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Towards Complete Solutions to Systems of Nonlinear Equations of Many-Electron Theories
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Employing the homotopy method we have obtained the complete set of real solutions to the equations
of the restricted Hartree-Fock method as well as the full set of solutions to the equations of the coupled-
cluster-with-doubles method for the H4 and P4 models broadly applied in various many-electron studies.
These are the first global results obtained so far for any formulations of the Hartree-Fock and coupled-
cluster methods when applied to realistic models. [S0031-9007(98)06772-6]

PACS numbers: 31.10.+z, 31.15.Ar, 31.15.Dv, 31.15.Ne

A characteristic feature of most of the methods of condby making possible the finding of complete solutions to a
temporary theory of electronic structure of atomic andset of polynomial equations. This situation is caused by
molecular systems is that they are based on nonlineahe recent progress in both theoretical and computational
equations. For many methods the nonlinearity is a direcalgebraic geometry [16] and differential topology (for de-
consequence of the fact that the Schrédinger equation isils and references, see, e.g., [17]) which has resulted in
equivalent to the nonlinear generalized Bloch equation [1]the development of the effective homotopy methods. The
To enable the applications of the individual approaches, fibasic idea of homotopy methods, when applied to the set of
nite numbers of basis functions are used to transform themonlinear equation¥(x) = 0, consists of replacing these
into systems of nonlinear equations for the expansion coequations by the family of equations
efficients. Unfortun_ately, there are no general r_nathemgtl- Hx.A) = (1 — VG + AFX) =0, (1)
cal results concerning sets of nonlinear equations which
would help in the understanding of either the structure ofvhere the homotopy parametar belongs in most for-
their solutions or even the conditions for their existencemulations to the whole complex plane. The set of
Only for the solutions to the equations of the Hartree-FocKunctions G(x) is chosen such that the solutions of the
(HF) method can some information be obtained when usequationsG(x) = 0 can be easily found. The main
ing the stability conditions formulated by several authorstask of the method consists of continuing the solution of
[2—4]. One should also mention the pioneering work ofH(x,0) = 0 into those ofH(x,1) = 0. We have used
Zivkovié and Monkhorst [5] on the existence and realitythe G(x) functions in the formG;(x) = xfl' - b;, and
of solutions of the equations of the coupled-cluster (CCY; = ded5; = dedF;, where deg denotes the total degree
method [6]. of the polynomial. The numbets are chosen at random.

Although numerical methods have been invented forAs a consequence of the transversality theorem [17],
attaining certain solutions to the equations of individ-such a choice of th&(x) functions leads to well-defined
ual many-electron theories, there are situations when oneontinuation paths [18]. For path tracking, the normal
faces serious identification problems for the solutions obflow algorithm (see, e.g., Ref. [18]) has been employed.
tained (see, e.g., the difficulties encountered in multiconThe solutions of the sets of equations considered in this
figurational self-consistent field, MC-SCF [7] and CC [8] Letter have been obtained when using the power of the
methods). We believe that access to information aboutystem HOMPACK [18].
various details of the global structure of solutions to the We have studied the equations obtained for the mini-
relevant sets of equations would be very useful for develmum basis P4 (also known as HRS [19]) and H4 models
oping methods of attaining one or several desired soluf20]. The geometry of both models is determined by single
tions in the presence of many undesired ones of similaparametere which allows one to change the degree of
structure. gquasidegeneracy. The spacial symmetry groupshafe

So far, in the absence of general mathematical theoremand C,, for P4 and H4, respectively. The full configu-
the only way to obtain at least some insight into the struc+ation interaction (FCI) wave functions fot, states of
ture and attainability of solutions of sets of nonlinear equaf4 have the simplest structure among four electron mod-
tions are fragmentary numerical studies of some simplels and we have studied CC equations for this model.
model systems. Let us just mention the work on varioudHigh symmetry of P4 causes some problems when solving
formulations of the HF methods [9-12], on Frost's local-HF equations in density matrix formalism. Therefore, HF
energy method [12], and on several formulations of theequations have been studied for the H4 model which is free
CC method [8,13-15]. It seems to us that recently weof these problems.
have obtained access to computational tools which can be The HF equations in their most commonly used canoni-
used to verify and supplement the results of such studiesal representation take the form of nonlinear eigenvalue
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equations. For our purposes, however, it is advantageouke present calculation. The basis §gt};—, is chosen to

to employ the fact that the HF theory is essentially aconsist of the occupied and virtual spin orbitals obtained

density matrix theory (see, e.g., [3,10]), i.e., that the HFwithin the framework of the RHF approach for the ground

equations are equivalent to the condition [3,10] state of'A; symmetry with spatial-symmetry restriction
imposed on the orbitals.

