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Interfacial Structural Changes and Singularities in Nonplanar Geometries
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We consider phase coexistence in a thin-film Ising magnet with opposing surface fields and nonplanar
walls. We show that the loss of translational invariance has a strong and unexpected nonlinear influence
on the interface structure and phase diagram. We identify four nonthermodynamic singularities, where
there is a qualitative change in the interface shape. In addition, at the finite-size critical point, the
singularity in the interface shape is characterized by two critical exponents in contrast to the planar
case (which is characterized by one). Similar effects should be observed for prewetting at a corrugated
substrate. Analogy is made with the behavior of a nonlinear oscillator showing chaotic dynamics.
[S0031-9007(98)06836-7]

PACS numbers: 68.45.Gd, 68.10.—m, 68.35.Rh

There are a number of well-studied examples of fluidintroduction of a slight nonplanar perturbation to the inter-
interfacial phenomena for planar systems in which surface can be viewed profitably by making an analogy with
face phases with distinct adsorptions coexist along a linéhe classical mechanics of an extremely sensitive nonlinear
of first-order phase transitions which terminates at a surdynamical system exhibiting chaotic behavior [5]. As we
face critical point. Examples include the prewetting tran-will see, the interface behavior may be elegantly portrayed
sition associated with first-order wetting [1] and alsoas the temperature evolution of a phase plane plot, simi-
interfacial localization in thin-film magnets (with opposite lar to that employed in dynamical systems, allowing us to
surface fields) associated with confinement effects at critidistinguish different qualitative types of interface shapes
cal wetting [2]. In both cases, the difference in adsorptiorseparated by nonthermodynamic singularities.
between the two phases vanishes continuously as the criti- To begin, we recall the relevant properties and phase
cal point, signifying the end of a two-phase coexistencediagram of the planar system prior to a discussion of
is approached. This second-order phase transition is chahe nonplanar generalization. The transition that we con-
acterized by the critical exponents belonging to the two-centrate on occurs in a thin-film magnet with opposing
dimensional Ising universality class (for three-dimensionakurface fields, but the phenomena are generic to other
bulk systems) since the adsorption difference acts as situations such as prewetting at a planar wall. Consider
scalar order parameter [3,4]. In this Letter, we describehen an Ising-like thin-film magnet of width, and infinite
a wealth of new interfacial structural changes and singutransverse area in zero bulk field and below the bulk criti-
larities which emerge when the analogous phenomena acal temperatur@™'* with surface fields; andh, = —h,
considered in slightly nonplanar geometries and which aracting on the spins in the = 0 andz = L, planes, re-
intimately associated with nonlinear behavior. In additionspectively. We further suppose (through a judicial choice
to a shift in the finite-size (FS) critical point (compared of surface enhancement [4]) that in the semi-infinite limit
to the planar confined system), the shape of the nonpla-, — o« each surface undergoes a critical wetting transi-
nar interface undergoes a number of structural changes #en at temperaturd’,,. For such a system, MF [2] and
we move along and beyond the line of coexistence. Thisimulation studies [3] show that the finite-size phase dia-
behavior has no counterpart in the planar geometry, andram is dominated by wetting effects which are able to
has not been reported previously. Moreover, as the shiftesuppress bulklike coexistence over a large temperature
surface critical point is approached, the function describingegime. At sufficiently low temperatures < T.(L,),
the shape of the nonplanar interface shows nonanalyticitiesith the finite-size critical temperature satisfyifigL,) <
which are characterized by two critical exponents. WhileT,,, phase coexistence is possible between phases corre-
one of these appears to be identical with the usual criticadponding to an interface being bound to either wall. As the
exponent describing the singularity in the total (or avertemperature increases, the interface position moves con-
age) adsorption, the general identification of the second isnuously to the middle of the system and for> T.(L,)

a more difficult problem, although scaling arguments (con-only one phase is possible. Thus, in the temperature win-
sistent with our explicit results) suggest that its value is redow T?'* > T > T, the FS effects suppress bulklike
lated to the energy density. Our predictions are based ophase coexistence for all,. This temperature range is

a detailed numerical analysis of a simple mean-field (MFlso characterized by a near soft-mode phase since the
model of interfacial behavior which we believe is qualita-transverse correlation lengtfy is extremely large due
tively correct beyond MF approximation (in three dimen-to capillary-wave-like excitations. These features can be
sions). These rather dramatic effects emanating from theost easily understood using a simple effective interfacial
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Hamiltonian model [2]:

