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Recent data provide evidence for coexisting phases at low energy in the spherical-deformed
transitional nucleu$>’Sm. The nature of the wave functions at the spherical-deformed phase transition
in nuclei is analyzed within the framework of the interacting-boson model. It is shown that in the
U(5)-SU(3) transition, two phases coexist in a very small region of parameter space around the
critical value of the control parametér. The coexistence region with two minima in the potential
shrinks to zero as one moves to the U(5)-O(6) transition. Implications for other systems are briefly
mentioned. [S0031-9007(98)06839-2]

PACS numbers: 21.60.Fw, 21.10.Re, 27.70.+q

The nature of “shape” phase transitions in finite many-and SU(3) symmetry, respectively. The U(5) to SU(3) leg
body systems is a fundamental issue and has been tloé the symmetry triangle is traversed by varying the ratio
subject of many investigations. Recently, new data ore/«. In discussing phase transitions, it is convenient to
transition rates in one of the best-known regions of rapideparametrize this ratio as
structural change in nuclei—the Sm isotopes—has shed e/k = (1 — &)/&. )
new light on phase transitional behavior. In view of its
interest in many areas of physics and chemistry, it i h
important to understand the precise mechanisms by whi
structural transitions occur.

The study of phase-shape transitions in nuclei ca
be best done in the interacting-boson model [1] (IBM)
which reproduces well the data in the transitional Nd-
Sm-Gd region [2]. It is the purpose of this Letter to
(i) show that phase transitions in the IBM display the
phenomenon of phase coexistence, (ii) determine th
region of phase coexistence, and (iii) show that the newly

The leg of the symmetry triangle from U(5) to SU(3) is
en labeled by the control parametes ¢ = 1 and the
Wave functions, transition rates, and energy eigenvalues
apart from a scale factor) depend only on the values of
é. A phase transition occurs in the ground state energy at
a critical value of the parametef, = £.. As discussed
previously [6] this phase transition is 1st order. Here
we concentrate on the nature of the wave functions at
gor around) the phase transition. To this end we show in

obtained data provide evidence for phase coexistence. We 0(6)
will extend the discussion to comment more generally on
phase transitional behavior in algebraic Hamiltonians that 0

describe other physical systems.

The possible phases that can occur in the IBM have been
classified previously. They can be depicted in a triangular
diagram, shown in Fig. 1. The three phases correspond
to the breaking of U(6) into its three subalgebras (I) U(5)
(Ref. [3], (1) SU(3) (Ref. [4]), and (Ill) O(6) (Ref. [5]).

We begin by considering the U(5)-SU(3) transition. A
gquantum calculation of this transition can be done by —\ﬁ/z
using the Hamiltonian

H = efyg — kQX - QX @ 0 £ 1
with y = —+/7/2. The meaning and definitions of the U SU®B)
various terms are given in Ref. [1]. Here it suffices tog,5 1 The symmetry triangle for the IBM showing sche-

say that the Hamiltonian (1) is the combination of twomatically the region of parameter space corresponding to the
invariant operators(;(U5) and C,(SU3), having U(5) phase coexistence discussed in the text.

0031-900798/81(6)/1191(4)$15.00 © 1998 The American Physical Society 1191



VOLUME 81, NUMBER 6

PHYSICAL REVIEW LETTERS

10 AGusT 1998

Fig. 2 both the relevant experimental low lying levels of

This phenomenon of coexistence (similar to liquid-gas

152Sm and calculations with the IBM, using the parametergphase transitions) appears also in a classical calculation.

of Ref. [2]. As will be apparent later, the data f8¢Sm,
and, in particular, the very small strength of thé — 0,™
transition, give evidence for phase coexistence.

This calculation can be done by making use of the
coherent state formalism for the IBM [6].
The scaled potential energy surface

The IBM calculation reproduces these data very well. NpB? )
The parameters fdf2Sm (e/x ~ 30 or & = 0.032), y = EB,y) = E [1 =&k = 3)]
—+/7/2 belong to a particular small region in the overall
(¢, x) parameter space, very close to the critical value _ NN -1 £l ag? - 4\Pw3cos3y
(& = 0.025for N = 10, y = —+/7/2—see below). 1+ B2)? 7
For this unique region, the wave functions have a 2,
special character, as seen in Fig. 3, where the arresting + 7 X B | 3)

feature is that the single IBM Hamiltonian of Eq. (1)

is able to generate a coexistence of two phases wittwith y = —+/7/2) has two shallow minima fo£ values
some states having (approximately since this is a finitén the narrow range 0.025-0.029, as shown in the inset in
system) wave functions appropriate to phase | [U(5)JFig. 4 (left). HeregB,y are the intrinsic shape variables
and others having wave functions appropriate to phase Bind N is the total boson numberN = 10 is used in
[SU(3)]. Note in particular the wide distribution in Fig. 4. The minima become deeper for largér The

the number ofd bosons,n; (the order parameter for presence of these two minima in the energy surface occurs
this transition), of the ground state df>Sm, typical only for a very small region of values as seen in Fig. 4.

