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Nonequilibrium Molecular Dynamics Simulations of Planar Elongational Flow with Spatially
and Temporally Periodic Boundary Conditions

B. D. Todd*
Cooperative Research Centre for Polymers, CSIRO Molecular Science, Private Bag 10, Clayton South MDC,

Victoria 3169, Australia

Peter J. Daivis†

Department of Applied Physics, RMIT University, GPO Box 2476V, Melbourne, Victoria 3001, Australia
(Received 27 March 1998)

We apply the spatially and temporally periodic boundary conditions devised by Kraynik and Reinelt
[Int. J. Multiphase Flow18, 1045 (1992)] to an atomic fluid undergoing planar elongational flow. The
periodic boundary conditions guarantee theoretically infinite simulation times, and thus provide the most
promising method yet developed to simulate molecular fluids undergoing steady planar extension using
nonequilibrium molecular dynamics techniques. [S0031-9007(98)06571-5]

PACS numbers: 82.20.Wt, 61.20.Ja, 66.20.+d, 83.50.Jf
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Extensional motion of fluids is a notoriously difficult
rheological problem to study by use of nonequilibrium
molecular dynamics (NEMD) techniques. Extensional, o
elongational, flow occurs when a fluid is stretched in a
least one direction, and compressed in at least one oth
Such flows commonly occur in the processing of poly
mer melts, for example, where manufacturing technique
involve various forms of shear and extensional flows
such as planar shear flow, planar elongational, uniaxi
and biaxial stretching flows, as well as combinations o
these. Because of their immense technological relevan
and their inherent scientific complexity, such flows are a
extremely attractive field of study from a molecular per
spective, and are highly suited for molecular simulatio
techniques in particular.

A few NEMD simulations on the steady (i.e., time-
independent applied strain rate) elongational flow o
simple atomic and molecular fluids have been performe
in the past [1–5], but all suffered from one crippling
limitation: the finite lifetime of a simulation due to the
decrease of at least one of the simulation cell dimension
Eventually the simulation must cease when the size
the cell in the contraction direction reaches its minimum
extension of twice the range of the interaction potentia
Thus, the fluid must achieve a nonequilibrium steady sta
well before this minimum size is reached for reasonab
statistics to be obtained. This is not such a serious limit
tion for atomic fluids, but for molecular fluids with long
relaxation times it is unlikely that relaxation to steady stat
will occur before the minimum cell size is reached [5].

To try to overcome these technical limitations, we
previously studied a simple Weeks-Chandler-Anderse
(WCA) [6] atomic fluid under the application of a fre-
quency dependent strain rate [7,8], as well as by use
nonlinear response theory, via the transient time corr
lation function (TTCF) formalism [9,10]. In the former
method, the simulation cell sinusoidally oscillates in time
guaranteeing that the system reaches a temporally perio
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steady state. Time-independent steady-state quanti
of interest, such as the elements of the pressure ten
and elongational viscosities, can be calculated by e
trapolating the frequency dependent data down to ze
frequency. In the latter method, the TTCF formalism
was applied to planar elongational, uniaxial, and biaxi
stretching flows. The advantage of TTCF is that it allow
one to simulate fluids at extremely small strain rates wi
far superior statistics than that obtainable under dire
timeaveraging. This in turn implies that a fluid can b
simulated for much longer times than otherwise possib
Both techniques proved to be at least as accurate
the conventional NEMD method, and succeeded
significantlyextending the total available simulation time
Despite their successes, both methods are compu
tionally more intensive than the conventional NEMD
method, and their application to molecular fluids is yet
be attempted.

In this Letter we present the results of NEMD simula
tions of planar elongational flow using both spatially an
temporally periodic boundary conditions. This metho
first proposed by Kraynik and Reinelt [11], is remarkab
in that it allows a conventional NEMD simulation to run
for theoretically infinite simulation times. It rests upo
the clever realization that a simulation cell which is in
tially oriented at certain discrete angles with respect
the direction of elongation can indeed be both spatia
and temporally periodic. All previous NEMD simulations
had always used periodic boundaries that were paralle
the flow fields. Such a rectangular geometry is doom
due to the technical limitation of minimum cell dimen
sion, discussed above. Orienting the axes of the sim
lation cell at certain allowable angles to the flow fiel
side steps this problem in a neat and elegant mann
The spatially periodic boundaries will now evolve in tim
such that they are (1) consistent with the applied stra
rate, (2) compatible with the minimum image conventio
used in molecular dynamics simulations (the compatibili
© 1998 The American Physical Society
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condition of [11]), and (3) periodic in time (the repro
ducibility condition of [11]). NEMD simulations of steady
elongational flow which use standard rectangular perio
boundary conditions satisfy conditions (1) and (2) abov
but not (3). The limitation of applying the KR method
is that it is only applicable to planar elongational flow
Kraynik and Reinelt proved that it could not be applie
to either uniaxial or biaxial stretching flows.