H[(] = f dr[%(V@z + W(f;LZ)}, (1)

z{ andz!? depend only on a single coordinate, gay),
the interfacial behavior generated is sufficiently complex
to warrant attention within the simple model above.
writing z{(x) = a+/2 sin(gx), we have considered

where £(r) is the collective coordinate describing the the geometry for whichy(" = z? although, of course,
interface position at vector displacemant (x,y) along many other choices are possible [6]. The rms width
the wall andX, is the stiffness coefficient of the up-spin— and wavelength., = 27 /¢ of the wall corrugation are
down-spin interface. The total finite-size binding potentialassumed to be small and large, respectively, in comparison
W(¢; L) acting on the interface (whose minima determinewith the bulk correlation length. With these assumptions,
the MF locatiory s of the interface) is the sum of the two the wetting transition remains second order and located at
contributions from each wall: T,, in the semi-infinite limit [7].

W(e:L.) = Wal€) + WalL. — ). @ The equilibrium nonplanar interfacial profils €, (x)

satisfies the Euler-Lagrange equation
whereW..(€) is the appropriate semi-infinite binding po-

: _ 20,00 = WL, — 2)) = WL(L, + 2 = €,), (5)

te_ntlal for the ranges of forpes in the model._ For syStem%vhere the dot and prime signify differentiation with re-

with short ranged forces this is usually specified as [1] spect tar and argument, respectively. Periodic boundary
W) = ao(T — Ty)e ““ + boe ¢, £>0, (3)

conditions are imposed after a large multiple of wave-
. - . . lengths L,. Two preliminary remarks are as follows:

with ao, by positive constants and being the inverse bulk Firstly, the Euler-Lagrange equation is inversion symmet-

correlation length. Fof' < T.(L.),WithTe(L.) = Tw = |ic'so that. if¢ (x) is a solution £*(x) = L. — €,(x +

4(bo/ag)e /2 in MF approximation, the total potential on The B : Syt ‘ v -

0/¢0 " > 1/q) is also a solution with the same free energy and is
W(¢; L,) has a double well structure with two equal min-
imaatl, < L.,/2and{;, = L, — €,. AsT — T.(L;)™,

distinct from ¢, (x) in the two-phase regime. Secondly,
the adsorption differencal’ — 4my(L./2 — €,) (with we have established numerically that the stable phases all
mg the bulk magnetization) vanishes likd” ~ [T.(L,) —

have the same wavelength as the wall corrugatign
. - However, this is not the case for the metastable states
T.]2, corresponding to a standard order-disorder trans
tion. ForT > T.(L,), the potentialW({;L,) has only

I[6]. Finally, we note that an elegant description of the
L . interfacial shape is afforded by a reduced phase plane
one minimum at{, = L,/2 and the correlation length N e hel istinguish diff
&~ exL:/4, Interestingly, most of these quantitative MF plot £/v2a vs £/y2aq and helps distinguish different
predictions are confirmed by extensive Monte Carlo simu

types of structural regimes. A section of the equilibrium
lation studies which established that the true asymptotighase diagram, with swtqble rgduced units [8]’. is shown
critical regime, where we can expect Onsager-like beha h Fig. 1 and show;la critical line (corresponding to an
ior AT ~ [T (,L ) — T.]'/3, is extremely small [3]. Al order-disorder transition) and four nonthermodynamic sin-
these facts scupi)ort Mi: théory as an excellent qu.amtitativ%uIamIes where_ there is a qualitative Ch.ange Qf mt_erfac_lal
description of the thin-film system Structure. In this way, we are able to distinguish five dif-

We now wish to consider the MF phase diagram forferent interfacial types (see Fig. 2).

the analogous phase transition in a slightly nonplanar
geometry. We will take as our starting point the simplest 20
possible phenomenological model of this system which
generalizes (1) and will suppose that the configuration
energy is specified by
1= f dr
2 o
X 7(V€) + WKL,z
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where z()(r) and z?(r) describe the (small) deviations
of the walls near the = 0 andz = L, respectively, and
W(g;Lz’ Zivl), Zivz)) = Wa(€ — stl)) + WOO(LZ + ZSVZ) — 0.
While the model could certainly be improved by including
further coupling terms involvingv¢ - Vz,, with associ- ) _
ated position dependent (stifiness) coefficients, we d§!G- 1. Phase diagram foi. =10 and ¢ = 2/10 'in

i t th ¢ K ianificant diff i threduced units [8]. The solid line separates the ordered and the
not expect these to make any significant dirierence 10 g rgered phases. The dashed lines show the location of the

in_terfacial behavior desc_ribed here [6]. In any case, eveRonthermodynamic singularities and divide the phase diagram
with the further assumption of corrugated walls such thatnto five regions.
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FIG. 2. Behavior of the system fdr, = 10, a = 1.5, andg = 27 /10 showing the shape of the interface in the different regimes

