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Origin of Synchronized Traffic Flow on Highways and Its Dynamic Phase Transitions
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We study the traffic flow on a highway with ramps through numerical simulations of a hydrodynamic
traffic flow model. It is found that the presence of the external vehicle flux through ramps generates a
new state of “recurring humps” (RH). This novel dynamic state is characterized by temporal oscillations
of the vehicle density and velocity which are localized near ramps, and found to be the origin of the
synchronized traffic flow reported recently [Kerner and Rehborn,79, 4030 (1997)]. We also argue that
the dynamic phase transitions between the free flow and the RH state can be interpreted as a subcritica
Hopf bifurcation. [S0031-9007(98)06771-4]

PACS numbers: 89.40.+k, 05.40.+ j, 05.60.+w, 64.60.Cn
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Everyday experiences show that traffic flow has com
plicated properties. The fact that the automobile is o
of the main transportation tools raises traffic flow as on
of the most important problems for engineers [1]. Fo
physicists, on the other hand, traffic flow is an inte
esting many-body problem of interacting vehicles. Nu
merous experimental measurements revealed that tra
flow possesses qualitatively distinct dynamic states [
In particular, three distinct dynamic phases are observ
on highways [3]: The free traffic flow which is analo
gous to the laminar flow in fluid systems, the traffic jam
state where vehicles almost do not move, and the s
chronized traffic flow which is characterized by com
plicated temporal variations of the vehicle density an
velocity.

Paralleled with experiments, many physical mode
have been proposed [4]. Cellular automaton models
have been developed which simulate each individual ve
cle and hydrodynamic models [6,7] which provide macr
scopic description of traffic flow. Subsequent studie
[8,9] of the models have explained many observed fe
tures of the free flow and traffic jams in highways. How
ever, no satisfactory explanation for the synchronized flo
is available to our knowledge.

Recently, Kerner and Rehborn reported an analy
of systematic measurements performed on German hi
ways. As one of the main results, it was pointed out th
the synchronized flow is spatially localized near ramps
highways [10]. This observation motivated us to explo
in this Letter effects of ramps on highway traffic flow
Through numerical simulations of a hydrodynamic mode
we find that the presence of ramps generates a new k
of traffic states which becomes a spatially localized lim
cycle of highway traffic flow under the constant extern
flux. We examine properties of the novel state and sho
that it is the origin of the synchronized flow.

In this work, we adopt the hydrodynamic model o
highway traffic flow proposed by Kerner and Konhäus
[6], where the dynamic evolution is described by th
0031-9007y98y81(5)y1130(4)$15.00
-
ne
e
r

r-
-
ffic

2].
ed

-

yn-
-
d

ls
[5]
hi-
o-
s
a-
-
w

sis
gh-
at
on
re
.
l,
ind
it
al
w

f
er
e

Navier-Stokes-type equation of motion,

r

µ
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≠t
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∂
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fV s rd 2 yg 2 c2

0
≠r

≠x
1 m

≠2y

≠x2 .

(1)
Herersx, td is the local vehicle density,ysx, td is the local
velocity, andV s rd is the safe velocity that is achieved in
the time-independent and homogeneous traffic flow, a
t, c0, and m are appropriate constants. Equation (1)
paired with the modified equation of continuity [11],

≠r

≠t
1

≠s ryd
≠x

­ qinstdwsx 2 xind 2 qoutstdwsx 2 xoutd ,

(2)
where the source and the drain terms on the righ
hand side represent the external flux through an on-ra
and through an off-ramp, respectively [12]. Herewsxd,
describing the spatial distribution of the external flux
is localized nearx ­ 0 and normalized so thatqinstd
[qoutstd] represents the total incoming (outgoing) flux.

