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We apply the spatially and temporally periodic boundary conditions devised by Kraynik and Reinelt
[Int. J. Multiphase Flowl8, 1045 (1992)] to an atomic fluid undergoing planar elongational flow. The
periodic boundary conditions guarantee theoretically infinite simulation times, and thus provide the most
promising method yet developed to simulate molecular fluids undergoing steady planar extension using
nonequilibrium molecular dynamics techniques. [S0031-9007(98)06571-5]

PACS numbers: 82.20.Wt, 61.20.Ja, 66.20.+d, 83.50.Jf

Extensional motion of fluids is a notoriously difficult steady state. Time-independent steady-state quantities
rheological problem to study by use of nonequilibriumof interest, such as the elements of the pressure tensor
molecular dynamics (NEMD) techniques. Extensional, orand elongational viscosities, can be calculated by ex-
elongational, flow occurs when a fluid is stretched in attrapolating the frequency dependent data down to zero
least one direction, and compressed in at least one othdrequency. In the latter method, the TTCF formalism
Such flows commonly occur in the processing of poly-was applied to planar elongational, uniaxial, and biaxial
mer melts, for example, where manufacturing techniquestretching flows. The advantage of TTCF is that it allows
involve various forms of shear and extensional flows,one to simulate fluids at extremely small strain rates with
such as planar shear flow, planar elongational, uniaxidiar superior statistics than that obtainable under direct
and biaxial stretching flows, as well as combinations oftimeaveraging. This in turn implies that a fluid can be
these. Because of their immense technological relevana@mulated for much longer times than otherwise possible.
and their inherent scientific complexity, such flows are arBoth techniques proved to be at least as accurate as
extremely attractive field of study from a molecular per-the conventional NEMD method, and succeeded in
spective, and are highly suited for molecular simulationsignificantlyextending the total available simulation time.
techniques in particular. Despite their successes, both methods are computa-

A few NEMD simulations on the steady (i.e., time- tionally more intensive than the conventional NEMD
independent applied strain rate) elongational flow ofmethod, and their application to molecular fluids is yet to
simple atomic and molecular fluids have been performede attempted.
in the past [1-5], but all suffered from one crippling In this Letter we present the results of NEMD simula-
limitation: the finite lifetime of a simulation due to the tions of planar elongational flow using both spatially and
decrease of at least one of the simulation cell dimensionsemporally periodic boundary conditions. This method,
Eventually the simulation must cease when the size ofirst proposed by Kraynik and Reinelt [11], is remarkable
the cell in the contraction direction reaches its minimumin that it allows a conventional NEMD simulation to run
extension of twice the range of the interaction potentialfor theoretically infinite simulation times. It rests upon
Thus, the fluid must achieve a nonequilibrium steady statéhe clever realization that a simulation cell which is ini-
well before this minimum size is reached for reasonabléially oriented at certain discrete angles with respect to
statistics to be obtained. This is not such a serious limitathe direction of elongation can indeed be both spatially
tion for atomic fluids, but for molecular fluids with long and temporally periodic. All previous NEMD simulations
relaxation times it is unlikely that relaxation to steady statehad always used periodic boundaries that were parallel to
will occur before the minimum cell size is reached [5]. the flow fields. Such a rectangular geometry is doomed

To try to overcome these technical limitations, wedue to the technical limitation of minimum cell dimen-
previously studied a simple Weeks-Chandler-Anderseision, discussed above. Orienting the axes of the simu-
(WCA) [6] atomic fluid under the application of a fre- lation cell at certain allowable angles to the flow field
guency dependent strain rate [7,8], as well as by use dfide steps this problem in a neat and elegant manner.
nonlinear response theory, via the transient time corretThe spatially periodic boundaries will now evolve in time
lation function (TTCF) formalism [9,10]. In the former such that they are (1) consistent with the applied strain
method, the simulation cell sinusoidally oscillates in time,rate, (2) compatible with the minimum image convention
guaranteeing that the system reaches a temporally periodised in molecular dynamics simulations (the compatibility
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condition of [11]), and (3) periodic in time (the repro- L;(r) = A - L;(0) = N;jL{(0) + N;L»(0)
ducibility condition of [11]). NEMD simulations of steady :N Ls(0) (1)
elongational flow which use standard rectangular periodic 13538
boundary conditions satisfy conditions (1) and (2) abovewherei = 1,2,3, L;(0) are the initial linearly indepen-
but not (3). The limitation of applying the KR method dent basis lattice vectors, ankl = exp(Vur), whereVu
is that it is only applicable to planar elongational flow. is the strain rate tensor, which will be defined shortly. The
Kraynik and Reinelt proved that it could not be appliedproblem at hand reduces to one of determining which sets
to either uniaxial or biaxial stretching flows. of integers make Eq. (1) valid. This in turn allows us to
Consider a square lattice which at= 0 is oriented calculated ande,. We briefly summarize the procedure
with respect to the direction of elongation at an angleas follows:
0, as depicted in Fig. 1(a). In our geometry, the fluid (1) Choose any integds such thatt = 3,4,5...

