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Hamiltonian Time Evolution for General Relativity
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Hamiltonian time evolution in terms of an explicit parameter time is derived for general relativity,
even when the constraints are not satisfied, from the Arnowitt-Deser-Misner-Teitelboim-Ashtekar action
in which the slicing densityr(x, ¢) is freely specified while the lap9é = ag'/? is not. The constraint
“algebra” becomes a well-posed evolution system for the constraints; this system is the twice-contracted
Bianchi identity whenR;; = 0. The Hamiltonian constraint is an initial value constraint which
determineg /2 and henceV, givena. [S0031-9007(98)06792-1]

PACS numbers: 04.20.Fy, 04.20.Cv, 04.25.—g

A minor change [1,2] in the Arnowitt-Deser-Misner computesdyloga = f(x,7) from a givena(x,t), then
(ADM) action principle [3,4] leads to striking conse- one finds
quences for the understanding of general relativity in ¢'?8pa = §oN + N?H = Nf, (2)
Hamiltonian form. Recent work on hyperbolic formu- the equation of harmonic time slicing [8,12] with
lations [5—-11] of general relativity indicates [9,11] that f(x,7r) = dyloga acting as a “gauge source” [18].
the freely specifiable quantity that determines the slicingcombining this with the3 + 1 equation for H from
of spacetime is not the lapge but the “slicing density” the trace of (10) below, one obtains a quasilinear wave
a(x,1) = Ng~'/? (where ¢ = detg;; is the determinant equation forN. Every foliation is described by such a
of the spatial metric). Altering the action principle to wave equation for some value af This wave equation
take this into account leads to a number of key resultsior § [8,9,15] played a vital role in the development
(1) equations of motion that are equivalent®y =0,  of our first order symmetric hyperbolic “Einstein-Ricci”
notG;; = 0, (2) a Hamiltonian vector field that generates system [8,10—12] and reflects the builtdausalitywhich
time evolution even when the constraints are not satisfieomes from working withe. We conclude thav, which
(3) a constraint algebra that is a homogeneous symmegtetermines the proper time a5+ between slices = ¢/
ric hyperbolic system that dynamically preserves the congnd ; = +/ + &1, is a dynamical variable (cf. [17]),
straints, and (4) a new understanding of the Dirac algebr%.|ose|y connected tg!/2. N can also be seen to be
Before beginning, let us fix notation and state a fewgetermined froma and the Hamiltonian constraint, the
elementary results. We work on a manifdldx R with  |atter written as the generalized and completed conformal
a “foliation-adapted” co-basis for the metric “Lichnerowicz equation” [19—22]; the explicit form in
2 2/ 12 ; ; ; ; [21] is the suitable one for present purposes. From this
ds® = —N*(dt)” + gyjldx" + B'dt) (dx’ + pldt). perspective, the Hamiltonian constraint plays its familiar
(1) role as an initial value constraint which determingg’
Here, N is the lapse function (a space scalar) a#fdis  given a complete set of freely specified data [20]. The
the spatial shift vector. Overbars denote spatial quantitiesmportant insight is that this in turn determinas from
in particularR the spatial curvature scalar obtained from«, so that the Hamiltonian constraint does not fix the time
gij andV; the corresponding spatial covariant derivative.but does fix the rate of proper time with respect tor:
We also introduce the extrinsic curvatukg and its trace  dr/dt = ag'/? = N along the normad.
H = K,*. The momentum conjugate to the metric is Motivated by these findings, we alter the undetermined
a density of weight onegi/ = gl/Z(Hgij — K¥). The multiplier in the ADM canonical action principle fromv
natural time derivative for evolutiofl, acts in the normal to @. Using « has the effect of altering the Hamiltonian
future direction to the spacelike slice and is denoted by adensity from#H to N X _
overdot. It is given bydy = 9, — Lg, where L is the H =g"PH = 7im; — 57° — ¢gR, (3)
Lie derivative along the shifB. the latter being of scalar weight plus two and a rational
We have found in work on hyperbolic formulations function of the metric. (Note, we reserve the phrase
of the equations of evolution of general relativity which “Hamiltonian constraint” to refer to the equatiofﬁ[ =
have no unphysical characteristics [8—15] that we musly and use “Hamiltonian density” ford, which may
in essence, use the Choquet-Bruhat “algebraic gauge” [Jlot vanish, similarly for the momentum constraint and
to restrict the ordinary laps#/. The weight-minus-one gensity.) This leads to Teitelboim’s [1] and Ashtekar’s
lapse (the slicing density) = Ng~'/> = a(x,1)isfreely  [2] modification of the ADM action(167G = 1 = c)
specifiable whileN is not [16]. (The slicing density . B 4o ij ~
a is also used prominently in [1,2,17].) Indeed, if one Sapwralg, 7, B) = f d'x(m8i; —aH), (4)
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where we use Kuclia notation indicating functionaland  We see that the equations of motion (7) and (8)
explicit function dependence. Boundary terms are ignorederived from the action principle are (9) and (11) when
here as they are not the focus of the present analyr/ — g/R,* = 0. Thus, to say that (8) holds is to assert
sis. [There are no difficulties in obtaining, for example,that R/ = 0. The equations of motion hold strongly,
the ADM energy surface integral. One requires the samédependent of whether the constraints are satisfied. This
asymptotic conditions as always, maintainiNg— 1 + is not true in the ADM formulation because of the
O(r~"—not o — 1 + O(r~")—while recalling N = presence of the Hamiltonian density in their equation of
¢'?a.] The vacuum case is considered, but to add mini-motion for 7/ .

