing so, one can traverse from almost cla
sical Coulomb blockade to the completely open dot whe
the effects of the charge quantization are diminished.

With those semiconductor structures in mind, we theo
retically study in this Letter the following setup for the
adiabatic quantum pump. The device is depicted in Fig.
and consists of a quantum dot connected to two reservo
labeled bya ­ 61 by one channel QPC’s characterized
by reflection amplitudesrastd and capacitively coupled to
the metallic gateG. The gate potential is characterized
by the number of electronsN which minimizes the
electrostatic energy of the dot. Experiments with a simila
setup were reported in Ref. [6].
0031-9007y98y81(6)y1286(4)$15.00
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We show below that the charge adiabatically trans
ferred in one cycle is quantized in the limit of zero tem
perature and zero mean level spacingD. For spinless
electrons it is given by

Q
e

­
1

2pi

I dz
z

, zstd ­
X
a

rastdeiapNstd. (1)

We assume that during the cycle the system does n
go through the degeneracy pointz ­ 0. The degree of
adiabaticity of the process depends on the proximity t
this degeneracy point.

To illustrate this quantization qualitatively, let us first
consider the following trivial limit of the pumping cycle:
(i) The right contact (a ­ 11) is completely pinched off;
(ii) the gate voltage is changed from0 to N0; (iii) the left
contact (a ­ 21) is adiabatically closed. In this stage of
the process the average charge on the dot changes fromN0
to the nearest integern0 (if N0 is not a degeneracy point,
which is assumed,n0 is unique); (iv) the right contact is
opened, and the gate voltage is changed fromN0 back to
0; (v) the left contact is opened. As a result of this cycle
the total charge transferred from left to right is an intege

FIG. 1. Schematic drawing of a quantum dot electrostatical
defined on a surface of a two-dimensional electron gas. Th
dot is connected to two leads by single channel QPC’s label
by a. The voltages on the gates “G” and “61” determine,
respectively, the average electron number in the dot,Nstd, and
the reflection amplitudes,r61std, in the QPC’s.
© 1998 The American Physical Society
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n0. The nontrivial statement is that even for contac
which stayweakly reflecting at all times during the cycle
the total transferred charge is still quantized and is giv
by Eq. (1).

We assume that the electrons in the leads are nonin
acting and the interaction between the electrons on the
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is described by the standard model of Coulomb blocka
for strong tunneling [7,8]; see Sec. IIIC of Ref. [9] for th
discussion of the applicability of this model. If the dot i
connected to the leads by single channel QPC’s the s
tem can be treated within the one-dimensional effecti
Hamiltonian [7,8] (we put̄h ­ kB ­ 1 everywhere)
Ĥstd ­ iyF

X
a

Z 1`

2`

dxfcy
L,asxd≠xcL,asxd 2 c

y
R,asxd≠xcR,asxdg 1 yF

X
a

srastdcy
R,as0dcL,as0d 1 H.c.d

1 Ec

√X
a

Z 1`

0
dx : c

y
L,asaxdcL,asaxd 1 c

y
R,asaxdcR,asaxd : 1Nstd

!2

. (2)
n
,
.

t
e

e

The first two terms in Eq. (2) describe the nonintera
ing electrons in the left (a ­ 21) and the right (a ­ 11)
QPC, respectively: The first term is the linearized vers
of the kinetic energy (yF is the Fermi velocity), and the
second term corresponds to backscattering in the QP
We restrict ourselves to the case of small reflection a
plitudes,rastd ø 1. Finally, the last term describes th
effect of the Coulomb blockade in the dot, andEC is its
charging energy. For simplicity, we explicitly consid
the case of spinless electrons; the results for the elect
with spins will be presented at the end of the paper. T
only difference of our Hamiltonian from those consider
before [7–9] resides in its time dependence. Since u
the completion of the cycle the total charge of the dot
turns to its original value, the integrated current can
calculated through any cross section of the system.
convenience we take half of the sum of the currents flo
ing through the left and right point contacts:

