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We point out that the low temperature saturation of the electron phase decoherence time in a
disordered conductor can be explained within the existing theory of weak localization provided the
effect of quantum (high frequency) fluctuations is taken into account. Making use of the fluctuation-
dissipation theorem we evaluate the quantum decoherence time, the crossover temperature below which
thermal effects become unimportant, and the weak localization correctionds at T ­ 0. For 1D
systems the latter is found to bedsys ~ 1y

p
N , where N is the number of conducting channels.
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Quantum interference between electrons has a str
impact on electron transport in a disordered metal, lead
to the so-called weak localization correction to the syste
conductance [1]. This correction is large provided th
electrons moving in the metal remain coherent. On t
other hand, this phase coherence can persist only fo
finite time and is eventually destroyed due to vario
processes, such as electron-electron and electron-pho
interactions, spin-flip scattering, etc. This characteris
decoherence timetw plays a prominent role in the theory
of weak localization [1,2].

In the absence of magnetic impurities and if the tem
perature of the system is sufficiently low, the decoheren
time tw is determined by electron-electron interaction
It was demonstrated in Ref. [3] (see also [2,4,5]) that f
this dephasing mechanism the decoherence time incre
with temperature astw ~ T2ysd24d, d is the system di-
mension. This theoretical prediction was verified in th
experiments [6,7] over a certain temperature interval.

Does the divergence oftw in the zero temperature
limit imply that coherence is not destroyed atT ­ 0?
Recent experiments [8] clearly suggest a negative answ
indicating that at very low temperatures the timetw

saturates at a finite level showing no tendency for furth
increase with decreasingT . The authors [8,9] argued
that this saturation is not caused by heating or magne
impurities, but rather is a fundamental consequence
zero-point fluctuations of electrons. A saturation oftw at
low T was also observed in earlier works (see, e.g., [6,7

The aim of this paper is to demonstrate that the o
served saturation oftw at lowest temperatures [8] can b
explained within the existing theory of weak localizatio
[2] if one takes into account quantum fluctuations of th
electric field in a disordered conductor.

We essentially follow the analysis elaborated b
Chakravarty and Schmid [2] and consider the propagat
of an electron with the kinetic energym Ùr2y2 in a potential
of randomly distributed impuritiesUimpsrd. In addition to
that the electron interacts with other electrons and expe
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ences two additional forces: (i) the damping forceF due
to electron-electron collisions and (ii) the stochastic for
due to the fluctuating electric fieldEsr, td ­ 2=V sr, td
produced by other electrons. These two forces are rela
to each other by the fluctuation-dissipation theore
(FDT) [10]. The forceFfrstdg acting on the electron with
the coordinaterstd is given by the equation

Ffrstdg ­ tanh

µ
j

2T

∂
e=V0sr, tdjr­rstd , (1)

wherej ­ m Ùr2y2 2 m, m is the chemical potential, and
the self-induced potentialV0sr, td obeys the equation

=sssê=V0st0, r0dddd ­ 4pedsssr 2 rstdddd . (2)

Here ê is the dielectric susceptibility operator. One ca
show [11] that the factor tanhsjy2T d in Eq. (1) appears
due to the Pauli principle.

Let us express the propagating electron amplitude
terms of the Feynman path integral. Within the quasicla
sical approximation (sufficient as long as the elastic me
free pathl exceeds the Fermi wavelengthpFl ¿ 1) the
path integral can be replaced by the sum over the class
trajectories obeying the equation of motion

mr̈ ­ 2=Uimpsrd 1 Fsssrstdddd 2 e=V sr, td (3)

for each realization of random potentialsUimpsrd and
V sr, td. Averaging over disordered configurations of im
purities [2] yields the effective picture of electron diffusio
at the scales bigger thanl.

Let us estimate the phase difference between a class
electron pathrst0d and a time reversed pathrst 2 t0d
induced by the two last terms in Eq. (3). Considering t
effect of the forceF we find

dwF ­ 2e tanh
j

2T

Z t

0
dt0fV0sssrst0dddd 2 V0sssrst 2 t0ddddg .

(4)

Since the kernel of the operator̂e is symmetric with
respect to its spacial arguments, one can easily obse
thatdwF is identically zero providedV0 obeys Eq. (2).
© 1998 The American Physical Society
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The phase difference due to the stochastic poten
V sr, td is, on the contrary, nonzero. It is defined as

dwsr, td ­ 2e
Z t

0
dt0fV sssrst0d, t0ddd 2 V sssrst 2 t0d, t0dddg .

(5)

Averaging with respect to fluctuations ofV , for not very
small t one gets [2]

kfdwsr, tdg2ly2 ­ tytwsT d , (6)

where

1
twsT d

­
e2

a32d

Z
dt

Z dvddq
s2pdd11 kjVq,vj2le2Dq2jtj2ivt ,

(7)

a is the film thickness ford ­ 2, anda2 ­ s is the wire
cross section ford ­ 1.