mally coupled matter and/or a cosmological constant is This difference can be explained more fully as follows.
straightforward. The momentum densifif; has been From the definition of the Einstein tensor in terms of the
absorbed intor/g;; through use of the time derivative Ricci tensor,G,, = R, — 3 g.,R,”, and the observa-
30. Explicitly, the Lie derivative term it/ is, uptoa tion thatzGOO = ROO — Rkk, one derives the identity

divergence,
d e i Gij + giGy = Rij — gijRi* . (12)
2B'Vm = —B'H;. (5) . : X
Consider a general variation of the modified Hamilton-The yamshmg of the r'|ght-hand side does no.t.depend
ian density on either the Hamiltonian or momentum densities and

5H — (2 — gra)darl is equivalent toR;; = 0. Clearly, it is also equivalent
mip T 8umems o to G;; = —gijGy. Thus, whileR,, =0 andG,, =0
+ Qa*m) — 77 + gRYV — 88" R)bgij are equivalentR;; = 0 and G;; = 0 are not equivalent
=i kS as equations of motion—unless the Hamiltonian den-
— g(ViVisg; — gV 8g1)). (6) d

. : L sity H = 2g'/2G,” vanishes exactly, that is, unless the
Note that (6) doe§ hot myolye either the Ham|It<')n|'an O'Hamiltonian constraint holds. The ADM action principle
momentum densities while, in contrast, the variation o

- o k _ is equivalent toG;; = 0 and so also require${ = 0 to
— 1/2 J

the ADM Hamiltonian densityp H = &(s™"/29{) does 1o equivalent to (11). We recall that the useRef has

contain a term proportional to the Hamiltonian density. ‘

o . >y always been preferred by the French school, pioneered by
Requiring thatSApmta be stationary under a variation Lichnerowicz [23] and Choquet-Bruhat [24].

with respect torr"/ gives the definition of the extrinsic  This raises an important principle: A constrained

curvature 5 Hamiltonian theory should be well behaved even when
. dH D — _INK 7 the constraints are violated. As discussed in [25],
8 = X sl aQmij = gijm) = i (D ecent efforts [8-15] to achieve well-posed hyperbolic

Requiring that it be stationary under a variation withformulations of general relativity, with only physical
respect tag;; gives the equation of motion characteristics, can be understood in this light as well.
SH From this point of view, the Hamiltonian and momentum
T = —a S densities are definite fixed combinations of the phase

tj

' space variables, but their values may deviate from zero.

= —ag(RY — ¢'R) — aQu*m,) — 77¥) The form of the equations of motion should not depend
oo - on these values. When the constraints are satisfied (i.e.,

+ g(V’V/g B g”Vkaa).. 4 (8) the densities vanish), one is on the so-called constraint
The slicing densitye and the shift3" are not to be pypersurface, and many unphysical degrees of freedom
varied. Instead the constraints are imposed on initial datgre frozen because relations among many of the variables
and are preserved dynamically as shown below. This i§g,77) are fixed. When the constraints are relaxed, the
not an already parametrized theory in the usual sense. theory explores phase space away from the constraint
Consider the familiab + 1 identities hypersurface. The objective is to have a theory whose
gij = —2NK;;, (9)  character does not change dramatically when one moves

kl.j = N(R;j — R;j + HK;; — kaKj" - N 'V,V,N). of!c the con_straint hypersurface. Examples for which
this is particularly relevant are numerical applications

o (10) . where violation of the constraints is inevitable. It seems

Also, recall the formula for.the dgr_|vat|ve of the determi- hat similar properties may be shared by the canonical
nant of the three-metrigg~'g = ¢"¢;; = —2NH. NOW  agptekar variables, but there are subtleties beyond the
we pass to canonical variables. Using (9) and (10), th@cope of this paper that require closer investigation

time derivative ofz"/ is computed to be'iderj]tically 3 (cf. [17]). [At this point, we should stress that the
7'l = Ng'*(Rg"" — RY) — Ng~'2@n*m’ — wam'l) R;; = 0 equations given by (7) and (8) or (9) and (10) are
i gl/Z(vivjN — GUTFT,N) + Ngl/Z[RijL not in themselves known to be well posed, though they

have no unphysical characteristic speeds [7]. They do,
(11)  however, lead to the well-posed evolution f and H;
whereR;; = R;; — ginkk. as we shall see.]
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We now introduce the smeared Hamiltonian form of the Bianchi identities
H, = ] dx'a(x', ) H . (13) VBGOﬁ = VoG + VjGoJ =0, (18)