Î ­
eyF

2

X
a

s: c
y
L,as0dcL,as0d 2 c

y
R,as0dcR,as0d :d ,

(3)

wheree is the electron charge.
Similar to Ref. [8], the Hamiltonian (2) can b

bosonized according to the rules

cLyR,asxd ­
ĥap
2pl

3 exp

0@6i
f̂

I
LyR,asxd 1 af̂

C
LyR,asxd

p
2

1A ,

(4)

whereĥa are Majorana fermions (ĥa ­ ĥy
a , hĥa , ĥa0j ­

2da,a0), whereas the scalel characterizes the larg
momentum cutoff and is of the order of the Ferm
wavelength.

Instead of the left and the right modes in Eq. (4) it
convenient to introduce the even and odd modesf̂

I ,C
6 as

f̂
i
LyRRsxd ­

f̂i
1s6xd 6 f̂i

2s6xd
p

2
; i ­ I , C . (5)

The bosonic operatorŝf
I ,C
6 sxd satisfy the following com-

mutation relations:
t-

on

’s.
m-
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is

ff̂i
1sxd, f̂

j
1sydg ­ ff̂i

2sxd, f̂j
2sydg

­ 2ip sgnsx 2 yddij ,

ff̂i
2sxd, f̂

j
1sydg ­ ipdij; i, j ­ I , C . (6)

The last of Eqs. (6) ensures the correct anticommutatio
relation between left and right moving fermions, however
this subtlety will not be important for the problem at hand

The odd modesf̂i2 are decoupled from the rest of
the Hamiltonian and do not contribute to the curren
(3), hence we can omit them. The relevant part of th
Hamiltonian (2) acquires the following form:

Ĥstd ­
yF

4p

X
i­I ,C

Z 1`

2`

dx

µ
≠f̂i

1sxd
≠x

∂2

1 Ec

"
f̂

C
1s0d
p

2 N

#2

1
yF

2pl

X
a

hrastd expfiaf̂C
1s0d 1 if̂I

1s0dg

1 H.c.j . (7)

The bosonized current operator (3) becomes

Î ­
eyF

2p

≠f̂I
1

≠x

Ç
x­0

. (8)

As one can see from Eq. (7), the modef
C
1s0d is pinned

by the charging energyEC to the valuepN . SinceEC is
the large scale in the problem, for the description of th
low energy dynamics of the system we can integratef

C
1

out [7] and obtain the Hamiltonian of the form

Ĥ 0std ­
yF

4p

Z 1`

2`

dx

√
≠f̂I

1sxd
≠x

!2

1

s
gyFEC

2p3l
hzstd expfif̂I

1s0dg 1 h.c.j , (9)

where the complex function of timezstd is given by
Eq. (1) and lng ­ C ø 0.5772 is the Euler constant.

The Hamiltonian (9) reduces to a noninteracting form
through the introduction of the fermion fields [7]

Ĉsxd ­
ẑ

p
2pl

expfif̂I
1sxdg , (10)
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whereẑ is a Majorana fermion.
The re-fermionized Hamiltonian (9) can be conve

niently written in a matrix form

ĤFstd ­
1
2

Z 1`

2`

dxŶysxdĤ0Ŷsxd , (11a)

Ŷysxd ­ fĈysxd, Ĉsxd, z g , (11b)

Ĥ0 ­

0B@ 2iyF≠x 0 kzpstddsxd
0 iyF≠x 2kzstddsxd

kzstddsxd kzpstddsxd 0

1CA .

(11c)

where k ­
p

gyFEcyp2. The re-fermionized current
operator (8) acquires the form

ÎF ­ eyF : Ĉys0dĈs0d : (12)

Next we define the matrix Green function
Ĝ,st, t0; x, x0d which includes both normal and anomalou
components

Ĝst, t0; x, x0d ­ 2ikTtŶsx, td ≠ Ŷysx0, t0dl , (13)

where k· · ·l denotes averaging over the quantum state
the system. The retarded and advanced Green functi
ĜRyAst, t0; y, y0d are defined in a similar manner.