To study the effects of a single ramp, two ramps [13] a
separated by a large distance (jxin 2 xoutj ­ Ly2 where
L is the system size), and numerical simulations are p
formed with periodic boundary conditions. The two-ste
Lax-Wendroff scheme is adopted as the main simulati
scheme, and its reliability is verified by comparison wit
an alternative scheme: the classical fourth-order Rung
Kutta scheme applied to the time and the centered Eu
scheme applied to the space [14]. Simulations are carr
out for many different sets of parameters and qualitative
the same results are obtained. So for definiteness,
present results only for the following choice of parame
ters: t ­ 0.5 min, m ­ 600 kmyh, c0 ­ 54 kmyh, and
V s rd ­ V0s1 2 ryr̂dyf1 1 Es ryr̂dug, where the maxi-
mum density r̂ ­ 140 vehiclesykm, V0 ­ 120 kmyh,
E ­ 100, andu ­ 4 [15]. Concerning the discretization,
spatial intervals of Dx ­ 37.8 m and time intervals
of Dt ­ 1024 min are found to be suitable. We
choose the spatial distribution of the external flux a
wsxd ­ s2ps2d21y2 exps2x2y2s2d with s ­ 56.7 m.
© 1998 The American Physical Society
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This model [Eqs. (1) and (2)] was investigated prev
ously [11] for the constant external fluxqinstd ­ qoutstd ­
f. For smallf, it was found that an initially homogeneou
flow rsx, 0d ­ rh, ysx, 0d ­ V s rhd evolves to slightly
modified free flow, where homogeneous regions with d
ferent densities are separated by narrow density-rising
descending) regions near the ramps, the so-called tra
tion layers. In contrast, forf larger than a critical value, a
local avalanche-like process occurs at the transition lay
and a traffic jam appears spontaneously. This study, ho
ever, failed to probe the synchronized traffic flow.

To find a clue to the missing third phase in traffi
flow, we pay attention to the experimental observatio
[10] that for a range off, traffic flow can be either in
the synchronized flow or in the free flow. This bistabilit
suggests that the transition from one locally stable sta
to the other may require some triggering events. So
our simulations, we apply a pulse-type perturbation with
finite amplitude. Specifically we first prepare a transitio
layer by applying the constant external fluxf which is
below the critical pointfc (for f . fc, the stable free
flow does not exist). Then a pulse of additional fluxdqin
is applied at the on-ramp for a short durationdt. As a
result, a localized oscillating state appears from the fr
flow [16] (Fig. 1).

After a transient period, the localized oscillation be
comes periodic in time. We observe that the Fourier spe
trum of the oscillation shows sharp peaks at each integ
multiple of the basic frequency1yT (ø0.068 min21 in
the case of Fig. 1). In the simulation, it turns out tha
properties of this periodic asymptotic state, such as t
period and the oscillation amplitude, are essentially ind
pendent ofdqin anddt as long as they are large enoug
to trigger the transition. This strongly suggests that t
periodic oscillation is not a transient process with a lon

FIG. 1. Birth and evolution of the RH state from the free flow
are shown in this plot of the density profile (r 2 rupstream)
near the on-ramp (xin ­ 18.9 km) for the average density of the
systemrh ­ 22.4 vehiclesykm fø s rupstream 1 rdownstreamdy2g
and the constant external fluxf ­ 318 vehiclesyh (the system
size L ­ 75.6 km). Transition from the free flow to the
RH state is triggered by a pulse-type perturbation applied
t ­ 50 min with dqin ­ 318 vehiclesyh, dt ­ 5 min.
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decay time but a limit cycle of Eqs. (1) and (2). For de
niteness, we call this state of traffic flow the“recurring
hump” (RH) state in this paper, which will be later com
pared with the synchronized flow.

Limit cycles are generated in numerous examples
nonlinear autonomous systems (that is, systems with
explicitly given time dependence) [17,18]. In the prese
example of traffic flow, the limit cycle can be cha
acterized as aself-excited(autocatalytic) oscillator (see
Sec. 5.6 in Ref. [17]), whereconstantexternal flux serves
as a source of periodically generated excitations (hum
Excitations are, however, relaxed within a localized r
gion. When the upstream vehicle density is lower th
the critical valuercr sø25 vehiclesykm for our parame-
ter choice), a localized inhomogeneity decays away in
homogeneous traffic environment, unless the amplitude
the inhomogeneity is larger than a critical magnitude [
Thus, humps cannot survive far away from the on-ra
if its size does not exceed the critical magnitude. In t
way, the localization can be achieved.