(A) and their corresponding phase portraitss € (B). The circle represents the point= 0. For clarity, scales related t are
omitted but can be checked in Fig. 3. The loci of the interface minima and maxima are represented as a function of the temperature
(C). The FS critical temperaturg.(L,, a,q) = 0.845 is represented by a thin line and is within regime .

Phase coexistence and order are most easily revealgegratures, the interface is closely bound to one of the walls

through the mean interfacial height and follows the corrugation [see Fig. 2(A)]. Over one pe-
1 L, riod L., the graph(, (x) has one maximum and one mini-
& = o / dx €,(x) (6)  mum which are in phase with the wall functief} (x). For
X 0

this case, the phase plane plot is a simple loop. Neverthe-
which is single valued(€, = L./2) in the disordered less, notice that its form is not precisely circular, indicating
regime above the critical temperatufg(L., a, g), but is  that nonlinear effects are important even when the interface
double valued (withtg = L, — €,) in the order regime, is close to the wall. On increasing the temperature, the in-
analogous to¢, and ¢, for the planar system. Our terface smoothly deforms and shows a number of nonther-
numerics indicate that the singularity i, is of the  modynamic singularities, where the minima and maxima of

expected type: the graph undergo a series lofurcations These reveal
L, A2 >0 themselves as the appearafndisappearance of loops in
5 “h= [ 0 ifr<o° (7)  the phase plane portrait, as illustrated in Fig. 2(B), which
also shows the locus of the maxighminima with tem-

where we have introduced the scaled temperature variabjgerature [Fig. 2(C)]. Corresponding profiles are shown in
t =[T.(L,,a,q) — T]/T. In addition to the mean inter- Fig. 2(A). Two counterintuitive features are worth empha-
face height, however, the shape function shows a numbeizing here. Firstly, there are two regimes, Il and IV, where
of qualitative changes with temperature. At very low tem-the interface shape has two and three maxima per wave-
length of the wall corrugation. Secondly, in the vicinity of
the order-disorder transition, regime lll, the interface shape

o7 / is similar to the wall (i.e., there is only one mamin pair
0.50 0 o o, | per period) but isout of phasewith it. _F_inally, at high
————————————————————— temperatures above the two supercritical nonthermody-
0.25 | | namic singularities, the interface shape returns to that of a
simple sinusoidal-like function in phase with the wall,
0.00 | ) and the phase portrait is basically a circle of radiust
Y. o q*&))~" centered aL, /2.
-0.25 | 2 ,,,,,,,,,,,,,, 1 Next, we focus on the singularity in the shape profile
__________________________ at the order-disorder transition. We have established that
-0.50 [ 1 the stable phags can be represented by a Fourier series
o
-0.75 |- /,/’“"“-f ~~~~~ B €,(x) =4 + oy sin(qx)
-1.00 o T o + > {oa+18iN(2k + 1)gx] + 7y coL2kgx)}

! - (®)

FIG. 3. Behavior of the coefficients,/2 — €y, o1, v2, and . . .
o5 of Eq. (8) nearT.(L,,a,q) for L, =10, a =15, ¢ = throughout the phase diagram. In this expressin,

