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Origin of Synchronized Traffic Flow on Highways and Its Dynamic Phase Transitions
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We study the traffic flow on a highway with ramps through numerical simulations of a hydrodynamic
traffic flow model. It is found that the presence of the external vehicle flux through ramps generates a
new state of “recurring humps” (RH). This novel dynamic state is characterized by temporal oscillations
of the vehicle density and velocity which are localized near ramps, and found to be the origin of the
synchronized traffic flow reported recently [Kerner and Rehb@8n4030 (1997)]. We also argue that
the dynamic phase transitions between the free flow and the RH state can be interpreted as a subcritical
Hopf bifurcation. [S0031-9007(98)06771-4]

PACS numbers: 89.40.+k, 05.40.+j, 05.60.+w, 64.60.Cn

Everyday experiences show that traffic flow has com-Navier-Stokes-type equation of motion,
plicated properties. The fact that the automobile is one (v v p 5 0p 0*v
of the main transportation tools raises traffic flow as onep<§ + ”a) - [V(p) —v] =< x TR
of the most important problems for engineers [1]. For 1)

physicists, on the other hand, traffic flow is an inter-H is the local vehicle densi is the local
esting many-body problem of interacting vehicles. Nu- erep(x, 1) is the local vehicle density(x, ) is the local
velocity, andV( p) is the safe velocity that is achieved in

merous experimenta! measurements reveal_ed that traﬁ{ﬁe time-independent and homogeneous traffic flow, and
flow possesses qualitatively distinct dynamic states [2] '

; L , T, co, and u are appropriate constants. Equation (1) is

In pa_rtlcular, thrge distinct dynar_mc phase_s are ObserVegaired with the modified equation of continuity [11],
on highways [3]: The free traffic flow which is analo- 3 3 pv)
gous to the laminar flow in fluid systems, the traffic jam 22 4+ CLY ()0 (x = xin) = Gout (@ (x — Xour) s
state where vehicles almost do not move, and the syn- 97 dx
chronized traffic flow which is characterized by com- 2)
plicated temporal variations of the vehicle density andwhere the source and the drain terms on the right-
velocity. hand side represent the external flux through an on-ramp

Paralleled with experiments, many physical modelsand through an off-ramp, respectively [12]. Hepéx),
have been proposed [4]. Cellular automaton models [5flescribing the spatial distribution of the external flux,
have been developed which simulate each individual vehiis localized nearx = 0 and normalized so thag;,(7)
cle and hydrodynamic models [6,7] which provide macro-[g..(¢)] represents the total incoming (outgoing) flux.
scopic description of traffic flow. Subsequent studies To study the effects of a single ramp, two ramps [13] are
[8,9] of the models have explained many observed feaseparated by a large distande;{ — xou:| = L/2 where
tures of the free flow and traffic jams in highways. How- L is the system size), and numerical simulations are per-
ever, no satisfactory explanation for the synchronized flowiormed with periodic boundary conditions. The two-step
is available to our knowledge. Lax-Wendroff scheme is adopted as the main simulation

Recently, Kerner and Rehborn reported an analysischeme, and its reliability is verified by comparison with
of systematic measurements performed on German higlan alternative scheme: the classical fourth-order Runge-
ways. As one of the main results, it was pointed out thaKutta scheme applied to the time and the centered Euler
the synchronized flow is spatially localized near ramps orscheme applied to the space [14]. Simulations are carried
highways [10]. This observation motivated us to exploreout for many different sets of parameters and qualitatively
in this Letter effects of ramps on highway traffic flow. the same results are obtained. So for definiteness, we
Through numerical simulations of a hydrodynamic model present results only for the following choice of parame-
we find that the presence of ramps generates a new kintérs: + = 0.5 min, u = 600 km/h, ¢y = 54 km/h, and
of traffic states which becomes a spatially localized limitV(p) = Vo(1 — p/p)/[1 + E(p/p)’], where the maxi-
cycle of highway traffic flow under the constant externalmum density p = 140 vehiclegkm, V, = 120 km/h,
flux. We examine properties of the novel state and showE = 100, and@ = 4 [15]. Concerning the discretization,
that it is the origin of the synchronized flow. spatial intervals of Ax = 37.8 m and time intervals