The character of the localized oscillation becom
evident in the density-flow diagrams [rsx, td vs qsx, td ;
rsx, tdysx, td]. In contrast to a straight line for the fre
flow, the density-flow relation for the RH state form
a closed loop atx ­ xin [Fig. 2(a)], which implies the
periodicity of the oscillation and also the phase differen
in oscillation betweenrsx, td and qsx, td. As x moves
downstream, the loop deforms gradually to a sma
loop and eventually joins the free flow [Fig. 2(a)], whic
is a consequence of the localization. We also exam
the effect of the randomly fluctuating external flu
Figure 2(b) shows that although the exact periodicity
lost, the oscillation itself is still stable under rando
fluctuations.
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FIG. 2. (a) Density-flow diagrams for the average dens
rh ­ 22.4 vehiclesykm, f ­ 318 vehiclesyh measured atx 2
xin ­ 0 km (the largest loop), 0.9 km, and 3.8 km (the smalle
loop), respectively. The dashed line represents the free fl
diagram. (b) Density-flow relation at the on-ramp under t
presence of random fluctuations in the external flux. D
are shown forqin,outstd ­ 318 vehiclesyh 1 dqin,outstd, where
dqin,outstd is a random constant function in each time interv
of Tp ­ 5 min. At the end of each interval, the values o
two independent random fluctuationsdqinstd, dqoutstd are reset
by new random numbers uniformly distributed in the ran
f295, 95g vehiclesyh.
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Below we investigate the transition from the free flow
to the RH state. For definiteness, we fix the perturb
tion, dqin ­ 159 vehiclesyh, dt ­ 6 min, and apply it to
the transition layer generated byf [Fig. 3(a)]. For small
f, the free flow survives the perturbation. Forf larger
than a critical valuef1, however, thefinite amplitude RH
state is induced. We emphasize that afinite perturbation
is essential for the transition. As the perturbation becom
weaker,f1 becomes larger and fordqindt ! 0, the tran-
sition to the RH state does not occur for the whole rang
of f smaller thanfc [11]. For the backward transition, on
the other hand, it turns out that it may occur even witho
finite amplitude perturbations. Asf decreases adiabati-
cally from f . f1, the amplitude of the RH state varies a
in Fig. 3(a). The system first follows its old path. Below
f ­ f1, however, the system still remains in the RH sta
instead of going back to the free flow. The RH state
maintained untilf reaches a lower critical valuef2, where
the transition to the free flow occurs [19]. We mention tha
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FIG. 3. (a) Amplitude of density oscillation measured a
the on-ramp forrh ­ 22.4 vehiclesykm. The zero ampli-
tude implies free flow. Discontinuous jumps occur atf1 ø
241 vehiclesyh andf2 ø 184 vehiclesyh. (b) kyl [Eq. (3)] as
a function of f with R ­ 7.6 km. Though the precise value
of kyl depends onR, the presence of discontinuities is univer
sal. (c) Synchronized oscillations in a two-lane system. Th
figure shows the temporal variations of the velocities at the o
ramp for lane 1 (solid line) and for lane 2 (dotted line). A
pulse of the external flux introduced att ­ 50 min induced
the transition to the RH state. Notice that the variations a
synchronized in both lanes. (d) Schematic diagram of the b
furcation scenario. PointA corresponds to a turning point and
B corresponds to a subcritical Hopf bifurcation point. While
the transition atf2 is spontaneous, the transition atf1 should
be aided by an external triggering event. As a result, the val
of f1 depends on the strength of triggering events. Forf . fc,
the free flow loses its stability spontaneously.
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transitions between the RH state and the free flow show
same hysteresis as measured on highways [10]. The in
ence of the transition on traffic flow becomes clear in t
following natural order parameter: the spatiotemporal a
erage velocity,

kyl ;
1

TR

Z t1T

t
dt0

Z Ry2

2Ry2
dx ysx 1 xin, t0d , (3)

whereT is the period of the RH state andR is the size of the
averaging range. In Fig. 3(b),kyl makes discontinuous
jumps at the transition pointsf1 andf2 [20].

