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Inelastic Collapse of a Randomly Forced Particle
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We consider a randomly forced particle moving in a finite, one-dimensional region, which rebounds
inelastically with coefficient of restitution on collision with the boundaries. We show that there is a
transition at a critical value of, r. = ¢~ ™/Y3, above which the dynamics is ergodic but beneath which
the particle undergoes inelastic collapse, coming to rest after an infinite number of collisions in a finite
time. The value of is argued to be independent of the size of the region or the presence of a viscous
damping term in the equation of motion. [S0031-9007(98)06788-X]

PACS numbers: 05.40.+j, 02.50.Ey, 03.20.+i, 81.05.Rm

Randomly accelerated particles have been used as modeheres to the first wall it hits) and= 1 (where there is
els in many contexts, ranging from the classic problenmo dissipation and the particle’s energy increases without
of Brownian motion [1] to ecological phenomena suchlimit).
as swarming [2]. Theoretical studies have centered on Solutions to the Fokker-Planck equation for a randomly
first-passage problems both with [3] and without [4,5] vis-accelerated particle are technically formidable, even in
cous damping or in the presence of a potential [6]. Retime-independent situations where the boundary condi-
cently, systems of such particles that collide inelasticallytions are known [5]. In the present problem, the boundary
have been studied in connection with granular media [7]conditions must be determined self-consistently, so that
These systems are characterized by clustering [8], whicthe flux of particles leaving the system with velocifyjv|
is thought to be a collective effect related to inelastic colis balanced by a flux of particles reentering the system
lapse of ballistically moving particles [9]. with velocity r|lv|. We have not been able to obtain ex-

In this Letter we show that inelastic collapse can oc-plicit solutions either for the time-dependent case with
cur in a system consisting of single particle. Specifi- specific initial conditions or for a putative steady state.
cally, we study a randomly forced inelastic particle in aHowever, exact arguments about the behavior of the sys-
finite box. If the coefficient of restitution governing the tem may be formulated by mapping the motion onto that
collisions with the boundaries is less than some criticabf an elastic particle.
value,r., the particle will collide with one wall an infinite We discuss first the semi-infinite cage= «. The
number of times in a finite time and come to rest at thefollowing transformation
wall. The value ofr. is shown to be independent of the ;3 P

) . ) . x—x =r"x t—t =r“t (2)
system size or the presence of viscous damping. This be-
havior represents a novel example of a broken ergodicitieaves the equation of motion (1) and the variance of
transition in a single particle, one-dimensional stochastithe noise invariant. Moreover, Egs. (2) imply— v’ =
system. It also has repercussions on the use of randomly 'v, so if we perform such a rescaling of variables after
forced inelastic particles as models of granular media.  each collision then in terms of the new variables the motion

Consider a particle moving with positian at time ¢  is that of a randomly accelerated particle which collides
within a region of sizel and subject to a random force. elastically with the wall. We define

The equation of motiogl is 5 = r,3,1(;)x; d7 = r’z”(?)dt, 3)
d . .
d—; = n(r), (1) wheren is the number of collisions. Furthermore, we

) ) ) ~ can remove the wall and consider the motion of a free
for 0 <x <, where n(z) is a Gaussian white noise particle, in which case: is the number of times the
with correlator (n(1)n(12)) = 26(1; — 1») and initially  particle has crossed the line= 0, and we should take
we ignore viscous damping. When the particle collideshe apsolute value of when transforming back to the
with one of the walls it rebounds inelastically with griginal variables. The bar denotes coordinates referring

coefficient of restitutiorr, i.e.,vy = —rv;, wherev; and  tg the fictitious free particle. We can invert Eq. (3) to give
v, are, respectively, the velocities just before and just 7

after the collision. The random force tends to increase t = ] ds r26) 4
the particle’s energy, while the collisions dissipate energy.

