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We point out that the low temperature saturation of the electron phase decoherence time in a
disordered conductor can be explained within the existing theory of weak localization provided the
effect of quantum (high frequency) fluctuations is taken into account. Making use of the fluctuation-
dissipation theorem we evaluate the quantum decoherence time, the crossover temperature below which
thermal effects become unimportant, and the weak localization correétiorat 7 = 0. For 1D
systems the latter is found to b®o/o = 1/4/N, where N is the number of conducting channels.
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Quantum interference between electrons has a strongnces two additional forces: (i) the damping fol€edue
impact on electron transport in a disordered metal, leadingp electron-electron collisions and (ii) the stochastic force
to the so-called weak localization correction to the systentue to the fluctuating electric fiel&(r,7) = —VV(r,t)
conductance [1]. This correction is large provided theproduced by other electrons. These two forces are related
electrons moving in the metal remain coherent. On théo each other by the fluctuation-dissipation theorem
other hand, this phase coherence can persist only for @DT) [10]. The forceF[r(r)] acting on the electron with
finite time and is eventually destroyed due to variousthe coordinate(r) is given by the equation
processes, such as electron-electron and electron-phonon &
interactions, spin-flip scattering, etc. This characteristic Flr(t)] = tanf<—>€VVo(r, Or=r() » (1)

decoherence time, plays a prominent role in the theory " ZT ' .
of weak localization [1,2]. whereé = mr=/2 — u, p is the chemical potential, and

In the absence of magnetic impurities and if the temhe self-induced potentialy(r, 1) obeys the equation
perature of the system is sufficiently low, the decoherence V(eVVy(t',r") = dmed(r — r(1)). 2

time 7, is determined by electron-electron interactions. A . . -

: Here & is the dielectric susceptibility operator. One can
It was demonstrated in Ref. [3] (see also [2,4,5]) that for .
this dephasing mechanism the decoherence time increa show [L1] that the factor tariéi/27) in Eq. (1) appears

. 2d—4) g N e to the Pauli principle.
T i et s veppen i, L& U5 ©Xp1eSs the popagating elecon ampltude i
ex eriménts [6.7] over a ceg[ain temperature interval terms of the Feynman path integral. Within the quasiclas-
Igoes the di;/ergence of . in thepzero temperatﬁre sical approximation (sufficient as long as the elastic mean
0 :
limit imply that coherence is not destroyed At= 0? free pathi exceeds the Fermi wavelengiy/ > 1) the

Recent experiments [8] clearly suggest a negative answ ath integral can be replaced by the sum over the classical
recent exp y sugg gative rajectories obeying the equation of motion

indicating that at very low temperatures the timg

saturates at a finite level showing no tendency for further mi = —VUnp(r) + F(r(t)) — eVV(r,1)  (3)

increase with decreasing. The authors [8,9] argued for each realization of random potential$,,,(r) and

that this saturation is not caused by heating or magneti¢ . ;). Averaging over disordered configurations of im-

impurities, but rather is a fundamental consequence Ofyrities [2] yields the effective picture of electron diffusion

zero-point fluctuations of electrons. A saturationrgfat  at the scales bigger thdn

low T was also observed in earlier works (see, e.9., [6,7]). et us estimate the phase difference between a classical
The aim of this paper is to demonstrate that the obglectron pathr(s') and a time reversed path(t — t')

served saturation of,, at lowest temperatures [8] can be jnduced by the two last terms in Eq. (3). Considering the
explained within the existing theory of weak localization gffect of the forceF we find

[2] if one takes into account quantum fluctuations of the

t
electric field in a disordered conductor. Sop = —etanhi[ dt'[Vo(r(t)) — Vo(r(t — t')].
We essentially follow the analysis elaborated by 2T Jo
Chakravarty and Schmid [2] and consider the propagation (4)

of an electron with the kinetic energyr?/2 in a potential ~ Since the kernel of the operatdr is symmetric with
of randomly distributed impuritie&/;,, (r). In additionto respect to its spacial arguments, one can easily observe
that the electron interacts with other electrons and experithat § ¢ is identically zero provided, obeys Eq. (2).
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The phase difference due to the stochastic potentiaht 7 < T, ~ 1/,/7,7. the expression (10) is dominated

V(r,t) is, on the contrary, nonzero. Itis defined as by the second term and], saturates at the value
4 To = wo/etvp. (11)
So(r,t1) = —e ] de'[vr(t),t) — Vet — 1), 1)]. ¢ d
0 5) The estimate for the crossover temperatljeeads
T, ~ evp/vol. (12)
Averaging with respect to fluctuations &f, for not very ) o i
smallz one gets [2] Making use of Eq. (11) it is also easy to find the weak
localization correctionSo to the Drude conductance in
[8o(r,0))/2 = t/7,(T), (6) thelimitT = 0. ForT =< T, we obtain
oo e’ 1
where — = ——,/D7, = ——~, 13
o P prst/? (13)
1 e dwd’q N -DPll-iwr - 2 ,
=== | a (Vg o De Pellmior e, 0 =~ —a/J/N, where N ~ pgs is the effective
To(T) @ (27) 7 number of conducting channels in a 1D mesoscopic
7 system.