expands in thex direction with a strain rates and (2) DefiningA, asA, = exp(e,), one can show that
contracts in they direction with the same strain rate

. . ; . Y k= Vk?2 -4

(i.e., —€). As there is no flow in thez direction, we Ap = ———— 2

confine ourselves to a description of the geometry in the 2

x-y plane only. Kraynik and Reinelt [11] were able to Which in turn gives us the value @i, [i.e., e, = In(a,)].
prove algebraically that such a lattice is spatially andNote also thate, = &7,, as previously defined, which
temporally periodic only for certain discrete valueséof allows one to determine the lattice strain periogl for
and the Hencky strain [11], defined here @s= é7,,  any desired values af, ands. o
wherer, is the lattice strain period. This surprising result (3) For the chosen value & choose a positive integer
is difficult to obtain by geometric construction and is bestV11, then solve forVy, using the expression

arrived at algebraically. The reader should refer to their k\2 R k2
original work for the details, but we confine ourselves (Nn - 3) + Ni, = T L,
in this Letter to demonstrating that such a scheme can
be successfully applied to NEMD simulations of planari.e.,
longational flow, even though their original work w
elongational flow, even though their original wo as N12=—\/N11(k—N11)—1. 3)
confined to well-ordered lattice systems.
A lattice is reproducible if and only if there exist (4) If andonly if Ny, is an integer (noteN,, is always
integersn;; such that taken as the negative root), then a solution has been found,
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FIG. 1. Evolution of an fcc Kraynik-Reinelt lattice under planar elongational flow as a function of time. The orientation angle
is @ =31.7°, ande, = 0.9624. At ¢ = ¢,/2, the lattice is the same as the original lattice, but with a different orientation. At

e = ¢, the lattice reproduces itself. The fully extendgd) lattice is superimposed upon the origir{@) lattice for comparison
purposes.
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and the “magic” angl® is determined as is such that it is never less than the diameter of the
Nt — A particles. Thus, in the terminology used by Kraynik and
g = arctar(M) (4) Reinelt, the system is both reproducible (i.e., spatially and
12 temporally periodic) and compatible (i.e., does not violate
Our NEMD simulations are based on the SLLOD the minimum allowable lattice spacing). _
equations of motion [7,12], Although Fig. 1 is descriptive of an ordered lattice, the
same conclusions carry over to a disordered lattice, such
. _ Pi . as would be the case for an NEMD simulation. All one
r; +r; - Vu, . ) o :
m; (5) does in a simulation is to transform the cell boundaries at

t =nr, (i.e., e = g,) back to the original square lattice
shape; i.e., allix,y) points on the boundary are trans-
where the momenta are taken to be peculiar with respeéormed as

to the streaming velocity, and Vu is the strain rate x(t = nr,) — x(t = 0);
tensor, which for planar elongation is defined here as

pi=F —p;-Vu— ap;

y(t =n7,) — y(t =0).
9)

& 0_ 0 As the periodic boundaries are now transformed to their
Vu=10 -& 0]. 6) initial + =0 shape, one now applies normal periodic
0 0 0 boundary condition rules to all the particles such that
a is a Gaussian thermostat multiplier used to constrain théhey too are transformed back into the square lattice. We
System to constant temperature1 given as describe this procedure in greater detail in a forthcoming
paper [13], in which we will demonstrate how to apply
o — 2.ipi " [Fi — (pi - Vu)] (7y an extremely efficient algorithm to perform this. This
D p? ' algorithm proves to be for planar elongation what Lees-

dwards boundary conditions are for planar shear. One

s Songatonal flow nvlves hanges nthe e ofacocnsur that oughot e mada, -
' P Y 2r., where r. is the interaction potential radius cutoff.

evolve in time, such that the lengths of either all or SOMErpic will be the case, no matter what orientation angle

of the simulation cell dimensions decrease or increasgnd Hencky strain one chooses, as long as the size of the
with time. For the conventional case where the cell axe%imulation cell is sufficiently Iarg,e