In this work, we adopt the hydrodynamic model of of At = 107* min are found to be suitable. We
highway traffic flow proposed by Kerner and Konhéuserchoose the spatial distribution of the external flux as
[6], where the dynamic evolution is described by thee(x) = 2mo?) /2 exp(—x?/20?) with o = 56.7 m.
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This model [Egs. (1) and (2)] was investigated previ-decay time but a limit cycle of Egs. (1) and (2). For defi-
ously [11] for the constant external flyx, (1) = gou(f) =  niteness, we call this state of traffic flow thecurring
f. Forsmallf, it was found that an initially homogeneous hump” (RH) state in this paper, which will be later com-
flow p(x,0) = pp,v(x,0) = V(p,) evolves to slightly pared with the synchronized flow.
modified free flow, where homogeneous regions with dif- Limit cycles are generated in numerous examples of
ferent densities are separated by narrow density-rising (aronlinear autonomous systems (that is, systems without
descending) regions near the ramps, the so-called trangxplicitly giventime dependence) [17,18]. In the present
tion layers. In contrast, fof larger than a critical value, a example of traffic flow, the limit cycle can be char-
local avalanche-like process occurs at the transition layescterized as aelf-excited(autocatalyti¢ oscillator (see
and a traffic jam appears spontaneously. This study, howsec. 5.6 in Ref. [17]), whereonstantexternal flux serves
ever, failed to probe the synchronized traffic flow. as a source of periodically generated excitations (humps).

To find a clue to the missing third phase in traffic Excitations are, however, relaxed within a localized re-
flow, we pay attention to the experimental observationgion. When the upstream vehicle density is lower than
[10] that for a range off, traffic flow can be either in the critical valuep., (=25 vehiclegkm for our parame-
the synchronized flow or in the free flow. This bistability ter choice), a localized inhomogeneity decays away in the
suggests that the transition from one locally stable stathomogeneous traffic environment, unless the amplitude of
to the other may require some triggering events. So ithe inhomogeneity is larger than a critical magnitude [9].
our simulations, we apply a pulse-type perturbation with arhus, humps cannot survive far away from the on-ramp
finite amplitude. Specifically we first prepare a transitionif its size does not exceed the critical magnitude. In this
layer by applying the constant external flyxwhich is  way, the localization can be achieved.
below the critical pointf,. (for f > f., the stable free The character of the localized oscillation becomes
flow does not exist). Then a pulse of additional fidg,  evident in the density-flow diagramg (x, ) vs g(x, 1) =
is applied at the on-ramp for a short duratibn As a p(x,f)v(x,t)]. In contrast to a straight line for the free
result, a localized oscillating state appears from the freflow, the density-flow relation for the RH state forms
flow [16] (Fig. 1). a closed loop att = x;, [Fig. 2(a)], which implies the

After a transient period, the localized oscillation be-periodicity of the oscillation and also the phase difference
comes periodic in time. We observe that the Fourier spedn oscillation betweerp(x, ) and g(x,¢). As x moves
trum of the oscillation shows sharp peaks at each integetownstream, the loop deforms gradually to a smaller
multiple of the basic frequency/7T (=0.068 min~! in  loop and eventually joins the free flow [Fig. 2(a)], which
the case of Fig. 1). In the simulation, it turns out thatis a consequence of the localization. We also examine
properties of this periodic asymptotic state, such as théhe effect of the randomly fluctuating external flux.
period and the oscillation amplitude, are essentially indeFigure 2(b) shows that although the exact periodicity is
pendent ofs¢i, and 67 as long as they are large enoughlost, the oscillation itself is still stable under random
to trigger the transition. This strongly suggests that theluctuations.
periodic oscillation is not a transient process with a long
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0 FIG. 2. (a) Density-flow diagrams for the average density
150 10 x (km) pr = 22.4 vehiclegkm, f = 318 vehiclegh measured at —
o Xin = 0 km (the largest loop), 0.9 km, and 3.8 km (the smallest

loop), respectively. The dashed line represents the free flow
FIG. 1. Birth and evolution of the RH state from the free flow diagram. (b) Density-flow relation at the on-ramp under the
are shown in this plot of the density profilep (— pupsircam) presence of random fluctuations in the external flux. Data
near the on-rampy{, = 18.9 km) for the average density of the are shown forgy, .. (#) = 318 vehiclegh + 8¢y ou(t), Where
systemp;, = 22.4 vehiclegkm [= ( pypsiream T Pdownstream)/2] 8¢qinout(t) is @ random constant function in each time interval
and the constant external flyk= 318 vehiclegh (the system of T, = 5 min. At the end of each interval, the values of
size L = 75.6 km). Transition from the free flow to the two independent random fluctuatiodg;,(z), 8 gou(?) are reset
RH state is triggered by a pulse-type perturbation applied aby new random numbers uniformly distributed in the range
t = 50 min with 8g;, = 318 vehiclegh, §t = 5 min. [—95,95] vehiclegh.