All of the observables can be expressed through
Green function at almost coinciding times,Ĝ st; x, x0d

Ĝ st; x, x0d ­ Ĝst, t 1 0; x, x0d , (14)

whereĜst, t0; x, x0d is defined in Eq. (13). For example
the instantaneous current through the system is given b

Istd ­ 2ieyFĜ11st; x ­ 0, x0 ­ 0d . (15)

In the leading adiabatic approximation the Green fun
tions of the system coincide with those in equilibrium
the instantaneous value ofz, and the current (15) vanishes
Therefore to find the current flowing through the syste
in response to an adiabatic change of the Hamiltonian
have to find the first nonadiabatic correction to the Gre
function (14). It obeys the evolution equation

dĜ std
dt

­ 2ifĤ0std, Ĝstdg , (16)

whereĤ0std is given by Eq. (11c). From this equation i
follows that the first nonadiabatic correction to the Gre
function (14) is given by

dĜstd ­ 2
Z dv

2p
ĜR

0 fzstd, vg
dĜ0fzstdg

dt
ĜA

0 fzstd, vg ,

(17)

where Ĝ0fzstdg is the equilibrium Green function (14)
for the instantaneous value of the parameterzstd, and
Ĝ

RyA
0 fzstd, vg are the frequency representations for th

retarded and advanced Green functions at fixedzstd. They
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can be found from the following equations:

fv6diagf1, 1, 1y2g 2 Ĥ0sxdgĜRyA
0 fzstd, v; x, x0g

­ diagfdsx 2 x0d, dsx 2 x0d, 1g , (18a)

Ĝ0fzstdg ­
Z dv

2p
nFsvd fĜA

0 sz, vd 2 ĜR
0 sz, vdg ,

(18b)

wherenFsvd ­ f1 1 expsvyT dg21 is the Fermi distribu-
tion function andv6 ; v 6 i0.

We solve Eq. (18a) for the Green functions, substitut
the result in Eqs. (18b) and (17), and thus find the curre
(15). Integrating the result over the cycle period we
find the charge transmitted during the cycle. It can b
represented through the dimensionless conductance of
systemg (in units ofe2y2p h̄) as

Q ­
1

2pi

I dz
z

f1 2 2gsjzj2, T dg , (19)

where the dimensionless conductance is given by [8]

g ­
1
2

2
gjzstdj2Ec

2p3T
z

√
2,

1
2

1
jzstdj2gEc

p3T

!
,

with z sx, yd being the Riemann zeta-function. At low
temperatures,T ø jzj2Ec, conductance vanishes asg ~

T2ysjzj2Ecd2, which means that the transmitted charg
tends to its quantized value. At high temperaturesT *

jzj2Ec the conductance approaches the classical val
g ­ 1y2, and the pumped charge (19) vanishes. I
general, forg fi 0, the pumped charge depends on th
shape of the contourzstd and is not a topological number.

We stress that Eq. (19) for the transmitted charg
is given by the sum of two terms: (i) The first one
arises from nondissipative currents (this contribution i
quantized and represents a topological invariant of th
cycle); (ii) the second one, containing the conductanc
is due to dissipative currents generated by the cycling
the dot.

This fact is not accidental and becomes more transpa
ent from the following consideration, which applies to
a more general class of systems. The time depende
Hamiltonian can be written aŝHstd ­ ÂystdĤ0stdÂstd,
where Ĥ0 is diagonal. In the adiabatic limit the trans-
mitted charge can be most conveniently evaluated by g
ing to the adiabatically rotating basisjc̃istdl ­ Âstdjcistdl
(the “rotating axis representation” [10]) and calculat
ing the current in response to the arising perturbatio
i≠tÂstdÂystd using the Kubo formula

I ­ 2
Z 0

2`

dtkf≠t ÂstdÂystd, Îs0dgl . (20)

