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Inelastic Collapse of a Randomly Forced Particle
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We consider a randomly forced particle moving in a finite, one-dimensional region, which reboun
inelastically with coefficient of restitutionr on collision with the boundaries. We show that there is a
transition at a critical value ofr, rc ; e2py

p
3, above which the dynamics is ergodic but beneath which

the particle undergoes inelastic collapse, coming to rest after an infinite number of collisions in a fin
time. The value ofrc is argued to be independent of the size of the region or the presence of a visco
damping term in the equation of motion. [S0031-9007(98)06788-X]
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Randomly accelerated particles have been used as m
els in many contexts, ranging from the classic proble
of Brownian motion [1] to ecological phenomena suc
as swarming [2]. Theoretical studies have centered
first-passage problems both with [3] and without [4,5] vis
cous damping or in the presence of a potential [6]. R
cently, systems of such particles that collide inelastica
have been studied in connection with granular media [
These systems are characterized by clustering [8], wh
is thought to be a collective effect related to inelastic co
lapse of ballistically moving particles [9].

In this Letter we show that inelastic collapse can o
cur in a system consisting of asingle particle. Specifi-
cally, we study a randomly forced inelastic particle in
finite box. If the coefficient of restitution governing the
collisions with the boundaries is less than some critic
value,rc, the particle will collide with one wall an infinite
number of times in a finite time and come to rest at th
wall. The value ofrc is shown to be independent of the
system size or the presence of viscous damping. This
havior represents a novel example of a broken ergodic
transition in a single particle, one-dimensional stochas
system. It also has repercussions on the use of rando
forced inelastic particles as models of granular media.

Consider a particle moving with positionx at time t
within a region of sizel and subject to a random force
The equation of motion is

d2x
dt2  hstd , (1)

for 0 , x , l, where hstd is a Gaussian white noise
with correlator khst1dhst2dl  2dst1 2 t2d and initially
we ignore viscous damping. When the particle collide
with one of the walls it rebounds inelastically with
coefficient of restitutionr, i.e.,yf  2ryi, whereyi and
yf are, respectively, the velocities just before and ju
after the collision. The random force tends to increa
the particle’s energy, while the collisions dissipate energ
One might naively expect that the motion would settle in
a steady state with a well-defined average energy, exc
in the pathological casesr  0 (where the particle simply
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adheres to the first wall it hits) andr  1 (where there is
no dissipation and the particle’s energy increases with
limit).

Solutions to the Fokker-Planck equation for a random
accelerated particle are technically formidable, even
time-independent situations where the boundary con
tions are known [5]. In the present problem, the bounda
conditions must be determined self-consistently, so th
the flux of particles leaving the system with velocity2jyj
is balanced by a flux of particles reentering the syste
with velocity rjyj. We have not been able to obtain ex
plicit solutions either for the time-dependent case wi
specific initial conditions or for a putative steady stat
However, exact arguments about the behavior of the s
tem may be formulated by mapping the motion onto th
of an elastic particle.

We discuss first the semi-infinite casel  `. The
following transformation

x ! x0  r23x; t ! t0  r22t (2)

leaves the equation of motion (1) and the variance
the noise invariant. Moreover, Eqs. (2) implyy ! y0 
r21y, so if we perform such a rescaling of variables aft
each collision then in terms of the new variables the moti
is that of a randomly accelerated particle which collid
elastically with the wall. We define

x  r23nstdx; dt  r22nstddt , (3)

where n is the number of collisions. Furthermore, w
can remove the wall and consider the motion of a fr
particle, in which casen is the number of times the
particle has crossed the linex  0, and we should take
the absolute value ofx when transforming back to the
original variables. The bar denotes coordinates referr
to the fictitious free particle. We can invert Eq. (3) to giv

t 
Z t

ds r2nssd. (4)

We will see that inelastic collapse occurs whenn increases
with t in such a way thatt approaches a finite limit as
t ! `.
© 1998 The American Physical Society
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To facilitate the discussion, we make a further transfo
mation onto a stationary Gaussian process (SGP) via
following change of variables [10]:

X 

√
3
2

!1y2
x

t3y2 ; T  ln t . (5)

The equation of motion may be written in the form

d2X
dT2 1 2

dX
dT

1
3
4

X  HsT d , (6)

where HsT d is a Gaussian white noise with cor
relator kHsT1dHsT2dl  3dsT1 2 T2d. The corre-
lation function for XsT d is kXsT0dXsT0 1 T dl 
s3y2de2Ty2 2 s1y2de23Ty2. The average number of
returns to the origin in an intervaldT of a SGP
with correlation function CsT d , 1 2 AT2 at small
T is dknl  rdT , where r 

p
2Ayp [10]. Thus

dknl  rdtyt, so knl  r ln t for large t. In a naive
mean-field approach, we would replacenstd by knstdl
in Eq. (4) giving t ø

Rt ds s
p

3yp ln r . Therefore, when
r , rc ; e2py

p
3, lim t!` t is finite. This means that

after a finite time, the particle has collided with the wa
an infinite number of times and, sincekx2l  kr6nx2l,
wherekx2l , t3, the trajectory collapses and the partic
adheres to the boundary.

The rescaling arguments presented above can be
tended beyond the mean-field approximation [11]. O
finds that the value ofrc is unchanged when fluctuation
in nstd are included. An alternative approach is to calc
late the return velocity distribution after many collision
with the boundary, from which further details of the co
lapse transition can be extracted. In particular, we w
show that the collapse takes place in a finite time due
the presence of a characteristic velocity scale which d
cays exponentially with the number of bounces. The c
culation involves two steps. First, we will determine th
velocity distribution on the first return to the origin fo
a particle governed by Eq. (1) and released fromx  0
with velocity y0. Second, we will use this distribution a
a Green’s function to relate the velocity distribution at th
boundary aftern collisions to that aftern 2 1 collisions.
By iterating the resulting recursion relation, the exact r
turn distribution aftern bounces can be generated.

The velocity distribution on the first return to the
boundary can be calculated from the following esca
problem. Particles are injected into the regionx $ 0
from the origin at a constant ratea and with initial
velocity y0. They experience a random force, Eq. (1
and can exit from the region only atx  0. Steady
state calculations of this type have been carried out
the context of Kramers’ equation [12] and are know
as albedo problems in boundary layer theory. Here
will show that the albedo solution for the undampe
random acceleration model with delta-function injectio
has a simple analytic form which, to our knowledge, h
not been noted previously.
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In the steady state, the probability density function
Psx, yd corresponding to the Langevin equation (1) obeys
the Fokker-Planck equation

≠2Psx, yd
≠y2  y

≠Psx, yd
≠x

. (7)

For the escape problem outlined above, this equation mus
be solved subject to the boundary conditions

Psx, yd ! 0, y ! 6` , (8)

Psx, yd ! 0, x ! 1` , (9)

Ps0, yd 
a

y0
dsy 2 y0d, for y . 0 , (10)

with Ps0, yd for y # 0 the unknown function we wish to
determine. Using separation of variables, the most gen
eral form of the solution to Eq. (7) which is continuous
and differentiable along the liney  0 and is consistent
with the boundary conditions in Eq. (8) is

Psx, yd 
Z `

2`

dl e2lxasldAi s2l1y3yd , (11)

where Ai is the Airy function andasld is as yet unknown.
Using the orthogonality properties of the Airy functions
over the intervalf2`, `g, this equation can be inverted to
expressasld as an integral overPsx, yd. Along the line
x  0 this reduces to

l1y3asld 
a

y0
Ai s2l1y3y0d

1
Z 0

2`

dy yAi s2l1y3ydPs0, yd , (12)

where we have used the boundary condition Eq. (10). The
requirement thatPsx, yd ! 0 for x ! ` can be satisfied
only if asld  0 for all l , 0. Imposing this condition
on (12) results in an integral equation for the unknown
part of the boundary velocity distribution,