of a deformed [SU(3)-like] wave function distribution, It is just these¢ values that are applicable t&*Sm. The
contrasted with the large amplitude fey = 0 in the0,™  classical expression (3) allows one also to study the nature
state, typical of the ground state of a spherical [U(5)-of the phase transition as a function pf Changingy

like] wave function distribution. (Thes, distributions  from —+/7/2 to 0, one moves along the side of the triangle
for the levels with higher angular momentum reflect thefrom SU(3) to O(6). In the phase transition region, one
same separation into two classes of states.) In termsioves along the path shown in Fig. 1. The valug/dbr

of the level scheme in Fig. 2, the states built on thea point inside the triangle is given by the intersection of a
0;" state form a rotational-like sequence while thoseline, originating from the U(5) vertex and passing through
levels built on the0,* state comprise a vibrational or the given point, with the side of the triangle extending
phonon sequence. Also in Fig. 3 one can see how thifom SU(3) to O(6). It is very interesting to note that
coexistence evolves, frol’Sm (spherical in its ground the coexistence region shrinks wigh [as shown in the
state) to'>*Sm (deformed in its ground state). inset in Fig. 4 (right)], in accordance with the fact that the
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FIG. 2. Experimental and theoretical level schemes'#8m. Note the two families of levels: a rotational band built on@he
ground state and a vibrational set of levels built on @hé level. For the latter we show the levels up to the two-phonon states.
The deformed and vibrational phases are highlighted by quite diff@gnt= E(4*)/E(2") ratios, as indicated.
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FIG. 3. Distribution of squared wave function amplitudes Gdrstates as a function of, for °%1521545m,

phase transition is 1st order for(8) — SU(3) but 2nd the electromagnetic transition ralz™ — 0,", that is
order for U5) — O(6). sensitive not only to the phase transition but also to
Phase transitions in nuclei can be tested experimentallgoexistence. The behavior of this transition rate as a
by measuring observables that are particularly sensitivunction of £ is shown in Fig. 5. It varies extremely
to them. Two observables have been used previouslyapidly near the phase transitional point and has a zero
(i) separation energiess,,, and (i) isomer shift,5(r?).  at the phase transition.
The latter is directly related to the order paraméigy), The origin of this zero has an interesting physical inter-
but it is difficult to access experimentally. In this Letter pretation. In a deformed nucleus [near-SU(3) in the IBM]
we point out that there is another observable, namelythe lowest excited bandsB(and y vibrations) belong
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FIG. 4. Left: Energy surfaces as a function of the deformation paran@etr threeé values. The inset shows, on an expanded

scale, the two shallow coexisting minima that arise for a narrow range of values near 0.026. The upper and lower curves have one
minima only, either for a spherical or a deformed shape. Right: Value(s) of the location of the minima of the energy surfaces.
Note the two minima for a small range &f values. The calculations are fof = 10 and y = —+/7/2. The inset shows the
difference in theBmin values,A Bmin, as a function of the parametgr
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‘ ‘ — of the two phases. A study in the classical limit of the
N=10, x=-V7/2 interacting-boson model [10] shows that the coexistence
persists even in the presence of these fluctuations. The
mixing of the phases has been discussed above.

The analysis of this Letter can be extended to the
class of models described by algebraic Hamiltonians. A
generic statement for models based o )Us that phase
transitions between the two phase$zU- 1) and Qn)
are always 2nd order and have no phase coexistence.
This statement implies, among other things, that the
phase transition between rigid molecules, described by the
subalgebra O(4) of U(4) (Ref. [11]), and van der Waals
molecules, described by the subalgebra U(3) of U(4), does
s 025 050 05 100 not have phase coexistence. In contrast, when one of the
£ phases corresponds to a subalgebra other tHan-U1)

FIG. 5. Calculated values of the ratioB(E2;2;" — or O(n), involving a change im: by more than one unit,

0,%)/B(E2; 2,* — 0,") showing the extremely rapid change Such as the case of (&) O SU(3) discussed here for

near the critical value of. The experimental value [7] for nuclei, phase coexistence can occur.

12Sm is 0.0012. Our analysis is also related to that of Ref. [12], where
the coexistence of superconductivity and charge-density
waves was described in terms of the algebra ¢)G=

to the same SU(3) representation and heA@etransi-  SU(4) and its breaking into O(5) and $2) X SU(2).

tions betweer2; ™ and 0, are allowed[B(E2; 2;* — It also has implications to phase transitions in atomic

0,")/B(E2; 2" — 0,7) = 3/2N%]. In a spherical clusters (another finite quantal system) where phenomena

nucleus [near-U(5) in the IBM], thg;* — 0," transition  similar to those reported here are expected to occur [13].

is also allowed since it corresponds to a transition from a Useful discussions with G. Cata-Danil and P. von
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