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Towards Complete Solutions to Systems of Nonlinear Equations of Many-Electron Theorie
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Employing the homotopy method we have obtained the complete set of real solutions to the equations
of the restricted Hartree-Fock method as well as the full set of solutions to the equations of the coupled-
cluster-with-doubles method for the H4 and P4 models broadly applied in various many-electron studies.
These are the first global results obtained so far for any formulations of the Hartree-Fock and coupled-
cluster methods when applied to realistic models. [S0031-9007(98)06772-6]

PACS numbers: 31.10.+z, 31.15.Ar, 31.15.Dv, 31.15.Ne
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A characteristic feature of most of the methods of co
temporary theory of electronic structure of atomic an
molecular systems is that they are based on nonlin
equations. For many methods the nonlinearity is a dire
consequence of the fact that the Schrödinger equation
equivalent to the nonlinear generalized Bloch equation [
To enable the applications of the individual approaches,
nite numbers of basis functions are used to transform th
into systems of nonlinear equations for the expansion c
efficients. Unfortunately, there are no general mathema
cal results concerning sets of nonlinear equations wh
would help in the understanding of either the structure
their solutions or even the conditions for their existenc
Only for the solutions to the equations of the Hartree-Fo
(HF) method can some information be obtained when u
ing the stability conditions formulated by several autho
[2–4]. One should also mention the pioneering work
Živković and Monkhorst [5] on the existence and realit
of solutions of the equations of the coupled-cluster (CC
method [6].

Although numerical methods have been invented f
attaining certain solutions to the equations of individ
ual many-electron theories, there are situations when o
faces serious identification problems for the solutions o
tained (see, e.g., the difficulties encountered in multico
figurational self-consistent field, MC-SCF [7] and CC [8
methods). We believe that access to information abo
various details of the global structure of solutions to th
relevant sets of equations would be very useful for dev
oping methods of attaining one or several desired so
tions in the presence of many undesired ones of simi
structure.

So far, in the absence of general mathematical theore
the only way to obtain at least some insight into the stru
ture and attainability of solutions of sets of nonlinear equ
tions are fragmentary numerical studies of some simp
model systems. Let us just mention the work on vario
formulations of the HF methods [9–12], on Frost’s loca
energy method [12], and on several formulations of th
CC method [8,13–15]. It seems to us that recently w
have obtained access to computational tools which can
used to verify and supplement the results of such stud
0031-9007y98y81(6)y1195(4)$15.00
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by making possible the finding of complete solutions to
set of polynomial equations. This situation is caused b
the recent progress in both theoretical and computation
algebraic geometry [16] and differential topology (for de
tails and references, see, e.g., [17]) which has resulted
the development of the effective homotopy methods. Th
basic idea of homotopy methods, when applied to the set
nonlinear equationsFsxd ­ 0, consists of replacing these
equations by the family of equations

Hsx, ld ­ s1 2 ldGsxd 1 lFsxd ­ 0 , (1)

where the homotopy parameterl belongs in most for-
mulations to the whole complex plane. The set o
functions Gsxd is chosen such that the solutions of the
equationsGsxd ­ 0 can be easily found. The main
task of the method consists of continuing the solution o
Hsx, 0d ­ 0 into those ofHsx, 1d ­ 0. We have used
the Gsxd functions in the formGisxd ­ x

di
i 2 bi, and

di ­ degGi $ degFi , where deg denotes the total degre
of the polynomial. The numbersbi are chosen at random.
As a consequence of the transversality theorem [17
such a choice of theGsxd functions leads to well-defined
continuation paths [18]. For path tracking, the norma
flow algorithm (see, e.g., Ref. [18]) has been employe
The solutions of the sets of equations considered in th
Letter have been obtained when using the power of th
system HOMPACK [18].