a

y0
Ai s2l1y3y0d 

Z `

0
dy yAi sl1y3ydPs0, 2yd , (13)

which must hold for alll , 0.
The first-return velocity distribution,Psyjy0d, is related

to the number of particles leaving per unit time atx  0
and with velocities in the intervals2y, 2y 2 dyd. As
the flux of particles is conserved,

aPsyjy0d dy  yPs0, 2yd dy , (14)

with Ps0, 2yd the solution to Eq. (13). In the semi-
infinite system the only characteristic velocity isy0 so
Psyjy0d has a scaling form,Psyjy0d  1

y0
fs y

y0
d. We

proceed by making the ansatz

fsxd 
3

2p

x3y2

1 1 x3 , (15)

which was motivated by a numerical simulation of the
above escape problem. By expressing the Airy function
in terms of Bessel functions and performing the integral in
1143
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(13), one can verify thatPs0, 2yd obtained from Eq. (14)
and the above ansatz is indeed a solution to (13) for
l , 0 as required.

Next we wish to determine how the return velocit
distribution evolves as the particle collides many time
and is reflected with a coefficient of restitutionr at
each bounce. LetPnsyd be the probability density of
returning to the wall with speedy aftern collisions. This
distribution obeys the recursion equation [13]

Pn11syd 
Z `

0

1
ry0

f

√
y

ry0

!
Pnsy0d dy0, (16)

with fsxd given by (15), as particles incident with spee
y are reflected with speedry. Equation (16) may be
solved by first changing variables tou  ln y which turns
the integral into a convolution. Using standard Fouri
techniques, Eq. (16), together with the initial conditio
P0syd  dsy 2 y0d, can be solved up to quadratur
giving

Pnsyd 
1

s2rdny0

Z `

2`

dk
2p

eikflnsyyy0d2n ln rg

fcoshpk
3 gn

. (17)

We are now in a position to discuss the collapse tran
tion in some detail. First, one can explicitly calculate th
moments of the velocity distributionPnsyd. One finds*√

y

y0

!q+


"
rq

2 cosp

3 s1 1 qd

#n

(18)

for 25y2 , q , 1y2, while moments withq outside
this range do not exist. The fluctuations iny are thus
extremely large and, asn increases, different moments o
y diverge for different values ofr. This is becausey
depends exponentially onn, so the moments are sensitive
to the rare events associated with the extremes of
return velocity distribution. However, if one is intereste
in typical trajectories, the natural variable to consider
ln y as this grows only linearly withn [14]. Changing
variables in Eq. (17) tou  lnsyyy0d and defining the
normalized probability distributionQnsud  euPnseud,
one finds that in the largen limit,

Qnsud , n21y2 exp

"
2

9
8np2

√
u 2 n ln r 2

p
p

3
n

!2#
.

(19)

From the peak of the distribution we can identify a critica
value ofr, rc  e2py

p
3. Note that this value is the same

as that predicted by the mean-field analysis. Furthermo
the distribution of lny is sharply peaked around a valu
n lnsryrcd with fluctuations of order

p
n. There is thus a

typical, characteristic velocity which behaves likesryrcdn.
On scaling grounds, one would expect the time interva
between collisions forr , rc also to decay exponentially
with n since y , t1y2. Consequently, the total elapse
time after an infinite number of bounces will remain finit
and, subsequently, the particle will remain at rest on t
boundary.
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We shall now discuss the case of a particle in a finit
box of sizel. The trajectory of a particle starting atx  0
with speedy0 is the same as for the semi-infinite system
up to the instant wherex  l for the first time, and may be
obtained from a trajectory of the equivalent SGP and th
transformations (3) and (5). In terms of the variableXsT d,
the position of the far wall isL  l exps2 3