Consider a square lattice which att ­ 0 is oriented
with respect to the direction of elongation at an ang
u, as depicted in Fig. 1(a). In our geometry, the flu
expands in thex direction with a strain rateÙ́ and
contracts in they direction with the same strain rate
(i.e., 2 Ù́ ). As there is no flow in thez direction, we
confine ourselves to a description of the geometry in t
x-y plane only. Kraynik and Reinelt [11] were able t
prove algebraically that such a lattice is spatially an
temporally periodic only for certain discrete values ofu

and the Hencky strain [11], defined here as´p ­ Ù́tp,
wheretp is the lattice strain period. This surprising resu
is difficult to obtain by geometric construction and is be
arrived at algebraically. The reader should refer to th
original work for the details, but we confine ourselve
in this Letter to demonstrating that such a scheme c
be successfully applied to NEMD simulations of plan
elongational flow, even though their original work wa
confined to well-ordered lattice systems.

A lattice is reproducible if and only if there exis
integersNij such that
gle
t

FIG. 1. Evolution of an fcc Kraynik-Reinelt lattice under planar elongational flow as a function of time. The orientation an
is u ­ 31.7±, and´p ­ 0.9624. At ´ ­ ´py2, the lattice is the same as the original lattice, but with a different orientation. A
´ ­ ´p the lattice reproduces itself. The fully extendedssd lattice is superimposed upon the originalsdd lattice for comparison
purposes.
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Listd ­ L ? Lis0d ­ Ni1L1s0d 1 Ni2L2s0d

1 Ni3L3s0d , (1)

where i ­ 1, 2, 3, Lis0d are the initial linearly indepen-
dent basis lattice vectors, andL ­ exps=utd, where=u
is the strain rate tensor, which will be defined shortly. Th
problem at hand reduces to one of determining which se
of integers make Eq. (1) valid. This in turn allows us to
calculateu and´p. We briefly summarize the procedure
as follows:

(1) Choose any integerk, such thatk ­ 3, 4, 5 . . .
(2) Defininglp aslp ­ exps´pd, one can show that

lp ­
k 6

p
k2 2 4
2

, (2)

which in turn gives us the value of́p [i.e., ´p ­ lnslpd].
Note also that́ p ­ Ù́tp , as previously defined, which
allows one to determine the lattice strain periodtp for
any desired values of́p and Ù́ .

(3) For the chosen value ofk, choose a positive integer
N11, then solve forN12 using the expressionµ

N11 2
k
2

∂2

1 N2
12 ­

k2

4
2 1 ,

i.e.,

N12 ­ 2

q
N11sk 2 N11d 2 1 . (3)

(4) If and only if N12 is an integer (note:N12 is always
taken as the negative root), then a solution has been fou
1119
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and the “magic” angleu is determined as

u ­ arctan

µ
N11 2 lp

N12

∂
. (4)

Our NEMD simulations are based on the SLLOD
equations of motion [7,12],

Ùri ­
pi

mi
1 ri ? =u ,

Ùpi ­ Fi 2 pi ? =u 2 api

(5)

where the momenta are taken to be peculiar with respe
to the streaming velocityu, and =u is the strain rate
tensor, which for planar elongation is defined here as

=u ­

0B@ Ù́ 0 0
0 2 Ù́ 0
0 0 0

1CA . (6)

a is a Gaussian thermostat multiplier used to constrain t
system to constant temperature, given as

a ­

P
i pi ? fFi 2 spi ? =udgP

i p2
i

. (7)

As elongational flow involves changes in the shape
the simulation cell, the periodic boundary conditions wil
evolve in time, such that the lengths of either all or som
of the simulation cell dimensions decrease or increa
with time. For the conventional case where the cell axe
are parallel to the flow directions, the box shape evolves
time such that its shape is always rectangular. Howev
when the cell is aligned at an angleu to thex-axis, the cell
will evolve such that its shape is always a parallelogram
as depicted in Fig. 1. Integration of the equations o
motion shows that all points on the cell boundaries evolv
exponentially in time,

xstd ­ xs0d exps Ù́ td ; ystd ­ ys0d exps2 Ù́ td . (8)

This ensures that the dynamics are compatible with t
evolution of cell boundaries, and that the system volum
remains a constant of the motion.

Figures 1(a)–1(e) represent the evolution of a sectio
of an infinite, initially square, fcc lattice structure unde
planar elongation. In this caseu ø 31.7±, and ´p ø
0.9624 (corresponding tok ­ 3, N11 ­ 2, N12 ­ 21),
which guarantees that the system remains spatially a
temporally periodic at timest ­ ntp, where n is an
integer. Also shown are the boundaries of the chos
unit cell, centered at the origin, and how they evolv
with time over one Hencky strain period. Note that whe
´ ­ ´py2 the lattice is once again square, but with
different orientation to thé ­ 0 case.

Of particular importance is what happens when´ ­
´p (i.e., t ­ ntp). Figure 1(e) shows that the lattice is
now identical to the original lattice, upon which it is
superimposed for clarity of comparison. In addition to
this, the minimum lattice spacing,Dmin, of the unit cell
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is such that it is never less than the diameter of th
particles. Thus, in the terminology used by Kraynik an
Reinelt, the system is both reproducible (i.e., spatially an
temporally periodic) and compatible (i.e., does not violat
the minimum allowable lattice spacing).