a is the film thickness foel = 2, anda? = s is the wire For 2D and 3D systems the same analysis yields

cross section for = 1. 1 e?
The correlation function for voltages in (7) can be Z -
determined with the aid of FDT [10]. Let us first consider

[1 +2T7.In(T7,)], 2D,
dmoT,

. . . 2
a quasi-1D conductor. In this case one finds 1 _ € [1+ 6(T7,)"?], 3D (14)
(Vyol® coth(z2) v 3mioyaDr” R
,® w 2T
Zz = @it N qu(]: Dy (8)  where o = 2¢2NyDa3"? is the conductance of a-
oq? o

dimensional system. The result (14) demonstrates that for
2D and 3D systems saturation of is expected already

— 2 i H
ge_ret(; _d'?fe NoDs 'Sﬁt.h? ctlassga_l I?r:ude con_(tjuctanc]? ' at relatively high temperatures: the crossover temperature
IS the diftusion coetlicient, and 1S the capacilance ol - r g of the order of the inverse elastic time in the 3D case

a linear conductor per unit length. In (8) we neglected_? N 2 v
retardation and skin effects which may become importan‘?mOI T, ~ vr/lin(pral)® for a 2D system. The latter

. . L : value agrees well with the experimental results [6].
only'at very high frequenCIes._ Substituting (8) into (7) Our é?nalysis clearly demor?strates that—in a[cgordance
and integrating over andg we find

with previous considerations [3,12]—the decoherence
1 22D (V™ dw cothw/2T) time 7, is entirely differentfrom the inelastic mean
0 o o (9) free timer;, which is known to become infinite at zero
¢ Ve temperature for almost all processes, including electron-

The low frequency cutoff in the |ntegra| (9) is chosen electron |nteract|0n In order to f|nd it |S sufficient to

in a standard manner [1-3], at high frequencies the inProceed within the standard quasiclassical approach and
tegral is cut atl/r, = vy/l because at even highes 10 solve the kinetic equation for the electron distribution
a diffusion approximation is inapplicable and Eq. (8) be-function. The collision integral in this equation contains
comes incorrect. In Eq. (9) we made use of the conditiorihe product of the occupation numbers for different energy
C < /D which is usually well satisfied (perhaps except!/eVvels ni(1 — ngy), which vanishes af' — 0 due to the

for extremely thin wires) indicating the smallness of ca-Pauli principle. Hencer; becomes infinite a' = 0.

pacitive effects in our system. Equation (9) yields In terms of the path integral analysis this procedure
amounts to expanding the electron effective action on

1 e [2D the Keldysh contour in the parameter(:’) = r(¢') —

T, wo T—e[zTVTfW’ + 1]. (10)  1,(") assuming this parameter to be small(r’) is

the electron coordinate on the forward (backward) part
The first term in the square brackets comes from thef the Keldysh contour]. The quasiclassical equation
low frequency modesv < T, whereas the second term (3) for the “center of masst. (') = [ri(¢') + ra(z)]/2
is due to high frequencye( > T) fluctuations of the follows from this procedure. Both forceB and —eVV
electric field in a disordered conductor. At sufficiently are important for such classical paths, and the combination
high temperature the first term dominates and the usuaoth(w /2T) + tanH (¢ — w)/2T][from Egs. (1) and (8)]
expression [3]r, ~ (o/e*D'/?T)*? is recovered. As enters the expression for the inelastic time(see, e.g.,
T is lowered the number of the low frequency modeg[5]). For a detailed calculation of the inelastic scattering
decreases and eventually vanishes in the lithit= 0.  time in various limits we refer the reader to Ref. [12].
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The above quasiclassical procedure is formally veryv*, and the Pauli principle plays no role in this process.
different from one used to calculate the weak localiza-This effect causes quantum decoherence which persists
tion correction to conductivity. In the latter case the timedown toT = 0.
reversed pathg(+') and r,(r — ¢’) are assumed to be  The existence of a nonzero electron dephasing rate
close to each other [2], whereas (') can be arbitrar- at 7 = 0 has a transparent physical interpretation. Let
ily large. This formal difference is just an illustration of us represent the fluctuating field as a collection of
the well know fact, that weak localization is an essentiallyoscillators with different frequencies, all being in the
quantum phenomenon. In this case the contribution ofjround state al” = 0. The interference contribution to
the forceF, containing tanté/2T), is zero as it was dis- the return probability for an electron interacting withe
cussed above. Therefore, the quasiclassical kinetic analpscillator with a frequencyw oscillates in time and is
sis of 7; in terms of the collision integral is principally smaller than one for all time moments except 27n/w
insufficient for calculation of the decoherence time when the system returns to its initial state. In the case of

