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Adiabatic Charge Pumping in Almost Open Dots
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We consider adiabatic charge transport through an almost open quantum dot. We show that the
charge transmitted in one cycle is quantized in the limit of vanishing temperature and one-electron mean
level spacing in the dot. The explicit analytic expression for the pumped charge at finite temperature is
obtained for spinless electrons. The pumped charge is produced by both nondissipative and dissipative
currents. The former give a quantized contribution to the transferred charge, whereas the latter are
responsible for the corrections to charge quantization which are expressed through the conductance of
the system. [S0031-9007(98)06846-X]

PACS numbers: 73.23.Hk, 72.10.Bg, 73.40.Ei

Adiabatic charge pumping occurs in a system subjected We show below that the charge adiabatically trans-
to a slow periodic perturbation. Upon the completion offerred in one cycle is quantized in the limit of zero tem-
the cycle, the Hamiltonian of the system returns to itsperature and zero mean level spacifig For spinless
initial form; however, a finite charge may be transmittedelectrons it is given by
through some cross section of the system. The natural 1 dz _
question is what is the value of this charge transmitted — = 5— ¢ . 2(0) = D ra(0)e ™0, (1)
through the system during one cycl@, This question ¢ Tz a
does not have a universal answer. Thouless [1] showe@/e assume that during the cycle the system does not
that for certain one-dimensional systems with a gap in thg0 through the degeneracy point= 0. The degree of
excitation spectrum in the thermodynamic limit the chargeadiabaticity of the process depends on the proximity to
Q is quantized. Such quantized charge pumping could b#his degeneracy point.
of practical importance as a standard of electric current TO illustrate this quantization qualitatively, let us first
[2]. The accuracy of charge quantization depends on theonsider the following trivial limit of the pumping cycle:
degree of adiabaticity of the process. (i) The right contact¢ = +1) is completely pinched off;

The practical attempts at creating a quantized electrofii) the gate voltage is changed frobto No; (iii) the left
pump use a different approach based on the phenomenégntact ¢ = —1) is adiabatically closed. In this stage of
of Coulomb blockade [3,4]. In these kinds of devices, onghe process the average charge on the dot changes\fisom
uses several single electron transistors (SET) connected @ the nearest integer (if No is not a degeneracy point,
series to increase the accuracy of charge quantization. Athich is assumedy, is unique); (iv) the right contact is
least two SET'’s are necessary to obtain a nonzero charg@ened, and the gate voltage is changed frgnback to
transfer during one cycle. 0; (v) the left contact is opened. As a result of this cycle

Recently, another family of the Coulomb blockade de-the total charge transferred from left to right is an integer
vices was demonstrated [5]—semiconductor based quan-
tum dots. The advantage of these devices is the possibility
of changing not only the gate voltage and thus the average
electron number in the dot but also the conductance of the
quantum point contacts (QPC’s) separating the dot from
the leads. By doing so, one can traverse from almost clas-
sical Coulomb blockade to the completely open dot where o=—1 dot =1
the effects of the charge quantization are diminished.

With those semiconductor structures in mind, we theo-
retically study in this Letter the following setup for the
adiabatic quantum pump. The device is depicted in Fig. 1
and consists of a quantum dot connected to two reservoirs
labeled bya = *=1 by one channel QPC’s characterized
by reflection amplitudes, (1) and capacitively coupled to FIG. 1. Schematic drawing of a quantum dot electrostatically

the metallic gateG. The gate potential is characterized defined on a surface of a two-dimensional electron gas. The
by th b f lectronsy which minimi th dot is connected to two leads by single channel QPC's labeled
y the number of electronsv._which minimizes the y «. The voltages on the gate&;" and “+1” determine,

electrostatic energy Of the dot. EXperimentS with a Similarrespectivew, the average electron number in the N(ﬁt)’ and
setup were reported in Ref. [6]. the reflection amplitudes,- (), in the QPC'’s.
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ng. The nontrivial statement is that even for contactsis described by the standard model of Coulomb blockade
which stayweakly reflecting at all times during the cycle for strong tunneling [7,8]; see Sec. IlIC of Ref. [9] for the
the total transferred charge is still quantized and is givenliscussion of the applicability of this model. If the dot is
by Eq. (2). connected to the leads by single channel QPC'’s the sys-

We assume that the electrons in the leads are nonintetem can be treated within the one-dimensional effective
acting and the interaction between the electrons on the|dda{amiltonian [7,8] (we puti = kg = 1 everywhere)