Although Fig. 1 is descriptive of an ordered lattice, th
same conclusions carry over to a disordered lattice, su
as would be the case for an NEMD simulation. All one
does in a simulation is to transform the cell boundaries
t ­ ntp (i.e., ´ ­ ´p) back to the original square lattice
shape; i.e., allsx, yd points on the boundary are trans
formed as

xst ­ ntpd ! xst ­ 0d ; yst ­ ntpd ! yst ­ 0d .

(9)

As the periodic boundaries are now transformed to the
initial t ­ 0 shape, one now applies normal periodi
boundary condition rules to all the particles such tha
they too are transformed back into the square lattice. W
describe this procedure in greater detail in a forthcomin
paper [13], in which we will demonstrate how to apply
an extremely efficient algorithm to perform this. This
algorithm proves to be for planar elongation what Lee
Edwards boundary conditions are for planar shear. O
must also ensure that throughout the simulationDmin .

2rc, where rc is the interaction potential radius cutoff.
This will be the case, no matter what orientation ang
and Hencky strain one chooses, as long as the size of
simulation cell is sufficiently large.

We present the results of two simulations, one for
system ofN ­ 864 atoms, and the other for a system
of N ­ 2048 atoms. In the former, we have usedu ­
31.7±, and´p ­ 0.9624, while in the latteru ­ 22.5±, and
´p ­ 1.7627 [see Eqs. (1)–(4) above, as well as Table
Ref. [11] for these parameters]. In both simulations th
strain rate wasÙ́ ­ 0.5. All atoms interact via the WCA
potential of Weeks, Chandler, and Andersen [6] defined
fsrd ­ 4sr212 2 r26d 1 1 for r , 21y6; fsrd ­ 0, for

FIG. 2. Total internal energy per particle as a function of tim
for a Kraynik-Reinelt cell ofN ­ 864 particles undergoing
planar elongational flow. u ­ 31.7±, ´p ­ 0.9624, and Ù́ ­
0.5. The total simulation time is3tp , wheretp ­ 1.92. All
units are reduced and dimensionless, unless otherwise specifi
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FIG. 3. Diagonal elements of the pressure tensor for t
Kraynik-Reinelt cell (KR) of Fig. 2. Also displayed are
corresponding conventional rectangular simulation cell resu
(R) for planar elongational flow.

r . 21y6, where we define the WCA potential constantss

and ´, as well as the mass of the atoms, to be unity f
simplicity. All simulations are performed at the Lennard
Jones triple point,r ­ 0.8442 andT ­ 0.722 in reduced
units. The equations of motion were integrated using a 4
order Runge-Kutta scheme, and the integration times
was 0.004 in reduced units for all simulations.

Figure 2 shows the total internal energy per particle
a function of time for theN ­ 864 system. The total
simulation time is3tp, though in principle a simulation
can run for infinite time. The energy is clearly see
to be continuous, especially at the critical times oftp ,
2tp , and 3tp , when the simulation cell undergoes it
transformation back to thet ­ 0 configuration. Any lack
of reproducibility would have immediately manifeste
itself in discontinuity in the energy at these times. Th
fact that this is not observed, and that the energy rema
essentially constant after steady state has been achie
suggests that the method works extremely well.

In Fig. 3 the diagonal elements of the pressure tens
are plotted as a function of time for the same system.
addition, we plot the diagonal elements of the pressu
tensor for a similar system ofN ­ 864 particles under a
conventional NEMD simulation, in which the rectangula
simulation cell in the x-y plane is aligned with the
flow directions. Such a simulation must cease when t
length of the cell in the contractingy direction reaches
its minimum of 2rc. This corresponds to a time of
tmax ­ 2 Ù́ 21 lns 2rc

Lys0d d, or ø 2.4 in the geometry used.
Agreement between both results is excellent, with the K
geometry having the obvious advantage of no maximu
simulation time. Of further interest in this compariso
is the lack of observable oscillations in the new metho
These oscillations have been previously observed for
rectangular geometry [7,10], and it has been sugges
that they are a consequence of strong correlations betw
particles when the length of the cell in the contractin
dimension is of the order, 2rc. However, in the
skewed KR geometryDmin , 4rc, which suggests that the
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FIG. 4. Diagonal elements of the pressure tensor for a KR
cell of N ­ 2048 atoms, with u ­ 22.5±, ´p ­ 1.7627, and
Ù́ ­ 0.5. The total simulation time is3tp , wheretp ­ 3.52.

minimum lattice spacing is sufficiently large that particle
correlations are unable to have a strong influence on an
of the thermodynamic properties we computed.

Finally, in Fig. 4 the diagonal elements of the pressur
tensor for a system ofN ­ 2048 particles are shown,
with an orientation ofu ­ 22.5±, and´p ­ 1.7627. The
excellent agreement with the corresponding results i
Fig. 3 suggests that the method should work well for an
of the possible orientations allowed by Eqs. (1)–(4). We
note here that the system size needed to be much larg
than theN ­ 864 system to ensure thatDmin . 2rc.
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