1131



VOLUME 81, NUMBER 5 PHYSICAL REVIEW LETTERS 3 AIGUST 1998

Below we investigate the transition from the free flow transitions between the RH state and the free flow show the
to the RH state. For definiteness, we fix the perturbasame hysteresis as measured on highways [10]. The influ-
tion, 8qi, = 159 vehiclegh, 6t = 6 min, and apply itto  ence of the transition on traffic flow becomes clear in the
the transition layer generated By[Fig. 3(a)]. For small following natural order parameter: the spatiotemporal av-
f, the free flow survives the perturbation. Fpfrlarger erage velocity,
than a critical valugf,, however, thdinite amplitude RH
state is induced. We emphasize thdtréte perturbation
is essential for the transition. As the perturbation becomes
weaker,f; becomes larger and fdig;, 6t — 0, the tran-  whereT is the period of the RH state aiits the size of the
sition to the RH state does not occur for the whole rangaveraging range. In Fig. 3(bjy) makes discontinuous
of f smaller thary, [11]. For the backward transition, on jumps at the transition pointg and f> [20].
the other hand, it turns out that it may occur even without Another interesting property of the RH state appears in
finite amplitude perturbations. Ag decreases adiabati- multilane situations. To demonstrate this, we extended
cally from f > f, the amplitude of the RH state varies asthe traffic equations to a two-lane system. The equation
in Fig. 3(a). The system first follows its old path. Below of motion (1) and the continuity equation (2) apply to
f = f1, however, the system still remains in the RH stateeach lane = 1,2. We assume that ramps are connected
instead of going back to the free flow. The RH state isto lane 2 and so the source and drain terms appear in
maintained untilf reaches a lower critical valyé, where  the continuity equation for lane 2 only. We simulate
the transition to the free flow occurs [19]. We mention thatthe interlane interaction effect in a minimal way by
introducing to the continuity equations lane-change terms
(0p;/dt)., that account for the interlane flux due to
the lane change of vehicles. For the simple choice,

1 t+T R/2
= — d ’f d + xim. 1), (3
(v) ® |, t e xv(x + xin,t'),  (3)

ECTTE T Wl T T ol @ei/ana = alpitn = pien] G # ), it is found
2 (a) T Qomemnmnnnnns that when the flow in lane 2 makes the transition to the
° T %o A l ] RH state, it is accompanied by the appearance of the
g 201 < 80r } synchronized oscillations of the velocity and the density
C ‘ <,>\ nor M ] in lane 1 [Fig. 3(c)]. This property of the synchronization
§ 60 ] is examined for different functional forms @dp,/0t).,
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as well, since its precise form is not yet well determined.
Qualitatively same results are recovered in all cases,
which demonstrates that the synchronization is a generic
property of the RH state in multilane situations [21]. It
is worth commenting that this kind of synchronization
phenomenon is a common property in many examples of
self-exciting systems (see Sec. 5.13 in Ref. [17]).

Now it should be noticed that many properties of the RH

: state are identical to those of the synchronized flow [10],
B e.g., the discontinuous transition from the free flow to the
synchronized flow induced by localized perturbations of
finite amplitudes, hysteresis, stability of synchronized flow
(hours of self-maintenance), gradual spatial transitions
FIG. 3. (a) Amplitude of density oscillation measured atfrom synchronized flow to free flow, and synchronized
the on-ramp forp, = 22.4 vehicleskm. The zero ampli- geijlations. Therefore, we conclude that the RH state is
tude implies free flow. Discontinuous jumps occur fat= L . .
the origin of the synchronized traffic flow.