One might naively expect that the motion would settle intoWe will see that inelastic collapse occurs wheimcreases
a steady state with a well-defined average energy, excepiith 7 in such a way that approaches a finite limit as
in the pathological cases= 0 (where the particle simply 7 — oo,
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To facilitate the discussion, we make a further transfor- In the steady state, the probability density function
mation onto a stationary Gaussian process (SGP) via the(x, v) corresponding to the Langevin equation (1) obeys

following change of variables [10]: the Fokker-Planck equation
1/2 2
3 T ~ 9°P(x,v) __9P(xv) 7
Xz(?) Sp T ) U e ™
_ _ . _ For the escape problem outlined above, this equation must
The equation of motion may be written in the form be solved subject to the boundary conditions
d*X X | 3 P(x,v) =0, v — *x, 8

arz P 2ar Ty X =HD, ©)

where H(T) is a Gaussian white noise with cor-
relator (H(T)H(T»)) = 36(T; — T,). The corre- P(0,v) = @ 8(v — wo), forv >0, (10)
lation function for X(T) is (X(Tp)X(Ty + T)) = Vo

(3/2)e T/ — (1/2)e73T/2. The average number of with P(0,v) for v = 0 the unknown function we wish to
returns to the origin in an intervaiT of a SGP determine. Using separation of variables, the most gen-
with correlation function C(T) ~ 1 — AT*> at small  eral form of the solution to Eq. (7) which is continuous
T is d(n) = pdT, where p = +2A/7 [10]. Thus and differentiable along the line = 0 and is consistent
d(n) = pdit/t, so(n) = pInt for large7. In a naive with the boundary conditions in Eq. (8) is

mean-field approach, we would replaag¢r) by (n(7)) w0

in Eq. (4) givingt = ["dss¥3/7I"r Therefore, when P(x,v) =f dAe Ma(DAi (=A3), (11)
r<r.=e ™3 limi_.t is finite. This means that . - . .

after a finite time, the particle has collided with the wall "Where Ai is the Airy function and(A) is as yet unknown.

an infinite number of times and, sinde2) = (%), Using the orthogonality properties of the Airy functions

where(x2) ~ 7, the trajectory collapses and the particle ©Ve" the interval —o, o], this equation can be inverted to
adheres to the boundary. expressu(A) as an integral oveP(x,v). Along the line

The rescaling arguments presented above can be ex-— 0 this reduces to
tended beyond the mean-field approximation [11]. One a . 13
finds that the value of. is unchanged when fluctuations APa(d) = U_OA'(_’\ vo)
in n(7) are included. An alternative approach is to calcu- 0
late the return velocity distribution after many collisions + f dv vAI(—AY3v)P(0,v), (12)
with the boundary, from which further details of the col- —®
lapse transition can be extracted. In particular, we willwhere we have used the boundary condition Eg. (10). The
show that the collapse takes place in a finite time due teequirement thaP(x,v) — 0 for x — « can be satisfied
the presence of a characteristic velocity scale which desnly if a(A) = 0 for all A < 0. Imposing this condition
cays exponentially with the number of bounces. The calon (12) results in an integral equation for the unknown
culation involves two steps. First, we will determine the part of the boundary velocity distribution,
velocity distribution on the first return to the origin for o %
a particle governed by Eq. (1) and released frors 0 = Ai(=AYyg) = / dv vAi(A'Pv)P(0, —v), (13)
with velocity vo. Second, we will use this distribution as V0 0
a Green'’s function to relate the velocity distribution at thewhich must hold for all\ < 0.