We have studied the equations obtained for the min
mum basis P4 (also known as HRS [19]) and H4 mode
[20]. The geometry of both models is determined by singl
parametera which allows one to change the degree o
quasidegeneracy. The spacial symmetry groups areD2h

and C2y for P4 and H4, respectively. The full configu-
ration interaction (FCI) wave functions forAg states of
P4 have the simplest structure among four electron mo
els and we have studied CC equations for this mode
High symmetry of P4 causes some problems when solvin
HF equations in density matrix formalism. Therefore, HF
equations have been studied for the H4 model which is fre
of these problems.

The HF equations in their most commonly used canon
cal representation take the form of nonlinear eigenvalu
© 1998 The American Physical Society 1195
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equations. For our purposes, however, it is advantage
to employ the fact that the HF theory is essentially
density matrix theory (see, e.g., [3,10]), i.e., that the H
equations are equivalent to the condition [3,10]

fFsQd, Qg ­ 0 , (2)

whereQ is the one particle density operator for a Slat
determinant. If a finite basishxsjn

s­1 is used for the
algebraization, the matrix elements of the Fock opera
FsQd take the form

FsQdzh ­ hz h 1
X
ki

yz i
hkQki , (3)

wherehz h is the matrix element of the one-electron pa
of the full electronic Hamiltonian andyz i

hk stands for
the antisymmetrized two-electron integral. Fukutome [1
has shown that Eq. (2) can be rewritten as (for deta
see [10]) a set of quadratic equations. These equati
include the unknowns and their complex conjugates, i.
they are polynomial sets only for the real solutions.

In this Letter we present the real solutions obtained f
the restricted HF (RHF) method (see, e.g., [4]). There a
no spatial-symmetry restrictions imposed on the form
the orbitals. The number of unknowns amounts to 10
and
on
TABLE I. Energies of real solutions of RHF equations (in hartrees), the largest overlap integrals between HF determinant
FCI states of1A1 symmetry, and expansion coefficients of HF orbitals (in the orbital basis spanned by orbitals of the HF soluti
for the 1A1 ground state) of the H4 model fora ­ 0.005.

Two largest
Solution overlap integralsa c11sid c21sid c31sid c41sid

No. EHF,i j Sij c12sid c22sid c32sid c42sid

1 21.871397 1 0.74 1.00000 0.00000 0.00000 0.00000
0.00000 1.00000 0.00000 0.00000

2 21.851306 2 0.73 1.00000b 0.00000 20.00043 0.00000
20.00043 0.00000 21.00000b 0.00000

3 21.815135 2 0.96 0.99992 0.00621 0.00004 0.01116
0.00414 20.66714 0.74491 0.00291

4 21.032896 6 0.66 0.00813 0.00000 0.99997 0.00000
5 0.63 0.00000 20.99996 0.00000 0.00888

5 20.820886 6 0.68 0.99991 0.00000 0.01344 0.00000
0.00000 20.00660 0.00000 0.99998

6 20.148480 11 0.69 0.00000 0.99999 0.00000 0.00131
12 0.62 0.00000 0.00131 0.00000 0.99999

7 20.133029 11 0.70 20.27687 20.93787 0.19884 20.06479
12 0.68 20.00837 20.01481 0.23516 0.97181

8 20.132914 12 0.72 0.02292 0.00000 0.99974 0.00000
11 0.60 0.00000 0.01867 0.00000 0.99983

9 20.123536 12 0.67 0.28321 0.08725 0.95456 20.03140
11 0.52 0.00314 0.24103 0.00897 0.97047

10 20.117115 12 0.69 20.26997 0.19499 0.94103 0.05957
11 0.52 0.00542 20.22644 20.01318 0.97392

11 20.116207 12 0.64 20.31737 0.00000 0.94830 0.00000
11 0.54 0.00000 20.26029 0.00000 0.96553

12 20.093966 12 0.95 20.00497 20.67696 20.73595 0.00916
0.01407 20.00160 0.01382 0.99980

aThe subscripti denotes No. of solution.
bThe value is 0.9999998.
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the present calculation. The basis sethxsjn
s­1 is chosen to

consist of the occupied and virtual spin orbitals obtained
within the framework of the RHF approach for the ground
state of1A1 symmetry with spatial-symmetry restriction
imposed on the orbitals.