241 vehiclegh andf, = 184 vehiclegh. (b)(v) [Eq. (3)] as : i

a function of f with R = 7.6 km. Though the precise value  We interpret our results within the standard framework
of (v) depends orR, the presence of discontinuities is univer- of nonlinear dynamics. The free flow corresponds to a
sal. (c) Synchronized oscillations in a two-lane system. Thepoint attractor. On the other hand, many features of the
figure shows the temporal variations of the velocities at the onp state, such as stability and discontinuous transitions

gﬁrgz fgfr tlﬁgeeitérsr%dﬂll'j)](e)in?rg%ljgéo:agf:zsédrgit;e?ngﬂg)e'd A assert that the RH state corresponds to a stable limit cycle.

the transition to the RH state. Notice that the variations arédysteresis implies bistability for a certain rangefof The
synchronized in both lanes. (d) Schematic diagram of the bispontaneous backward transition from the limit cycle to

furcation scenario. PoinA corresponds to a turning point and the point attractor means that the lower end of the bistable
B corresponds to a subcritical Hopf bifurcation point. While region is f>. On the other hand, the necessity of finite
the transition atf; is spontaneous, the transition At should erturbations for the forward traﬁsition suggests that the
be aided by an external triggering event. As a result, the valu® - . 99 .
upper end of the bistable region goes abgyeand, in

of f, depends on the strength of triggering events. JFor f,,
the free flow loses its stability spontaneously. fact, extends tof.. Discontinuous transitions in both
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directions indicate that the limit cycle is not connected [3] B.S. Kerner and H. Rehborn, Phys. Rev.58, R4275

to the point attractor [Fig. 3(c)]. The discontinuity also (1996).

suggests that there should exist still another asymptoticl4] For a review of traffic theory, see, for example, D.L.
state, which serves as a boundary between the basins of Gerlough and M. J. Hubefraffic Flow Theory,Special
the attraction toward the two locally stable asymptotic ~ Report No. 165 (Transportation Research Board, National
states. One plausible candidate for the boundary is an,, Research Council, Washington, DC, 1975).

unstable limit cycle that is connected to the stable limit glzzl\iaaigg?d M. Schreckenberg, J. Phys. | (Frange)

Cy_CIe atf = f2,and also to the fixed _ppint of - fe [6] B.S. Kerner and P. Konh&user, Phys. Rev4& R2335

[Fig. 3(c)]. Inthis case, the whole transition behaviors are "~ (1993).

results_of atur_ning point( f,) combined with asubcritical [7] D. Helbing, Phys. Rev. 51, 3164 (1995).

Hopf bifurcation(f.). [8] M. Schreckenberg, A. Schadschneider, K. Nagel, and
Lastly we briefly discuss the synchronized flow far N. Ito, Phys. Rev. 551, 2939 (1995).

away from the ramps reported in Refs. [3,10]. There [9] B.S. Kerner and P. Konhauser, Phys. Rev.58 54

is one important difference between the synchronized  (1994).

flow near the ramps and that far away from the rampsl10] B.S. Kerner and H. Rehborn, Phys. Rev. L&, 4030

While the former is a nondecaying state of oscillations, |(319597|)<' B. Konhs d M. Schilke. Phvs. Rev. E

the latter appears only as a transient process; after sonket] B.S. Kerner, P. Konhauser, and M. Schilke, Phys. Rev.

aat - : 51, 6243 (1995).
upstream movement since its creation, it either disappears

. . - 2] When an on-ramp and an off-ramp are closely positioned,
or transforms into a jam [10]. Therefore, the synchronize and the influx through the on-ramp is much larger than the

flow far away from the ramps is not a stable dynamic  qytflux through the off-ramp, this ramp pair can be treated

phase of traffic flow, and is not studied in this Letter. as a single on-ramp.

The appearance of this transient process requires furthgr3] with a periodic boundary condition, the presence of the

investigation. balanced off-ramp (.. = ¢in) is essential. Without it,
In summary, we find that there exists a recurring hump  the total vehicle number in the system varies with time,

state in highway traffic flow with ramps. In this state, which prohibits investigation of asymptotic states.

the density and the flow oscillate periodically and the[l4] W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P.

oscillations are localized near the on-ramp. The RH state ~ Flannery,Numerical Recipes in {Cambridge University

is a stable limit cycle of the nonlinear traffic equations,, _, -resS: Cambridge, England, 1992). . .

(1) and (2). The transition between the free flow and théls] The form ofV(p) is chosen so as to be consistent with the
S . . available free flow data [10] and also with large density

RH state is discontinuous and _shovys hysteresis. Many asymptotic behaviors. But its exact form is not important.

features of the RH state are identical to those of th§i1g] In"Fig. 1(a), the initial direction of the first hump

synchronized flow and thus we conclude that the RH state ~ movement varies depending on the parameter choice and

is the origin of the synchronized flow observed in real the strength of the perturbation. For sufficiently large

highways [3,10]. perturbations, however, the initial direction is toward
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