[F(Q).0]=0, (2) Having obtained theQ operators corresponding to
where Q is the one particle density operator for a Slaterthe individual solutions one can generate the HF wave
determinant. If a finite basi$y,}’_; is used for the functions. Because of the spin-symmetry constraints, we
algebraization, the matrix elements of the Fock operatof@n concentrate on the orbital parts of the solutions:

F(Q) take the form 4

F(Q)zn = heny + D 4400 3) (i) = z; (i) X1

k=1,2, 4
whereh,, is the matrix element of the one-electron partwhere {%s):_, represents the orbital parts of the spin
of the full electronic Hamiltonian and;f,‘,( stands for orbitals mentioned above which are ordered (according to
the antisymmetrized two-electron integral. Fukutome [10]increasing orbital energy) as followsa,, 1b;, 2a,, and
has shown that Eq. (2) can be rewritten as (for detail2b,. The indexi is used to label the individual solutions.
see [10]) a set of quadratic equations. These equations In Table | we present the 12 solutions obtained for
include the unknowns and their complex conjugates, i.e.¢ = 0.005 of H4. The second column includes the HF
they are polynomial sets only for the real solutions. energiesEyr,; corresponding to the individual solutions.
In this Letter we present the real solutions obtained foiTo get some information about the significance of the HF
the restricted HF (RHF) method (see, e.g., [4]). There aréunctions® (i) constructed for the individual solutions to
no spatial-symmetry restrictions imposed on the form otthe HF equations, we have calculated for each solution the
the orbitals. The number of unknowns amounts to 10 iroverlap integralsS;; = (@ (i) | ¥;)|, where® (i) stands

TABLE I. Energies of real solutions of RHF equations (in hartrees), the largest overlap integrals between HF determinant and

FCI states of A; symmetry, and expansion coefficients of HF orbitals (in the orbital basis spanned by orbitals of the HF solution
for the'A; ground state) of the H4 model far = 0.005.

Two largest
Solution overlap integrafs cy1(i) c21 (i) c31(i) ca1 (i)
No. Eug, J Sij ci2(i) cxn(i) cx(i) ca(i)
1 —1.871397 1 0.74 1.00000 0.00000 0.00000 0.00000
0.00000 1.00000 0.00000 0.00000
2 —1.851306 2 0.73 1.00000 0.00000 —0.00043 0.00000
—0.00043 0.00000 —1.00000° 0.00000
3 —1.815135 2 0.96 0.99992 0.00621 0.00004 0.01116
0.00414 —0.66714 0.74491 0.00291
4 —1.032896 6 0.66 0.00813 0.00000 0.99997 0.00000
5 0.63 0.00000 —0.99996 0.00000 0.00888
5 —0.820886 6 0.68 0.99991 0.00000 0.01344 0.00000
0.00000 —0.00660 0.00000 0.99998
6 —0.148480 11 0.69 0.00000 0.99999 0.00000 0.00131
12 0.62 0.00000 0.00131 0.00000 0.99999
7 —0.133029 11 0.70 —0.27687 —0.93787 0.19884 —0.06479
12 0.68 —0.00837 —0.01481 0.23516 0.97181
8 —0.132914 12 0.72 0.02292 0.00000 0.99974 0.00000
11 0.60 0.00000 0.01867 0.00000 0.99983
9 —0.123536 12 0.67 0.28321 0.08725 0.95456 —0.03140
11 0.52 0.00314 0.24103 0.00897 0.97047
10 —0.117115 12 0.69 —0.26997 0.19499 0.94103 0.05957
11 0.52 0.00542 —0.22644 —0.01318 0.97392
11 —0.116207 12 0.64 —0.31737 0.00000 0.94830 0.00000
11 0.54 0.00000 —0.26029 0.00000 0.96553
12 —0.093966 12 0.95 —0.00497 —0.67696 —0.73595 0.00916
0.01407 —0.00160 0.01382 0.99980

aThe subscript denotes No. of solution.

bThe value is 0.9999998.
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for the normalized component of; symmetry of ®(i), |[Weep) = el2| D). (5)
and ¥, denotes thelth exact (FCI) wave function of

the H4 model (ordered according to increasing energy). The equations for the cluster amplitudeg. , defining
Table | lists for each solution the two largest values T2, and the energfccp can be written as [22]
together with the indiceg of the relevant FCI wave