Another interesting property of the RH state appears
multilane situations. To demonstrate this, we extend
the traffic equations to a two-lane system. The equat
of motion (1) and the continuity equation (2) apply t
each lanei ­ 1, 2. We assume that ramps are connect
to lane 2 and so the source and drain terms appea
the continuity equation for lane 2 only. We simulat
the interlane interaction effect in a minimal way b
introducing to the continuity equations lane-change ter
s≠riy≠tdch that account for the interlane flux due t
the lane change of vehicles. For the simple choic
s≠riy≠tdch ­ af rjsx, td 2 risx, tdg si fi jd, it is found
that when the flow in lane 2 makes the transition to t
RH state, it is accompanied by the appearance of
synchronized oscillations of the velocity and the dens
in lane 1 [Fig. 3(c)]. This property of the synchronizatio
is examined for different functional forms ofs≠riy≠tdch

as well, since its precise form is not yet well determine
Qualitatively same results are recovered in all cas
which demonstrates that the synchronization is a gene
property of the RH state in multilane situations [21].
is worth commenting that this kind of synchronizatio
phenomenon is a common property in many examples
self-exciting systems (see Sec. 5.13 in Ref. [17]).

Now it should be noticed that many properties of the R
state are identical to those of the synchronized flow [1
e.g., the discontinuous transition from the free flow to th
synchronized flow induced by localized perturbations
finite amplitudes, hysteresis, stability of synchronized flo
(hours of self-maintenance), gradual spatial transitio
from synchronized flow to free flow, and synchronize
oscillations. Therefore, we conclude that the RH state
the origin of the synchronized traffic flow.

We interpret our results within the standard framewo
of nonlinear dynamics. The free flow corresponds to
point attractor. On the other hand, many features of t
RH state, such as stability and discontinuous transitio
assert that the RH state corresponds to a stable limit cy
Hysteresis implies bistability for a certain range off. The
spontaneous backward transition from the limit cycle
the point attractor means that the lower end of the bista
region is f2. On the other hand, the necessity of finit
perturbations for the forward transition suggests that t
upper end of the bistable region goes abovef1 and, in
fact, extends tofc. Discontinuous transitions in both
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directions indicate that the limit cycle is not connecte
to the point attractor [Fig. 3(c)]. The discontinuity also
suggests that there should exist still another asympto
state, which serves as a boundary between the basins
the attraction toward the two locally stable asymptoti
states. One plausible candidate for the boundary is
unstable limit cycle that is connected to the stable lim
cycle at f ­ f2 and also to the fixed point atf ­ fc

[Fig. 3(c)]. In this case, the whole transition behaviors ar
results of aturning point(f2) combined with asubcritical
Hopf bifurcation(fc).

Lastly we briefly discuss the synchronized flow fa
away from the ramps reported in Refs. [3,10]. Ther
is one important difference between the synchronize
flow near the ramps and that far away from the ramp
While the former is a nondecaying state of oscillations
the latter appears only as a transient process; after so
upstream movement since its creation, it either disappea
or transforms into a jam [10]. Therefore, the synchronize
flow far away from the ramps is not a stable dynami
phase of traffic flow, and is not studied in this Letter
The appearance of this transient process requires furth
investigation.

In summary, we find that there exists a recurring hum
state in highway traffic flow with ramps. In this state
the density and the flow oscillate periodically and th
oscillations are localized near the on-ramp. The RH sta
is a stable limit cycle of the nonlinear traffic equations
(1) and (2). The transition between the free flow and th
RH state is discontinuous and shows hysteresis. Ma
features of the RH state are identical to those of th
synchronized flow and thus we conclude that the RH sta
is the origin of the synchronized flow observed in rea
highways [3,10].
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