27/10. They are multiplied byl, 10L,, 10°L,, and 10°L,, IS the mean interface position [given by Eq. (6)], while
respectively. the second term is the harmonic response to the wall
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corrugation. The final term represents the higher-ordeing equation of a soft-polynomial oscillator (without a
harmonic excitations arising from the nonlinearity of damping term) which is known to yield extremely rich (in-
the Euler-Lagrange equation which are responsible focluding chaotic) dynamics[5]. Inthis context, the nonther-
the complicated evolution of the interface structure withmodynamic singularities described above are analogous to
temperature. We stress that, without this term (i.e., justhe harmonic excitations of the nonlinear oscillator (how-
considering linear response), the phase plane portragver, this analogy does not shed any light on the nature of
would be simply circular. Note that there are no eventhe singularities near the order-disorder transition and their
sine terms and no odd cosine terms. The temperatuidentification beyond MF).
dependence of the two sets of coefficiefts,—} and We have shown from a simple MF model of interfacial
{ya} is extremely involved, but neaf.(L,,a,q) only  behavior in a slightly nonplanar geometry that new
two types of singularity are observed in our numericaltypes of structural phase changes and additional critical
analysis (See Fig. 3). The coefficierg,,} all vanish  singularities can emerge which are intimately related to
aboveT. (L., a, q) and behave precisely as the mean ordenonlinear phenomena. Similar behavior is also expected
parameter% — {4, i.e., they are characterized by the for prewetting at a nonplanar substrate [6]. Also of
usual MF order-parameter critical exponght= 1/2. In interest is the structure of metastable states in this system
contrast, the term&r,;—} all have a cusplike singularity which we do not discuss here [6]. We believe that
o1 — Ty = |tl’, t— 0", (9) future studies of improved models which include thermal
where o5, is the value at criticality and the critical fluctuations and different types of nonplanarity will also
exponentg = 1. There is no ana|ogy of this singu|arity uncover new structural and fluctuation related behavior.
in the planar system. Furthermore, while it is natural One of us (C.R.) is grateful to E. Velasco for friendly
to identify the cosine term singularities with the order-discussions and acknowledges economical support from
parameter exponens of the (4 — 1)-dimensional bulk La Caixaand The British Council.
universality class§ = 1/2 in MF, 8 = 1/8 beyond MF
for three-dimensional thin films), a similar identification
for 6 is not as obvious. Nevertheless, we have constructed
sgaling argum_ents Whigh suggest that= 1 @ Whe_re *Electronic address: a.o.parry@ic.ac.uk
ais thg specific heat crlt_lcgl exponent, consistent Wlt'h OUr[1] For a review of wetting, see, for example, S. Dietrich,
numerical results [6]. Similarly, we have also established "~ i phase Transitions and Critical Phenomereited by

that, for fixedL,, the critical line is consistent with the C. Domb and J.L. Lebowitz (Academic Press, London,
scaling law 1988), Vol. 12, p. 1.
T.(L,,a,q) — T.(L,,0,0) = azA(g), (20) [2] A.O. Parry and R. Evans, Phys. Rev. L&, 439 (1990);

whereA is an appropriate scaling function. This behavior _ Physica (Amsterdam)81A, 250 (1992).

can be understood using finite-size scaling ideas with MF[3] Eét?lgieggg. (Pl.gléeér;dau, and A. M. Ferrenberg, Phys. Rev.
critical exponents and indicates that the effective width of LI EFE : .

the systerFT: is reduced by corrugation [6]. [4] H. Nakanishi and M. E. Fisher, Phys. Rev. Let®, 1565

. . . 1982).
In_conclu_smn,we make some pertinent remarks. Firstly, [5] (See, %m instance, S. Wiggingntroduction to Applied
the_ interfacial structural changgs reported here_are not pe- " Nonlinear Dynamical Systems and ChagSpringer-
culiar to short-ranged forces with the exponential binding  verlag, New York, 1990).
potential Eq. (3), and also emerge if long-ranged forces argg] C. Rascén and A. O. Parry (to be published).
considered instead [6]. Also, we emphasize that in previ-[7] A.O. Parry, P.S. Swain, and J. A. Fox, J. Phys. Condens.
ous studies of the effect of roughness on wetting transitions  Matter 8, L659 (1996).
most authors have considered binding potentials with a[8] Throughout the paper, lengths are measured in (dimen-
single minimum which do not exhibit the same subtle non-  sionless) units of the bulk correlation length and tem-
linear behavior discussed here [7,9]. Next, we note that, ~ Perature in units off, (the wetting temperature of the
on making a change of variabig(x) = €(x) — L, — z{V semi-infinite system).

. . . _[9] S. Nechaev and Y.-C. Zhang, Phys. Rev. L&, 1815
and expanding to appropriate (cubic) order, the Euler (1995): M. Napiérkowski and K. Rejmer, Phys. Rev. E

Lagrange equation can be written as 53, 881 (1996); R.R. Netz and D. Andelman, Phys.
39 = —in + an’ + aq”sin(gx), (11) Rev. E 55 687 (1997); G. Sartoni, A.L. Stella,

where? « [T.(L;) — T] and @ is positive in the region G. Giugliarelli, and M. R. D'Orsogna, Europhys. Le89,

of interest. This is essentially equivalent to the Duff- 633 (1997).
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