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Hamiltonian Time Evolution for General Relativity
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Hamiltonian time evolution in terms of an explicit parameter time is derived for general relativity,
even when the constraints are not satisfied, from the Arnowitt-Deser-Misner-Teitelboim-Ashtekar actio
in which the slicing densityasx, td is freely specified while the lapseN ­ ag1y2 is not. The constraint
“algebra” becomes a well-posed evolution system for the constraints; this system is the twice-contracte
Bianchi identity whenRij ­ 0. The Hamiltonian constraint is an initial value constraint which
determinesg1y2 and henceN , givena. [S0031-9007(98)06792-1]
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A minor change [1,2] in the Arnowitt-Deser-Misner
(ADM) action principle [3,4] leads to striking conse-
quences for the understanding of general relativity
Hamiltonian form. Recent work on hyperbolic formu-
lations [5–11] of general relativity indicates [9,11] tha
the freely specifiable quantity that determines the slicin
of spacetime is not the lapseN but the “slicing density”
asx, td ­ Ng21y2 (where g ­ detgij is the determinant
of the spatial metric). Altering the action principle to
take this into account leads to a number of key result
(1) equations of motion that are equivalent toRij ­ 0,
not Gij ­ 0, (2) a Hamiltonian vector field that generate
time evolution even when the constraints are not satisfie
(3) a constraint algebra that is a homogeneous symm
ric hyperbolic system that dynamically preserves the co
straints, and (4) a new understanding of the Dirac algeb

Before beginning, let us fix notation and state a few
elementary results. We work on a manifoldS 3 R with
a “foliation-adapted” co-basis for the metric

ds2 ­ 2N2sdtd2 1 gijsdxi 1 bidtd sdxj 1 bjdtd .

(1)
Here, N is the lapse function (a space scalar) andbi is
the spatial shift vector. Overbars denote spatial quantitie
in particularR̄ the spatial curvature scalar obtained from
gij and =̄i the corresponding spatial covariant derivative
We also introduce the extrinsic curvatureKij and its trace
H ; K k

k . The momentum conjugate to the metric is
a density of weight one,p ij ­ g1y2sHgij 2 Kijd. The
natural time derivative for evolution̂≠0 acts in the normal
future direction to the spacelike slice and is denoted by
overdot. It is given bŷ≠0 ­ ≠t 2 Lb , whereLb is the
Lie derivative along the shiftb.

We have found in work on hyperbolic formulations
of the equations of evolution of general relativity which
have no unphysical characteristics [8–15] that we mus
in essence, use the Choquet-Bruhat “algebraic gauge”
to restrict the ordinary lapseN . The weight-minus-one
lapse (the slicing density)a ­ Ng21y2 ­ asx, td is freely
specifiable whileN is not [16]. (The slicing density
a is also used prominently in [1,2,17].) Indeed, if one
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computes≠̂0 loga ­ fsx, td from a given asx, td, then
one finds

g1y2≠̂0a ­ ≠̂0N 1 N2H ­ Nf , (2)
the equation of harmonic time slicing [8,12] with
fsx, td ­ ≠̂0 loga acting as a “gauge source” [18].
Combining this with the3 1 1 equation for ÙH from
the trace of (10) below, one obtains a quasilinear wav
equation forN . Every foliation is described by such a
wave equation for some value ofa. This wave equation
for N [8,9,15] played a vital role in the development
of our first order symmetric hyperbolic “Einstein-Ricci”
system [8,10–12] and reflects the built-incausalitywhich
comes from working witha. We conclude thatN , which
determines the proper time asNdt between slicest ­ t0

and t ­ t0 1 dt, is a dynamical variable (cf. [17]),
closely connected tog1y2. N can also be seen to be
determined froma and the Hamiltonian constraint, the
latter written as the generalized and completed conform
“Lichnerowicz equation” [19–22]; the explicit form in
[21] is the suitable one for present purposes. From th
perspective, the Hamiltonian constraint plays its familia
role as an initial value constraint which determinesg1y2

given a complete set of freely specified data [20]. Th
important insight is that this in turn determinesN from
a, so that the Hamiltonian constraint does not fix the tim
but does fix the rate of proper timet with respect tot:
dtydt ­ ag1y2 ­ N along the normal≠0.