ﬁ:ﬁepgﬂilrl]e{;gttni 1?]\’;' delr?scg(l)vc;' ;hfelé?;nst?;re e;g:/\vlg\s/el? We present the results of two simulations, one for a

hen th lis ali F(;I t ye th gut .th I system of N = 864 atoms, and the other for a system
when the cellis aligned at an angﬂ 0 thex-axis, the Cell ot nv — 2048 atoms. In the former, we have uséd=
will evolve such that its shape is always a parallelogram

depicted in Fia. 1. Intearati f1h " 1.7°, ande, = 0.9624, while in the latte® = 22.5°, and
as depicted In Fg. 1. Integration ot the equations ol =_ - 76,7 [see Egs. (1)—(4) above, as well as Table |,

?x%gonneizgmsi;hzxgl points on the cell boundaries eVOIVeRpef._ [11] for these parameters]. _In both s_imulations the
’ strain rate wag = 0.5. All atoms interact via the WCA
= L) - - —&1). potential of Weeks, Chandler, and Andersen [6] defined as
x() = xOexplen); () = y(0)exp(—21) ® d(r) =42 —r % + 1forr < 21/6- ¢(r) =0, for
This ensures that the dynamics are compatible with the
evolution of cell boundaries, and that the system volume P T S —
remains a constant of the motion. I ]
Figures 1(a)—1(e) represent the evolution of a section [ % % 1
of an infinite, initially square, fcc lattice structure under 195 1
planar elongation. In this case =~ 31.7°, and ¢, =
0.9624 (corresponding tok = 3, Nj; = 2, Nip = —1),
which guarantees that the system remains spatially an
temporally periodic at times = nr,, wheren is an
integer. Also shown are the boundaries of the chosen 185 |
unit cell, centered at the origin, and how they evolve
with time over one Hencky strain period. Note that when
e = g,/2 the lattice is once again square, but with a 1.80
different orientation to the = 0 case. 0 ! 2 o 4 5 6
Of particular importance is what happens whenr= . _ _ _
e, (i.e., t = nr,). Figure 1(e) shows that the lattice is FIG. 2. Total internal energy per particle as a function of time

identical to th iqinal latt hich it i for a Kraynik-Reinelt cell of N = 864 particles undergoing
now '. entical to the erglna a 'Ce’, upon whic ,_' IS planar elongational flow.6 = 31.7°, ¢, = 0.9624, and ¢ =
superimposed for clarity of comparison. In addition t0(.5. The total simulation time i$r,, wherer, = 1.92. All

this, the minimum lattice spacind)n,in, of the unit cell  units are reduced and dimensionless, unless otherwise specified.
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FIG. 3. Diagonal elements of the pressure tensor for thg g 4. Diagonal elements of the pressure tensor for a KR
Kraynik-Reinelt cell (KR) of Fig. 2. Also displayed are ce| of N = 2048 atoms, withg = 22.5°, e, = 1.7627, and
corresponding conventional rectangular simulation cell results — 5. The total simulation time i87,, wherer, = 3.52.

(R) for planar elongational flow.

r > 21/6 where we define the WCA potential constasmts minimum lattice spacing is sufficiently large that particle
ande, as well as the mass of the atoms, to be unity forcorrelations are unable to have a strong influence on any
simplicity. All simulations are performed at the Lennard- of the thermodynamic properties we computed.
Jones triple pointp = 0.8442 andT = 0.722 in reduced Finally, in Fig. 4 the diagonal elements of the pressure
units. The equations of motion were integrated using a 4tlensor for a system oV = 2048 particles are shown,
order Runge-Kutta scheme, and the integration timestewith an orientation ob = 22.5°, ande, = 1.7627. The
was 0.004 in reduced units for all simulations. excellent agreement with the corresponding results in

Figure 2 shows the total internal energy per particle agig. 3 suggests that the method should work well for any
a function of time for thev = 864 system. The total of the possible orientations allowed by Egs. (1)—(4). We
simulation time is37,, though in principle a simulation note here that the system size needed to be much larger
can run for infinite time. The energy is clearly seenthantheN = 864 system to ensure th#t,, > 2r..
to be continuous, especially at the critical timesgf, We wish to acknowledge Professor John Brady, Divi-
27,, and 37,, when the simulation cell undergoes its sion of Chemistry and Chemical Engineering, Caltech,
transformation back to the= 0 configuration. Any lack who kindly informed us of the work of Kraynik and
of reproducibility would have immediately manifested Reinelt.
itself in discontinuity in the energy at these times. The
fact that this is not observed, and that the energy remains
essentially constant after steady state has been achieved,
suggests that the method works extremely well. *Email address: b.todd@molsci.csiro.au
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