P(x,v) — 0, x — +oo, 9

boundary after collisions to that aftern — 1 collisions. The first-return velocity distributior? (v|vy), is related
By iterating the resulting recursion relation, the exact reto the number of particles leaving per unit timexat= 0
turn distribution afterz bounces can be generated. and with velocities in the interval—v, —v — dv). As

The velocity distribution on the first return to the the flux of particles is conserved,
boundary can be calculated from the following escape B
problem. Particles are injected into the regiore 0 aP(vlvo)dv = vP(0, —v)dv, (14)
from the origin at a constant rate and with initial ~ with P(0, —v) the solution to Eg. (13). In the semi-
velocity vg. They experience a random force, Eq. (1),infinite system the only characteristic velocity ig so
and can exit from the region only at = 0. Steady P(v|vy) has a scaling formpP(v|vg) = viof(vlo)_ We
state calculations of this type have been carried out iproceed by making the ansatz
the context of Kramers’' equation [12] and are known 3 3
as albedo problems in boundary layer theory. Here we flx) = — 3o
will show that the albedo solution for the undamped, 2m 1+ x
random acceleration model with delta-function injectionwhich was motivated by a numerical simulation of the
has a simple analytic form which, to our knowledge, hasabove escape problem. By expressing the Airy function
not been noted previously. in terms of Bessel functions and performing the integral in
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(13), one can verify thaP (0, —v) obtained from Eq. (14) We shall now discuss the case of a particle in a finite
and the above ansatz is indeed a solution to (13) for albbox of sizel. The trajectory of a particle starting.at= 0
A < 0 as required. with speedv, is the same as for the semi-infinite system
Next we wish to determine how the return velocity up to the instant where = [ for the first time, and may be
distribution evolves as the particle collides many timesobtained from a trajectory of the equivalent SGP and the
and is reflected with a coefficient of restitution at  transformations (3) and (5). Interms of the variaklg’),
each bounce. LeP,(v) be the probability density of the position of the far wall ig. = lexp(—%T — 3ninr).
returning to the wall with speed aftern collisions. This The quantity InL decreases linearly iff, but increases
distribution obeys the recursion equation [13] by —3Inr at each return o to zero. Figure 1 shows
® v the logarithm of the envelopEax Of a typical trajectory,
P,i1(v) =f — (—/>P”(v')dv', (16) defined as the largest value ¢X| during the interval
0 rvho AT between the previous and the next zero, obtained by
with f(x) given by (15), as particles incident with speedsimulating Eq. (6), together with the corresponding values
v are reflected with speedv. Equation (16) may be of InL(T) for three values of. Because the correlations
solved by first changing variables #o—= In v which turns  inthe SGP decay exponentially 7 the intervals between
the integral into a convolution. Using standard Fourierzeros will have short-range correlations. It follows that the
techniques, Eqg. (16), together with the initial conditionmotion of InL is that of a biased random walker, biased
Po(v) = 8(v — vg), can be solved up to quadrature towards the origin for > r. and away from the origin for
giving r < r.. Meanwhile, the distribution dfx| is very sharply
. ) [oc dk oikn@/v)=nins] cut off at|X| ~ 1. Itis known that a random walker with
P,(v) = —_—

— . (17) abias away from the origin has a nonzero probability of

2r)"vo J—e 27 [cosh’ ] never returning to the origin [15]. Thus, fer< r., the
We are now in a position to discuss the collapse transiParticle has a nonzero probability of never reaching the

tion in some detail. First, one can explicitly calculate thefar wall. If the particle does reach the far wall, it will then

moments of the velocity distributioR, (v). One finds have a nonzero probability of never reaching the near wall.
q n The particle will therefore collapse to one of the walls, and
(l — r (18) for each trajector)(T') the time taken for the particle to
Vo 2cos3(l + q) come to rest will be finite. For > r. the particle will

always reach the other wall in a finite time, and the process
will repeat indefinitely.