Motivated by these findings, we alter the undetermine
multiplier in the ADM canonical action principle fromN
to a. Using a has the effect of altering the Hamiltonian
density fromH to

H̃ ­ g1y2H ­ p ijpij 2
1
2 p2 2 gR̄ , (3)

the latter being of scalar weight plus two and a rationa
function of the metric. (Note, we reserve the phras
“Hamiltonian constraint” to refer to the equatioñH ­
0 and use “Hamiltonian density” forH̃ , which may
not vanish, similarly for the momentum constraint and
density.) This leads to Teitelboim’s [1] and Ashtekar’s
[2] modification of the ADM actions16pG ­ 1 ­ cd

SADMTAfg, p; a, bd ­
Z

d4xsp ij Ùgij 2 aH̃ d , (4)
© 1998 The American Physical Society
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where we use Kuchař’s notation indicating functional and
explicit function dependence. Boundary terms are ignore
here as they are not the focus of the present ana
sis. [There are no difficulties in obtaining, for example
the ADM energy surface integral. One requires the sam
asymptotic conditions as always, maintainingN ! 1 1

Osr21d—not a ! 1 1 Osr21d—while recalling N ­
g1y2a.] The vacuum case is considered, but to add min
mally coupled matter and/or a cosmological constant
straightforward. The momentum densityHi has been
absorbed intop ij Ùgij through use of the time derivative
≠̂0. Explicitly, the Lie derivative term inÙp ij is, up to a
divergence,

2bi=̄jp
j

i ­ 2biHi . (5)
Consider a general variation of the modified Hamilton

ian density
dH̃ ­ s2pij 2 gijpddpij

1 s2p ikp
j

k 2 pp ij 1 gR̄ij 2 ggijR̄ddgij

2 gs=̄i=̄jdgij 2 gij=̄k=̄kdgijd . (6)
Note that (6) does not involve either the Hamiltonian o
momentum densities while, in contrast, the variation o
the ADM Hamiltonian densitydH ­ dsg21y2H̃ d does
contain a term proportional to the Hamiltonian density.

Requiring thatSADMTA be stationary under a variation
with respect top ij gives the definition of the extrinsic
curvature

Ùgij ­ a
dH̃

dpij ­ as2pij 2 gijpd ; 22NKij . (7)

Requiring that it be stationary under a variation with
respect togij gives the equation of motion

Ùp ij ­ 2a
dH̃

dgij

­ 2agsR̄ij 2 gijR̄d 2 as2p ikp
j

k 2 pp ijd

1 gs=̄i=̄ja 2 gij=̄k=̄kad. (8)
The slicing densitya and the shiftbi are not to be

varied. Instead the constraints are imposed on initial da
and are preserved dynamically as shown below. This
not an already parametrized theory in the usual sense.

Consider the familiar3 1 1 identities
Ùgij ; 22NKij , (9)

ÙKij ; NsR̄ij 2 Rij 1 HKij 2 KikK k
j 2 N21=̄i=̄jNd .

(10)
Also, recall the formula for the derivative of the determi
nant of the three-metric,g21 Ùg ­ gij Ùgij ­ 22NH. Now
we pass to canonical variables. Using (9) and (10), th
time derivative ofp ij is computed to be identically
Ùp ij ; Ng1y2sR̄gij 2 R̄ijd 2 Ng21y2s2p ikp

j
k 2 pp ijd

1 g1y2s=̄i=̄jN 2 gij=̄k=̄kNd 1 Ng1y2fRijg ,

(11)
whereRij ; Rij 2 gijR k

k .
d
ly-
,
e

i-
is

-

r
f

ta
is

-

e

We see that the equations of motion (7) and (
derived from the action principle are (9) and (11) whe
Rij 2 gijR k

k ­ 0. Thus, to say that (8) holds is to asse
that Rij ­ 0. The equations of motion hold strongly
independent of whether the constraints are satisfied. T
is not true in the ADM formulation because of th
presence of the Hamiltonian density in their equation
motion forp ij.