_ Ty —
functions. The structure of HF orbitals can be deduced (PIH = Eccple™®) =0, 6)
from the expansion coefficients; (i) of Eq. (4) also A2 ,

included in Table I. Notice that, according to our (44,JH — Eccple™®) =0, (7)

definition of the basis set, solution No. 1 consists of the

1a, and1b, orbitals. For seven of the solutions obtained,where the determinank} 4.) is obtained by a double
i.e., for solution Nos. 1, 2, 4, 5, 6, 8, and 11, the HFreplacement of thed; and A, spin orbitals in|®) by
orbitals are ofC,, symmetry. Let us mention that we the A' andA® ones. Arranglng in Eq. (7) the unknown
have previously attained [21] solution Nos. 1, 2, 4, andcluster amplltude§A1 > in some arbitrary but fixed order,
6. For five solutions of the complete set, the orbitals are@ne can cast the CCD equations into the form of a set
of the broken spatial-symmetry-type, i.e., they are lineaof quadratic polynomial equations. When deriving the
combinations of orbitals ofi; and 5, symmetry species. CCD equations for P4, the reference wave functidn
Perusing all overlaps given in Table |, one can see thas taken to be the RHF function of the ground statéAf
the 12 HF wave functions can be related to only 6 fromsymmetry. The number of unknown cluster amplitudes
among the 12 exact wave functions. amounts to 10.

As a second application of the homotopy methods, we We have obtained the full solution of the CCD equa-
present the results for the CC method [20—22] based ofions which consists of 20 solutions. Table Il includes
the cluster operatof, defined in terms of two-electron the essential information about our set of solutions. We
excitation operators, known as the coupled-cluster-withpresent for each of themficcp, four of the ten cluster
doubles (CCD) method (for details and references, seamplitudes, and the values of the maximum overlap in-
[23]). In this method the approximate wave functiontegralsZ;; = |<\I'CCD,|\I’FCIJ>| where|Wgc; ;) are the
|Weep) is obtained from the independent-particle refer-FCI functions of'A, symmetry ordered according to in-
ence wave functiof®) by means of an exponential wave creasing energy arleifCCD,i} stands for the CCD function
operator, normalized to unity.

TABLE Il. Energies corresponding to the complete sets of solutions of the CCD equations [relative to the RHF energy (RHF
energy for the reference-state configuration amounts-t859099 hartrees) for the reference-state configuration, in mhartrees],
maximum overlap integrals between CCD and FCI wave functigps,and a subset of cluster amplitudes for the P4 model with

a = 2.002.

Overlap Examples of cluster amplitudes
Solution integrat i i 3 3
No. Symmetry Eccp j Zij Ty Ty Iy Ty
1 A, —119.82 1 0.999 —0.0075 —0.0663 —0.9918 —0.0060
2 1A, —8.688 2 0.646 —2.7280 0.0680 9.3318 —2.1827
3 A, —6.820 2 0.996 —0.3402 0.0036 1.1322 —0.2792
(4,5) Mixed 483.6% 8 0.621 1.7931 —0.0320 0.0400 1.0714
3 0.518
(6,7) A, 729.44 8 0.689 1.8212 0.2679 0.0421 1.3009
+i 126.73 3 0.330 +i2.685 +i 1.039 +i 1.500 +i 0.730
(8,9) Mixed 825.76 5 0.540 —5.9510 3.8185 —4.2928 —0.4997
(10,112) Mixed 832.63 5 0.548 —5.1244 3.4592 —3.8293 —0.2902
(12,13) Mixed 940.35 5 0.655 —2.0398 1.7563 —1.5113 1.6729
14 A, 943.85 5 0.678 —4.3905 1.6829 —1.4138 4.0993
15 A, 946.11 4 0.729 6.5286 1.9298 —1.7209 —6.8776
(16,17) 1A, 1208.46 8 0.713 0.8427 1.0557 —0.5550 1.3598
*+i 50.03 7 0.688 +i 1.209 Fi 1.521 *+i 0.603 +i 3.213
(18,19) A, 1838.08 8 0.804 2.9517 3.7169 0.5648 3.6299
+i 99.51 7 0.590 +i 0.280 *+i 6.290 +i 0.148 +i 0.449
20 1A 2188.05 8 0.784 3.6097 4.1860 0.9119 4.1554

4ndex j denotes the label of the FCI wave function fer, states (ordered with respect to increasiig;; energies) which dis-
close maximum overlap with the renormalized CCD wave function considered (see text).
bThe energy corresponds to pairs of complex conjugate amplitudes (for the amplitudes not displayed).
‘The energy corresponds to two real solutions.
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