2 T 2 3n ln rd.
The quantity lnL decreases linearly inT , but increases
by 23 ln r at each return ofX to zero. Figure 1 shows
the logarithm of the envelopeXmax of a typical trajectory,
defined as the largest value ofjXj during the interval
between the previous and the next zero, obtained b
simulating Eq. (6), together with the corresponding value
of ln LsT d for three values ofr. Because the correlations
in the SGP decay exponentially inT , the intervals between
zeros will have short-range correlations. It follows that the
motion of lnL is that of a biased random walker, biased
towards the origin forr . rc and away from the origin for
r , rc. Meanwhile, the distribution ofjXj is very sharply
cut off at jXj , 1. It is known that a random walker with
a bias away from the origin has a nonzero probability o
never returning to the origin [15]. Thus, forr , rc, the
particle has a nonzero probability of never reaching th
far wall. If the particle does reach the far wall, it will then
have a nonzero probability of never reaching the near wa
The particle will therefore collapse to one of the walls, and
for each trajectoryXsT d the time taken for the particle to
come to rest will be finite. Forr . rc the particle will
always reach the other wall in a finite time, and the proces
will repeat indefinitely.

There is therefore a transition between a steady sta
where the particle bounces an infinite number of time
from either wall, and the collapsed state where the partic
bounces a finite number of times from one wall and a
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FIG. 1. A semilogarithmic plot of the envelopeXmax (see
text) of a typical trajectory of the SGP [Eq. (6)], together with
the effective position of the far wallLsTd. When r , rc 
e2py

p
3 ø 0.163 . . . , the particle has a nonzero chance of neve

reaching the wall.
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FIG. 2. Typical trajectories of the particle in a finite box fo
four values ofr, showing inelastic collapse forr , rc.

infinite number of times from the other in a finite time
Figure 2 shows typical trajectories for four values ofr,
obtained from simulations of Eq. (6) and transformin
back to the real variablesx and t, showing the collapse
beneath the critical valuerc ø 0.163.

Finally we argue that a collapse transition can occur f
particles obeying Kramers’ equation of motion,

d2x
dt2 1 g

dx
dt

 hstd . (20)

This equation is often solved perturbatively by expandin
about the high viscosity limit [16]. However, if collisions
with a boundary are to be included, the effect of th
inertial term needs to be treated in a more comple
way. We will again consider a particle colliding with a
single boundary with coefficient of restitutionr. Scaling
arguments analogous to those presented above sug
that a collapse transition will take place for allg at the
same value ofr as in the undamped case.

We first perform a rescaling of the variables as
(2). The resulting equation of motion has the sam
form as (20) but with a rescaledg given by g0 
r2g. After many collisions there is an effective time
dependent̄gstd  r2nstdg. From Eq. (4), we see that in
the undamped problem forr , rc, r2nst̄d ! 0 faster than
1yt̄. If one introduces a time-dependentg in Eq. (20),
a simple scaling analysis shows that it will be irreleva
asymptotically if it too decays faster than1yt. Thus,
the dissipative system will always be in the collapse
state forr , rc. Now let us assume that the dissipativ
system can collapse for somer . rc. As the collapsed
state is approached, the velocity of the particle goes
zero while the acceleration remains of the order of th
noise strength. Consequently the dissipative termgy will
become negligible and, as we have assumedr . rc, the
particle will ultimately move away from the wall. We
thus conclude that the collapse transition will occur whe
r  rc  e2py

p
3 for any value ofg [17].
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The arguments about collapse of a single particle with
a wall can trivially be extended to two inelastic particles,
in which case the collapsed state consists of the tw
particles moving together. Collapse can also be expecte
in a many-body system, when pairs of particles, and the
larger clusters, aggregate. Real systems may deviate fro
the ideal case studied in this Letter by having short-rang
correlations in the driving force, or by the coefficient of
restitution approaching unity in the small velocity limit.
In these cases, one would still expect some remnant of th
collapse transition, and this should provide a method fo
extracting information about the time and velocity scales
on which such deviations occur. We will discuss these
and other related points at greater length elsewhere [11].
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