0 = ivr Y [ 00 ) ~ U500 ] + v SO O1.0(0) + He)

too 2
+ENY | dx: gl alax)pralax) + gl o(ax)pralax) : +N @) | . ®)
> JO

The first two terms in Eq. (2) describe the nonintera|ct- [L(x), dL (] = [~ (x), 7 (y)]
ing electrons in the left¢ = —1) and the right& = +1) . _ s
QPC, respectively: The first term is the linearized version ) = —imsgrix = y)di;,
of the kinetic energy« is the Fermi velocity), and the (b (x), pL(y)] = imdij; i,j=1,C. (6)
second term corresponds to backscattering in the QPC’ $
We restrict ourselves to the case of small reflection am-
plitudes, r,(t) < 1. Finally, the last term describes the
effect of the Coulomb blockade in the dot, aAd is its
charging energy. For simplicity, we explicitly consider
the case of spinless electrons; the results for the electro
with spins will be presented at the end of the paper.
only difference of our Hamiltonian from those con3|dered
before [7-9] resides in its time dependence. Since upon ) = 2F f <3¢+(X)>
the completion of the cycle the total charge of the dot re- e
turns to its original value, the integrated current can be )
calculated through any cross section of the system. For n Ec|: $5(0) _ N:|

he last of Egs. (6) ensures the correct anticommutation
relation between left and right moving fermions, however,
this subtlety will not be important for the problem at hand.

The odd modesh— are decoupled from the rest of
the Hamiltonian and do not contribute to the current
) hence we can omit them. The relevant part of the
amiltonian (2) acquires the following form:

convenience we take half of the sum of the currents flow-
ing through the left and right point contacts:

A

+ S {ra(exdiad$0) + idl(0)]
= 36 009200 — ¥faOWral0) ). 2

3) + H.c.}. @)
wheree is the electron charge. The bosonized current operAaior (3) becomes
Similar to Ref. [8], the Hamiltonian (2) can be j = CVF ags ®)
bosonized according to the rules 27 Ix ly=0
(x) = o As one can see from Eq. (7), the mogd&(0) is pinned
Vi/ralx) = NN by the charging energi¢ to the valuerN. SinceE¢ is
5C the large scale in the problem, for the description of the
X a X
X exp< d)L/R )+ adr/pal )> , low energy dynamics of the system we can integm&
V2 out [7] and obtain the Hamiltonian of the form
4
R st — ) A0 =2 [ 220
wheref, are Majorana fermionsif, = 7.}, {f1a, N’} = ar ). ax

284.07), Whereas the scale. characterizes the large

momentum cutoff and is of the order of the Fermi v
wavelength. + y rt C{ (1) exdid L (0)] + hel, (9)

Instead of the left and the right modes in Eq. (4) it is
convenient to introduce the even and odd mo&ﬂé’g as

$L(xx) £ ¢l (x)

where the complex function of time(r) is given by
Eq. (1) and Iny = C = 0.5772 is the Euler constant.
The Hamiltonian (9) reduces to a noninteracting form

PL/mr(x) = V2 ; i=1¢. 0 through the introduction of the fermion fields [7]
The bosonic operatoréfiyc(x) satisfy the following com- W(x) = ¢ — 10
mutation relations: (x) N Hig: ()], (10)
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where/ is a Majorana fermion. can be found from the following equations:
The re-fermionized Hamiltonian (9) can be conve- . . AR/A
niently written in a matrix form [w-diag[1,1,1/2] — Hy(01Go "[2(1), @3 x,.x'

) Lo o = diads(x — x'),8(x — x/), 1], (18a)
Hp(t) = B dxYT(0)H, Y (x), (11a) . do X .
) = Gilew] = [ 52 ne(@) 164 c.0) — G )],
Y = W), ¥ ), ], (11b) i 18b)
—ivpd, 0 kz* ()6 (x) h - ~1is the Fermi distribu-
i — 0 ivpa, ez (1)8(0) w erenF(_w) [1 +§xp(w+/r)] is the Fermi distribu
0 K2(18(x) KZ*(55(X) 0 tion function andw+ = o * 0.

We solve Eqg. (18a) for the Green functions, substitute
(11¢)  the resultin Egs. (18b) and (17), and thus find the current
where k = \JyvpE./72. The re-fermionized current (15). Integrating the result over the cycle period we
o yur /7 find the charge transmitted during the cycle. It can be
operator (8) acquires the form g '
A . . represented through the dimensionless conductance of the
Ir = evp : ¥THO)P(0) : (12)  systemg (in units ofe2/27 /) as

Next we define the matrix Green function

_ L [dz 2
G=(t,1"; x, x") which includes both normal and anomalous Q=5 jg . [1 —2g(z|5, 7], (19)

components where the dimensionless conductance is given by [8]
G, t'sx,x") = —iT,Y(x,1) ® YT(x', 1)), (13) 1 ylz(H)PE. {(2 1 . |Z(t)|27Ec)
where(- --) denotes averaging over the quantum state of 2 23T T2 3T '

the system. The retarded and advanced Green functio
GR/A(t,1';y,y') are defined in a similar manner.