This difference can be explained more fully as follow
From the definition of the Einstein tensor in terms of th
Ricci tensor,Gmn ; Rmn 2

1
2 gmnR s

s , and the observa-
tion that2G 0

0 ; R 0
0 2 R k

k , one derives the identity

Gij 1 gijG 0
0 ; Rij 2 gijR k

k . (12)

The vanishing of the right-hand side does not depe
on either the Hamiltonian or momentum densities a
is equivalent toRij ­ 0. Clearly, it is also equivalent
to Gij ­ 2gijG 0

0 . Thus, whileRmn ­ 0 and Gmn ­ 0
are equivalent,Rij ­ 0 and Gij ­ 0 are not equivalent
as equations of motion—unless the Hamiltonian de
sity H ­ 2g1y2G 0

0 vanishes exactly, that is, unless th
Hamiltonian constraint holds. The ADM action principl
is equivalent toGij ­ 0 and so also requiresH ­ 0 to
be equivalent to (11). We recall that the use ofRij has
always been preferred by the French school, pioneered
Lichnerowicz [23] and Choquet-Bruhat [24].

This raises an important principle: A constraine
Hamiltonian theory should be well behaved even wh
the constraints are violated. As discussed in [25
recent efforts [8–15] to achieve well-posed hyperbo
formulations of general relativity, with only physica
characteristics, can be understood in this light as we
From this point of view, the Hamiltonian and momentum
densities are definite fixed combinations of the pha
space variables, but their values may deviate from ze
The form of the equations of motion should not depe
on these values. When the constraints are satisfied (
the densities vanish), one is on the so-called constra
hypersurface, and many unphysical degrees of freed
are frozen because relations among many of the variab
sg, pd are fixed. When the constraints are relaxed, t
theory explores phase space away from the constra
hypersurface. The objective is to have a theory who
character does not change dramatically when one mo
off the constraint hypersurface. Examples for whic
this is particularly relevant are numerical application
where violation of the constraints is inevitable. It seem
that similar properties may be shared by the canoni
Ashtekar variables, but there are subtleties beyond
scope of this paper that require closer investigati
(cf. [17]). [At this point, we should stress that th
Rij ­ 0 equations given by (7) and (8) or (9) and (10) a
not in themselves known to be well posed, though th
have no unphysical characteristic speeds [7]. They
however, lead to the well-posed evolution ofH andHi

as we shall see.]
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We now introduce the smeared Hamiltonian

H̃a ­
Z

d3x0asx0, tdH̃ . (13)

The equation of motion for a general functional on phas
spaceFfg, p; x, td is

≠̂0Ffg, p; x, td ­ 2hH̃a , Ffg, p; x, tdj

1 ≠̃0Ffg, p; x, td . (14)

Here, ≠̂0 is a total time derivative whilẽ≠0 is a “partial”
derivative of the form≠t 2 Lb which only acts on
explicit spacetime dependence. The Poisson bracket
given by

hF, Gj ­
Z

d3x
dF

dgijsx, td
dG

dpijsx, td

2
dF

dpijsx, td
dG

dgijsx, td
.

It is evident that the equations of motion (7) and (8
are obtained by applying (14) to the canonical variable
sg, pd. Also, observe that applying (14) toN ­ ag1y2

produces (2).
Time evolution is generated by the Hamiltonian vecto

field

XH̃a
­

Z
d3x

(
as2pij 2 pgijd

d

dgij

2 fagsR̄ij 2 gijR̄d 1 as2p ikp
j

k 2 pp ijd

2 gs=̄i=̄ja 2 gij=̄k=̄kadg
d

dpij

)
. (15)

Again, this does not depend on the Hamiltonian o
momentum densities, so it is a good time evolutio
operator even away from the constraint hypersurfac
(This observation was essentially made by Ashtekar
footnote 17 of [2] but evolution was mistakenly associate
with Gij ­ 0).

By the product rule shared bŷ≠0 and the Poisson
bracket, one computes the evolution equations for th
constraints to be

Ù̃
H ­ 2hH̃a , H̃ j ­ gagij≠iHj 1 2ggijHi=̄ja ,

(16)
ÙHj ­ 2hH̃a , Hjj ­ a≠jH̃ 1 2H̃ ≠ja , (17)

where =̄ja ­ ≠ja 1 ag21y2≠ig1y2. These equations
correspond to (20) and (21) below whenRij ­ 0. Thus,
the Poisson brackets of the smeared Hamiltonian with t
unsmeared densities are seen to be well-posed evolut
equations for the densities.