We would like to emphasize that our results areinfinitely manyoscillators with a continuous distribution
obtained within the standard theoretical treatment of weakf frequencies the electron wileverreturn exactly to its
localization effects [2] combined with FDT. One can initial state. AtT = 0 the interference contribution will
elaborate a more general real time analysis based on tie always suppressed by a factor €xgr?), where n
Keldysh technique [11]. Starting from the microscopicdepends on the interaction strength and the spectrum of
Hamiltonian for electrons in a disordered metal withoscillators andr(z) is the size of the return path. For
Coulomb interaction, one can introduce two quantuman electron in a diffusive metal(z) grows with time as
fields Vi, and V,, respectively, on the forward and r ~ +/Dt, and the interference contribution to the return
backward parts of the Keldysh contour by means ofprobability will decay asc exp(—»Dt). This is the effect
a standard Hubbard-Stratonovich transformation. Thef quantum dephasing &t = 0.
initial problem is then mapped onto that of a single Note that this effect is qualitatively different from
electron propagating in a random potential of impuritiesthat discussed in Ref. [13] where it was argued that
in a metal and interacting with an effective fluctuating zero-point motion of impurities may cause dephasing at
matrix external fieldV;;(r,t) = Vi(r,1)6;; (i,j = 1,2) T = 0. Later it was pointed out in Ref. [14]—and we
which is in turn produced by fluctuating electrons. Onefully agree with this statement [14]—thaurely elastic
can show [11] that the effective density matrix of this scattering considered in Ref. [13] cannot cause quantum
electronpy(z,r1, r;) obeys theexactequation of motion decoherence. In contrast, in our case the energy exchange

; v between the electron and the field oscillators is possible
L Ipy o+ e ev even atT = 0: in the presence of interaction none of
"o [Ho = eV, pv] = (1= pv) == pv them is in its “noninteracting” eigenstate, the ground state
eV levels get broadened, and the energy can be exchanged
ASTE (I = pv), (15)  without excitationof the field oscillators.

The saturation of the dephasing rate at l@wwas
where Hj is the exact Hamiltonian for an electron in a recently discussed by the authors [9] who started from
metal in the presence of impurities but in the absencéhe framework similar to that of Refs.[2,4] and the
of the electron-electron interactio,* = (V; + V,)/2  present paper. However, in contrast to our analysis,
andV~ =V, — V,. The single electron density matrix the calculation [9] involves integration over 2D (not
p in the presence of interactions is derived by averagind.D) wave vector and a phenomenologically chosen high
over the above stochastic fielgs= (py)y+y-, and the frequency cutoff. As a result the authors [9] arrived at the
correlators for these fields are determined by the influencestimate for the decoherence length ~ N./pr which
functional obtained by integrating out all electron degreesloes not contain the elastic mean free pathThis result
of freedom [11]. Within this approach one arrives at theis not correct. Also the role of the Pauli principle in the
same results [11] as those obtained here. effect of quantum dephasing was not clarified in Ref. [9].

Equation (15) allows for a simple understanding of the Let us emphasize that the saturationQf at low T
role of the Pauli principle in our problem. One can showmight not necessarily indicate the failure of the Fermi
[11] that fluctuations of the fiel& ~ are responsible for liquid hypotheses for disordered metals Bt< 1/7,
collision-induced damping described by the forEein  (although it does not support this hypothesis either).
Eqg. (3). The fieldv ™ is obviously sensitive to the Pauli It is becauser, is the dephasing time foreal elec-
principle, and the factor ta/27) appears in Eq. (1). trons and not for Landau quasiparticles. In a disor-

In contrast toV ~, fluctuations of the field/*, which  dered metal interacting electrons are “bad” particles: their
just coincides with the quasiclassical potendah Eq. (3), wave functions dephase even Bt= 0. The possibil-
are not sensitive to the Pauli principle. It is obviousity to construct “better” quasiparticles is questionable
from Eq. (15) thatV *(z,r) is equivalent to an external in this case, but anyway they are not needed within
potential. All electrons “feel” the same fluctuating field our analysis which allows one to directly calculate the
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In conclusion, we point out that the low temperature
saturation of the electron decoherence time found in
recent experiments with mesoscopic conductors can be
explained within the existing theory of weak localization
provided the effect of intrinsic quantum fluctuations of the
electric field is properly accounted for. Our results agree
L well with the experimental data.

5 20 25 We would like to thank Ya.M. Blanter, C. Bruder,
A.D. Mirlin, V.E. Kravtsov, A. Schmid, G. Schon, and
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