Having obtained theQ operators corresponding to
the individual solutions one can generate the HF wave
functions. Because of the spin-symmetry constraints, we
can concentrate on the orbital parts of the solutions:

cksid ­
4X

l­1

clksidx̃l , k ­ 1, 2 , (4)

where hx̃sj4
s­1 represents the orbital parts of the spin

orbitals mentioned above which are ordered (according to
increasing orbital energy) as follows:1a1, 1b2, 2a1, and
2b2. The indexi is used to label the individual solutions.

In Table I we present the 12 solutions obtained for
a ­ 0.005 of H4. The second column includes the HF
energiesEHF,i corresponding to the individual solutions.
To get some information about the significance of the HF
functionsFsid constructed for the individual solutions to
the HF equations, we have calculated for each solution the
overlap integralsSij ­ jkF̃sid j Cjlj, whereF̃sid stands
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for the normalized component ofA1 symmetry ofFsid,
and Cl denotes thelth exact (FCI) wave function of
the H4 model (ordered according to increasing energ
Table I lists for each solution the two largestSij values
together with the indicesj of the relevant FCI wave
functions. The structure of HF orbitals can be deduc
from the expansion coefficientsclksid of Eq. (4) also
included in Table I. Notice that, according to ou
definition of the basis set, solution No. 1 consists of th
1a1 and1b2 orbitals. For seven of the solutions obtained
i.e., for solution Nos. 1, 2, 4, 5, 6, 8, and 11, the H
orbitals are ofC2y symmetry. Let us mention that we
have previously attained [21] solution Nos. 1, 2, 4, an
6. For five solutions of the complete set, the orbitals a
of the broken spatial-symmetry-type, i.e., they are line
combinations of orbitals ofa1 and b2 symmetry species.
Perusing all overlaps given in Table I, one can see th
the 12 HF wave functions can be related to only 6 fro
among the 12 exact wave functions.

As a second application of the homotopy methods, w
present the results for the CC method [20–22] based
the cluster operatorT2 defined in terms of two-electron
excitation operators, known as the coupled-cluster-wit
doubles (CCD) method (for details and references, s
[23]). In this method the approximate wave functio
jCCCDl is obtained from the independent-particle refe
ence wave functionjFl by means of an exponential wave
operator,
HF
,

TABLE II. Energies corresponding to the complete sets of solutions of the CCD equations [relative to the RHF energy (R
energy for the reference-state configuration amounts to21.859099 hartrees) for the reference-state configuration, in mhartrees]
maximum overlap integrals between CCD and FCI wave functions,Zij , and a subset of cluster amplitudes for the P4 model with
a ­ 2.002.

Overlap Examples of cluster amplitudes
Solution integrala

No. Symmetry ECCD j Zij
T 11

33 T11
44 T22

33 T22
44

1 1Ag 2119.82 1 0.999 20.0075 20.0663 20.9918 20.0060
2 1Ag 28.688 2 0.646 22.7280 0.0680 9.3318 22.1827
3 1Ag 26.820 2 0.996 20.3402 0.0036 1.1322 20.2792

(4,5) Mixed 483.61b 8 0.621 1.7931 20.0320 0.0400 1.0714
3 0.518

(6,7) 1Ag 729.44 8 0.689 1.8212 0.2679 0.0421 1.3009
6i 126.73 3 0.330 7i 2.685 6i 1.039 7i 1.500 7i 0.730

(8,9) Mixed 825.76c 5 0.540 25.9510 3.8185 24.2928 20.4997
(10,11) Mixed 832.63c 5 0.548 25.1244 3.4592 23.8293 20.2902
(12,13) Mixed 940.35c 5 0.655 22.0398 1.7563 21.5113 1.6729

14 1Ag 943.85 5 0.678 24.3905 1.6829 21.4138 4.0993
15 1Ag 946.11 4 0.729 6.5286 1.9298 21.7209 26.8776