There is therefore a transition between a steady state
where the particle bounces an infinite number of times
from either wall, and the collapsed state where the particle
Qounces a finite number of times from one wall and an

for —5/2 < g < 1/2, while moments withg outside
this range do not exist. The fluctuations inare thus
extremely large and, asincreases, different moments of
v diverge for different values of. This is because
depends exponentially an so the moments are sensitive
to the rare events associated with the extremes of th
return velocity distribution. However, if one is interested
in typical trajectories, the natural variable to consider is 300
Inv as this grows only linearly witle [14]. Changing

variables in Eq. (17) tax = In(v/vy) and defining the

normalized probability distributionQ,(u) = ¢“P,(e"), 200
one finds that in the large limit,

2
_ 9 T
Q0,(u) ~n lﬂex;{—gnﬂ_z(u —nlnr — ﬁn> i|

(19)

From the peak of the distribution we can identify a critical
value ofr, r. = e~™/V3. Note that this value is the same
as that predicted by the mean-field analysis. Furthermore,
the distribution of Irv is sharply peaked around a value
nIn(r/r.) with fluctuations of ordek/n. There is thus a -100 ‘ ‘
typical, characteristic velocity which behaves lilg r.)". 0 200 400 600
On scaling grounds, one would expect the time intervals T

between collisions for < r. also to decay exponentially FIG. 1. A semilogarithmic plot of the envelopEmay (see

. . - 1/2
V,V'th n Sincev ~ 1777 Consequently, the_ total e_Iap_s_ed text) of a typical trajectory of the SGP [Eq. (6)], together with
time after an infinite number of bounces will remain finite the ‘effective position of the far walL(7). Whenr < r. =

and, subsequently, the particle will remain at rest on the-=/v3 < 0.163.. ., the particle has a nonzero chance of never
boundary. reaching the wall.
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[ ‘ ‘ ‘ ‘ The arguments about collapse of a single particle with
a wall can trivially be extended to two inelastic particles,
in which case the collapsed state consists of the two
particles moving together. Collapse can also be expected
' ‘ ‘ ‘ in a many-body system, when pairs of particles, and then

larger clusters, aggregate. Real systems may deviate from
| . y
0 ‘ VWVW

1 r=0.1

1 r=0.155

restitution approaching unity in the small velocity limit.

In these cases, one would still expect some remnant of the
collapse transition, and this should provide a method for

extracting information about the time and velocity scales

r=0.165

r=0.5

the ideal case studied in this Letter by having short-range
correlations in the driving force, or by the coefficient of
| " :
0 : : ‘ WWAJ\)
0 20 40 60 80 100

t

four values ofr, showing inelastic collapse for < r..

infinite number of times from the other in a finite time.
Figure 2 shows typical trajectories for four values rof
obtained from simulations of Eg. (6) and transforming
back to the real variables and ¢, showing the collapse
beneath the critical value. = 0.163.
Finally we argue that a collapse transition can occur for

particles obeying Kramers’ equation of motion,

d’x dx

PP i n(t). (20)
This equation is often solved perturbatively by expanding
about the high viscosity limit [16]. However, if collisions
with a boundary are to be included, the effect of the
inertial term needs to be treated in a more complete
way. We will again consider a particle colliding with a
single boundary with coefficient of restitution Scaling

arguments analogous to those presented above suggef]

that a collapse transition will take place for allat the
same value of as in the undamped case.

We first perform a rescaling of the variables as in
(2). The resulting equation of motion has the same
form as (20) but with a rescaleg given by y' =
r*y. After many collisions there is an effective time-
dependenty(7) = r2*@y. From Eq. (4), we see that in
the undamped problem for < r., r2") — 0 faster than
1/¢. If one introduces a time-dependeptin Eq. (20),

a simple scaling analysis shows that it will be irrelevant
asymptotically if it too decays faster tharyr. Thus,
the dissipative system will always be in the collapsed
state forr < r.. Now let us assume that the dissipative
system can collapse for some> r.. As the collapsed
state is approached, the velocity of the particle goes t
zero while the acceleration remains of the order of th
noise strength. Consequently the dissipative temmwill
become negligible and, as we have assumed r., the
particle will ultimately move away from the wall. We

on which such deviations occur.
and other related points at greater length elsewhere [11].
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