The equation of motion for a general functional on phase VBGJ-B = VoGjO - V,;Gy + Vi[Rji - 5/Rkk] =0.
spaceF([g, 7;x,1) is (19)

doF[g, m;x, 1) = —{ﬂa,F[g, T x, 1)} (After the expression in square brackets is replaced using
% the vanishing ofR;;, these become equations of motion
+ ; . . A . - .
. doFlg, m:x, tz (14) rather than identities.) Express the Bianchi identities (18)
Here, d is a total time derivative whilé, is a “partial”  and (19) in3 + 1 language, using® = ¢ 'H = 2G;
derivative of the formd, — Lz which only acts on andC; = ¢ /24, = 2NG,°. A calculation yields
explicit spacetime dependence. The Poisson bracket is .

given by C - NV/C; = 2(C;V'N + NHC — NK"[R;;]),
(20)
{F,G} = fd% oF 0G e = 1 L ai
5gl-j(x’[) 677-11()(’ t) Cj NVJC = 2(CVjN + ZNHCJ' \Y (N[R,/])),
_8F 8G (21)
Smii(x,t) 8gij(x,t)’ whereR;; = R;; — gl-ijk. This system is clearly sym-

. ) ) ) metric hyperbolic with only the light cone as characteris-
It is evu_jent that the ‘equations of motlon_(7) an(_j (S)tic, and, changing tf{, #; gives (16) and (17) when
are obtained by applying (14) to the canonical Va]r/'?ble%,vj = 0. (Without considering our identities or a Hamil-
(g, 7). Also, observe that applying (14) ¥ = ag tonian framework, Frittelli [26] reached the same conclu-

prO(_juces (2). L . sion about well posedness of constraint propagation in the
Time evolution is generated by the Hamiltonian vectorugiandard”3 + 1 formulation [19], which use®;; = 0
1 17 1

field and its absence in the ADM equations, witly = 0. Re-
; S lated formulas were also obtained by Choquet-Bruhat and
X, = f d’xja2my — wgi) 78g~ Noutchegueme [27] for the evolution of matter sources
ij | p®, p% wherephfe = 7B — %gﬁaT’ulL.)
— [ag(RY — gR) + aQ@n*m, — wm') We now return to the Hamiltonian formulation. The
Poisson bracket between two smeared Hamiltonians is
— ¢(ViVia — gijvk@ka)]% . (15) {H,, ,H,} = —f dxg(aVia, — arVia)) H;
7Tl
. . I _ 3. ij
Again, this does not depend on the Hamiltonian or = _f d’xgg"(a19jar — azdjan) H;.
momentum densities, so it is a good time evolution (22)

operator even away from the constraint hypersurface. . i i i
(This observation was essentially made by Ashtekar inf his bracket expresses the consistency of time evolution

footnote 17 of [2] but evolution was mistakenly associated!"der different choices at. The Jacobi identity is
with Gij = 0). R {j{als{}[ags F}} - {j{az»{j{alsF}}
By the product rule shared by, and the Poisson ~ ~
bracket, one computes the evolution equations for the = {Ha,, Ha}, F}. (23)
constraints to be Because of the metric dependence in (22), one sees that
Py Yo U ii il the difference between evolution with, followed by «;
H = ~AHo 3} = gag?9:H; + 258" HiV e, and the reverse is a spatial diffeomorphism wiidh = 0
(16)  [28] (or whensF/sxi/ = 0).
o g _ Y Y These results lead to a new understanding of the Dirac
Hj = ~Ha Hjy = ad; 3 + 2H dje, (17) “algebra” of the constraints (cf. [28]). As is well known,
where V,a = d;a + ag™'/29,¢"/2. These equations the Dirac algebra is not the spacetime diffeomorphism al-
correspond to (20) and (21) below wh&p = 0. Thus, gebra. The root of this is that the action (4) is invari-
the Poisson brackets of the smeared Hamiltonian with thant under transformations generated by the constraints
unsmeared densities are seen to be well-posed evoluti@ven when they are not satisfied [29]. The equations
equations for the densities. which hold even when the constraints are not imposed are
These equations can be shown to be equivalent t®;; = 0. These equations are preserved by spatial dif-
the twice-contracted Bianchi identiti&& G ,# = 0 when  feomorphisms and time translations along their flow, yet
R;;j = 0 as follows. Combine the identity (12) with the a general spacetime diffeomorphism appliedRig = 0
twice-contracted Bianchi identities to obtain a transparenmixes in the constraints. A comparison of (16) and (17)
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