Now let us apply Eq. (20) to the case of an ope
dot, which is connected to the leads by two groups o
channels, denoted by indexai ­ 61, and is described
by the Hamiltonian similar to Eq. (2). For this purpose
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we introduce the partial particle number operator in eac
channel

n̂i ­
Z `

0
dxc

y
i saixdcisaixd . (21)

We notice that, even though the average particle numb
kn̂ilH in each channel is infinite, its change during
the pumping cycle is a well defined quantity and i
determined by the gate voltageNstd and the reflection
coefficients rj. The calculation is facilitated by the
explicit form of the unitary operator

Âstd ­
Y

j

exp

√
ipajkn̂jlH

yF

Z 1`

2`

dxÎisxd

!
, (22)

where Îjsxd is the partial particle current operator in
channelj at pointx,

Îjsxd ­
i

2m
fcy

j ≠xcj 2 s≠xc
y
j dcjg . (23)

Recalling that the time evolution of operators atx fi 0
corresponds to free propagation with velocityyF we read-
ily express the pumping current through the dimensionle
partial conductancesgij between the channels

I ­ 2
e
2

X
i,j

aj
dkn̂ilH

dt
sdij 2 gijd ,

gij ­ 2pi
Z 0

2`

dt tfÎist, 0d; Îjs0, 0dg . (24)

For the model of spinless electrons, Eq. (24) reproduc
Eq. (19), sinceg1,21 is the two terminal conductance of
the system,g1,1 ­ g1,21 ­ g because of charge conser
vation, andkn̂1 1 n̂21lH ­ 2Nstd because of the large
charging energy. The explicit relationkn̂1 2 n̂21lH ­
2

1
p Im ln zstd with z given by Eq. (1) requires the model

assumption (2).
Equation (24) holds even in the case when the elas

cotunneling [11] cannot be neglected. As shown i
Ref. [9] the elastic returns in the strong tunneling cas
can be described by anN-independent action. Therefore
the explicit form of the unitary operator (22) and Eq. (24
are still valid. This observation gives us an estimate o
Dysjzj2ECd for the sample-specific [9,12] correction to
the quantized value of the charge due to the finite lev
spacing in the dotD. Indeed, the conductance in the
valley of the Coulomb blockade remains finite even i
the zero-temperature limitg . Dyep, see Ref. [9], with
ep being the energy scale for the pinning of the curren
mode. For the problem at handep ­ jzj2EC , according
to Ref. [8], and we obtain the aforementioned estimate.

Let us now apply Eq. (24) to strong inelastic cotunnelin
of electrons with spin. Because of the spin symmetry an
charge conservation we have

P
s g

s,s0

a,a0 ­ gy2, wheres is
the spin index andg is the two terminal conductance, and
we readily obtain

I ­ 2
e
2

X
a,s

a
dkn̂s

alH

dt
f1 2 gstdg . (25)
h

er
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ss
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)
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At high temperatureg ! 1 and pumping is suppressed
whereas at low temperatures the conductance vanis
as T2 [8]. The explicit relation betweenkn̂s

alH and the
parameters of the Hamiltonian is a difficult problem whic
was not solved. However, for the anisotropic case wh
the reflection coefficient in one contact is much strong
than in the other, one can show that

P
a,s adkn̂s

alHydt ø
fdNstdydtg sgns

P
a ajrajd. Moreover, if in the transition

region,r1 , r21, we do not go through a degeneracy po
cospN ­ 0 the pumped charge remains quantized at z
temperature and the problem is topologically equivalen
the spinless case. All estimates of the finite level spac
effect remain the same as for the spinless case.

To summarize, we considered adiabatic charge trans
through a quantum dot. We have shown that, even in
case of small backscattering in the channel, when quan
fluctuations of the dot charge are large, the transmit
charge is still quantized. We have calculated correction
the quantized value of the charge due to finite tempera
and the level spacing in the dot. These corrections
expressed through the conductanceg and originate from
the dissipative currents generated by pumping.
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