(16,17) 1Ag 1208.46 8 0.713 0.8427 1.0557 20.5550 1.3598
6i 50.03 7 0.688 6i 1.209 7i 1.521 6i 0.603 6i 3.213

(18,19) 1Ag 1838.08 8 0.804 2.9517 3.7169 0.5648 3.6299
6i 99.51 7 0.590 6i 0.280 6i 6.290 6i 0.148 6i 0.449

20 1Ag 2188.05 8 0.784 3.6097 4.1860 0.9119 4.1554
aIndex j denotes the label of the FCI wave function for1Ag states (ordered with respect to increasingEFCI,j energies) which dis-
close maximum overlap with the renormalized CCD wave function considered (see text).
bThe energy corresponds to pairs of complex conjugate amplitudes (for the amplitudes not displayed).
cThe energy corresponds to two real solutions.
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jCCCDl ­ eT2 jFl . (5)

The equations for the cluster amplitudesTA1A2

A1A2
, defining

T2, and the energyECCD can be written as [22]

kFjH 2 ECCDjeT2Fl ­ 0 , (6)

kA1A2

A1A2
jH 2 ECCDjeT2Fl ­ 0 , (7)

where the determinantjA
1A2

A1A2
l is obtained by a double

replacement of theA1 and A2 spin orbitals in jFl by
the A1 and A2 ones. Arranging in Eq. (7) the unknown
cluster amplitudesT

A1A2

A1A2 in some arbitrary but fixed order,
one can cast the CCD equations into the form of a se
of quadratic polynomial equations. When deriving the
CCD equations for P4, the reference wave functionjFl
is taken to be the RHF function of the ground state of1Ag

symmetry. The number of unknown cluster amplitude
amounts to 10.

We have obtained the full solution of the CCD equa
tions which consists of 20 solutions. Table II includes
the essential information about our set of solutions. W
present for each of themECCD, four of the ten cluster
amplitudes, and the values of the maximum overlap in
tegralsZij ­ jkC̃CCD,i j CFCI,jlj, where jCFCI,jl are the
FCI functions of1Ag symmetry ordered according to in-
creasing energy andjC̃CCD,il stands for the CCD function
normalized to unity.
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One can see from the second column of Table II th
12 solutions definejCCCDl of 1Ag symmetry, whereas
the 8 remaining ones are not related to pure spi
symmetry states. Among the former group of solution
several are physically meaningful. For example, solutio
Nos. 1 and 3 show very large overlaps with the FC
wave functions for11Ag and 21Ag states. For these
solutions theECCD values are close to the FCI energie
for the 11Ag and 21Ag states amounting to2117.03
and 26.666 mhartrees, respectively. Similarly, solution
No. 15 provides a fairly good description of the41Ag FCI
state corresponding to the energy of 945.33 mhartrees.
more complete characterization of the solutions obtain
requires a special approach which is beyond the scope
this Letter and will be given elsewhere [24]. Let us jus
mention that the spin-symmetry-broken solution Nos. (
and 5) and (8, 9, 10, 11, 12, 13) are related to the quin
and triplet states of P4, respectively. The present resu
provide the first numerical illustration of the effects o
using mixed-symmetry cluster operators on the structu
of solutions of CC equations which were preliminary
discussed by Nakatsuji and Hirao [25] two decades ago

In summary, when applying the homotopy method, w
have obtained for the first time the complete set of re
solutions to any HF-type equations as well as the full s
lution (including complex ones) to any CC-type equation
Our results demonstrate that, when using homotopy me
ods, it is possible to verify and supplement the informatio
concerning the global structure of solutions to equations
many-electron theory obtained so far only from studies
oversimplified simulations of these equations. We believ
that access to such information will contribute to the fur
ther development of these theories. The understanding
the global structure of the solutions for a number of non
trivial model systems should also be helpful in developin
reliable numerical methods for attaining the desired sol
tions for realistic systems.
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