These equations can be shown to be equivalent
the twice-contracted Bianchi identities=bG b

a ; 0 when
Rij ­ 0 as follows. Combine the identity (12) with the
twice-contracted Bianchi identities to obtain a transpare
1156
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form of the Bianchi identities

=bG
b

0 ; =0G 0
0 1 =jG

j
0 ; 0 , (18)

=bG
b

j ; =0G 0
j 2 =jG 0

0 1 =ifR i
j 2 d i

j R k
k g ; 0 .

(19)
(After the expression in square brackets is replaced us
the vanishing ofRij , these become equations of motio
rather than identities.) Express the Bianchi identities (1
and (19) in3 1 1 language, usingC ­ g21H̃ ­ 2G 0

0
andCi ­ g21y2Hi ­ 2NG 0

i . A calculation yields
ÙC 2 N=̄jCj ; 2sCj=̄jN 1 NHC 2 NKijfRijgd ,

(20)
ÙCj 2 N=̄jC ; 2sssC =̄jN 1

1
2 NHCj 2 =̄isNfRijgdddd ,

(21)
whereRij ; Rij 2 gijR k

k . This system is clearly sym-
metric hyperbolic with only the light cone as character
tic, and, changing toH̃ , Hi gives (16) and (17) when
Rij ­ 0. (Without considering our identities or a Hamil
tonian framework, Frittelli [26] reached the same concl
sion about well posedness of constraint propagation in
“standard”3 1 1 formulation [19], which usesRij ­ 0,
and its absence in the ADM equations, withGij ­ 0. Re-
lated formulas were also obtained by Choquet-Bruhat a
Noutchegueme [27] for the evolution of matter sourc
r00, r0i , whererba ­ Tba 2

1
2 gbaT

m
m .)

We now return to the Hamiltonian formulation. Th
Poisson bracket between two smeared Hamiltonians is

hH̃a1 , H̃a2 j ­ 2
Z

d3xgsa1=̄ia2 2 a2=̄ia1dHi

­ 2
Z

d3xggijsa1≠ja2 2 a2≠ja1dHi .

(22)

This bracket expresses the consistency of time evolut
under different choices ofa. The Jacobi identity is

hhhH̃a1 , hH̃a2 , Fjjjj 2 hhhH̃a2 , hH̃a1 , Fjjjj

­ hhhhH̃a1 , H̃a2 j, Fjjj . (23)

Because of the metric dependence in (22), one sees
the difference between evolution witha2 followed by a1
and the reverse is a spatial diffeomorphism whenHi ­ 0
[28] (or whendFydpij ­ 0).

These results lead to a new understanding of the Di
“algebra” of the constraints (cf. [28]). As is well known
the Dirac algebra is not the spacetime diffeomorphism
gebra. The root of this is that the action (4) is invar
ant under transformations generated by the constra
even when they are not satisfied [29]. The equatio
which hold even when the constraints are not imposed
Rij ­ 0. These equations are preserved by spatial d
feomorphisms and time translations along their flow, y
a general spacetime diffeomorphism applied toRij ­ 0
mixes in the constraints. A comparison of (16) and (1
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and (20) and (21) shows the effect clearly. The Bianc
identities are spacetime diffeomorphism invariant whil
the constraint evolution equations derived from the actio
principle are not. The equations (16) and (17) and (2
and (21) differ precisely by terms proportional toRij.

A second crucial understanding is the way in whic
the once-smeared form of the Dirac algebra (16) and (1
ensures consistency of the constraints via a well-pos
initial value problem. If the constraints vanish initially,
then they always vanish in a corresponding physic
domain of dependence. This dynamical mechanism f
consistency follows from the dual role of̃H as part of
the generator of time translations and as an initial valu
constraint.

It is worth reemphasizing the altered role of th
Hamiltonian constraint. The Hamiltonian constraint is a
initial value constraint from whichg1y2 is determined
as in the solution of the initial value problem [19]
which then allowsN to be reconstructed froma. By
virtue of (16) and (17), once the initial value problem
is solved, it remains solved in a spacetime doma
dictated by causality. The Hamiltonian constraint doe
not express the dynamics of the theory; (14) is th
dynamical equation. The application of these ideas
canonical quantum gravity will appear elsewhere [30].
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