All of the observables can be expressed through th
Green function at almost coinciding timeg(z; x, x’)

With {(x,y) being the Riemann zeta-function. At low
temperaturesT < |z|>E., conductance vanishes gs=
%2/(|z|2EC)2, which means that the transmitted charge
tends to its quantized value. At high temperatufes
G(t:x,x') = G(t,t + 0:x,x), (14) lzI*E. the conductance approaches the classical value
R g = 1/2, and the pumped charge (19) vanishes. In
whereG(t,1'; x,x') is defined in Eq. (13). For example, general, forg # 0, the pumped charge depends on the
the instantaneous current through the system is given byshape of the contous(z) and is not a topological number.
_ . A ;L We stress that Eq. (19) for the transmitted charge
1) = —ievrGultx = 0,x° = 0). (15) i given by the sum of two terms: (i) The first one
In the leading adiabatic approximation the Green funcarises from nondissipative currents (this contribution is
tions of the system coincide with those in equilibrium atquantized and represents a topological invariant of the
the instantaneous value gfand the current (15) vanishes. cycle); (ii) the second one, containing the conductance,
Therefore to find the current flowing through the systemis due to dissipative currents generated by the cycling of
in response to an adiabatic change of the Hamiltonian wihe dot.
have to find the first nonadiabatic correction to the Green This fact is not accidental and becomes more transpar-

function (14). It obeys the evolution equation ent from the following consideration, which applies to
A a more general class of systems. The time dependent
ag(@) _ —i[Ho(1), G ()], (16) Hamiltonian can be written adl(r) = AT()Hy(HA(),
dt where A, is diagonal. In the adiabatic limit the trans-

whereH,(t) is given by Eq. (11c). From this equation it mitted charge can be most conveniently evaluated by go-

follows that the first nonadiabatic correction to the Greernd t0 the adiabatically rotating badi: (1)) = A1)l (1))
function (14) is given by (the “rotating axis representation” [10]) and calculat-

G[ 0] ing the current in response to the arising perturbation
. do . d z(t A . ~ At .
o6 =~ f 99 G810, 01 L Gz, 0], HAWMATE) using the Kubo formula

0
an 1=~ [ agaawitodon. o

where Go[z()] is the equilibrium Green function (14)  Now let us apply Eq. (20) to the case of an open
ff)lre /ghe instantaneous value of the paramet@n, and  dot, which is connected to the leads by two groups of
Gy’ [z(r), w] are the frequency representations for thechannels, denoted by index; = *1, and is described

retarded and advanced Green functions at fixed They by the Hamiltonian similar to Eq. (2). For this purpose
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we introduce the partial particle number operator in eacht high temperatures — 1 and pumping is suppressed,
channel whereas at low temperatures the conductance vanishes
asT? [8]. The explicit relation betweeK!,)y and the
parameters of the Hamiltonian is a difficult problem which

We nac tha, e though te verage paricle )51 SOhed Horiever for e aniatopi case where
(A;)y in each channel is infinite, its change during,[h 9

the pumping cycle is a well defined quantity and is. o0 in the other, ane can shaw t@kr“?‘d(flwﬁ/dt..z
deteIrDmin(reJd %y )t/he gate voltagé(s) and qthe reﬁection [dN(0)/dt]sgr(3.q alral). Moreover, if in the transition

coefficients r;. The calculation is facilitated by the L%gslowrlzwo trh‘é’Wufndzgcétrgr)tgr%urgzissdegzggzrggyaﬁggo
explicit form of the unitary operator 7 bump 9 9

. . o temperature and the problem is topologically equivalent to
Ar) = nexp<wf dx?i(x)>, (22) the spinless case. All estimates of the finite level spacing
: vr —o
J
where ij(x) is the partial particle current operator in

effect remain the same as for the spinless case.
channelj at pointx,

n; = (21)

fm dx¢iT(aix)‘pi(aix) :
0

To summarize, we considered adiabatic charge transport
through a quantum dot. We have shown that, even in the
) case of small backscattering in the channel, when quantum
Foy — Lot L Ty, fluctuations of the dot charge are large, the transmitted
1jx) 2m 5 0t = (Oxthj W] (23) charge is still quantized. We have calculated corrections to
Recalling that the time evolution of operatorsaat: 0 the quantized value of the charge due to finite temperature
corresponds to free propagation with veloaity we read- and the level spacing in the dot. These corrections are
ily express the pumping current through the dimensionlesexpressed through the conductagcand originate from
partial conductances;; between the channels the dissipative currents generated by pumping.
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