The correlation function for voltages in (7) can b
determined with the aid of FDT [10]. Let us first conside
a quasi-1D conductor. In this case one finds

kjVq,vj2l
a2 ­

v coths v

2T d
v2C2

sq2 1 sq2s1 1
CD
s d2

. (8)

Here s ­ 2e2N0Ds is the classical Drude conductance
D is the diffusion coefficient, andC is the capacitance of
a linear conductor per unit length. In (8) we neglecte
retardation and skin effects which may become importa
only at very high frequencies. Substituting (8) into (7
and integrating overt andq we find

1
twsT d

­
e2

p
2D

s

Z 1yte

1ytw

dv

2p

cothsvy2T d
p

v
. (9)

The low frequency cutoff in the integral (9) is chose
in a standard manner [1–3], at high frequencies the
tegral is cut at1yte ­ yFyl because at even higherv

a diffusion approximation is inapplicable and Eq. (8) b
comes incorrect. In Eq. (9) we made use of the conditi
C ø syD which is usually well satisfied (perhaps exce
for extremely thin wires) indicating the smallness of c
pacitive effects in our system. Equation (9) yields

1
tw

­
e2

ps

s
2D
te

f2T
p

tetw 1 1g . (10)

The first term in the square brackets comes from t
low frequency modesv , T , whereas the second term
is due to high frequency (v . T ) fluctuations of the
electric field in a disordered conductor. At sufficientl
high temperature the first term dominates and the us
expression [3]tw , ssye2D1y2T d2y3 is recovered. As
T is lowered the number of the low frequency mode
decreases and eventually vanishes in the limitT ! 0.
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At T & Tq , 1yp
twte the expression (10) is dominate

by the second term andtw saturates at the value

tw ø psye2yF . (11)

The estimate for the crossover temperatureTq reads

Tq , eyFy
p

sl . (12)

Making use of Eq. (11) it is also easy to find the wea
localization correctionds to the Drude conductance in
the limit T ­ 0. For T & Tq we obtain

ds

s
­ 2

e2

ps

q
Dtw ø 2

1
pFs1y2 , (13)

i.e., ds ø 2sy
p

N, where N , p2
Fs is the effective

number of conducting channels in a 1D mesosco
system.

For 2D and 3D systems the same analysis yields

1
tw

­
e2

4pste
f1 1 2Tte lnsTtwdg , 2D,

1
tw

­
e2

3p2s
p

2D t
3y2
e

f1 1 6sTted3y2g , 3D, (14)

where s ­ 2e2N0Da32d is the conductance of ad-
dimensional system. The result (14) demonstrates that
2D and 3D systems saturation oftw is expected already
at relatively high temperatures: the crossover tempera
Tq is of the order of the inverse elastic time in the 3D ca
and Tq , yFyl lnsp2

Fald2 for a 2D system. The latter
value agrees well with the experimental results [6].

Our analysis clearly demonstrates that—in accorda
with previous considerations [3,12]—the decoheren
time tw is entirely different from the inelastic mean
free timeti, which is known to become infinite at zer
temperature for almost all processes, including electr
electron interaction. In order to findti it is sufficient to
proceed within the standard quasiclassical approach
to solve the kinetic equation for the electron distributio
function. The collision integral in this equation contain
the product of the occupation numbers for different ener
levels nks1 2 nqd, which vanishes atT ! 0 due to the
Pauli principle. Hence,ti becomes infinite atT ­ 0.

In terms of the path integral analysis this procedu
amounts to expanding the electron effective action
the Keldysh contour in the parameterr2st0d ­ r1st0d 2

r2st0d assuming this parameter to be small [r1s2dst0d is
the electron coordinate on the forward (backward) p
of the Keldysh contour]. The quasiclassical equati
(3) for the “center of mass”r1st0d ­ fr1st0d 1 r2st0dgy2
follows from this procedure. Both forcesF and 2e=V
are important for such classical paths, and the combina
cothsvy2T d 1 tanhfsj 2 vdy2T g [from Eqs. (1) and (8)]
enters the expression for the inelastic timeti (see, e.g.,
[5]). For a detailed calculation of the inelastic scatterin
time in various limits we refer the reader to Ref. [12].
1075
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The above quasiclassical procedure is formally ve
different from one used to calculate the weak localiz
tion correction to conductivity. In the latter case the tim
reversed pathsr1st0d and r2st 2 t0d are assumed to be
close to each other [2], whereasr2st0d can be arbitrar-
ily large. This formal difference is just an illustration o
the well know fact, that weak localization is an essential
quantum phenomenon. In this case the contribution
the forceF, containing tanhsjy2T d, is zero as it was dis-
cussed above. Therefore, the quasiclassical kinetic ana
sis of ti in terms of the collision integral is principally
insufficient for calculation of the decoherence timetw.

We would like to emphasize that our results ar
obtained within the standard theoretical treatment of we
localization effects [2] combined with FDT. One ca
elaborate a more general real time analysis based on
Keldysh technique [11]. Starting from the microscop
Hamiltonian for electrons in a disordered metal wit
Coulomb interaction, one can introduce two quantu
fields V1, and V2, respectively, on the forward and
backward parts of the Keldysh contour by means
a standard Hubbard-Stratonovich transformation. T
initial problem is then mapped onto that of a singl
electron propagating in a random potential of impuritie
in a metal and interacting with an effective fluctuatin
matrix external fieldVijsr, td ­ Visr, tddij (i, j ­ 1, 2)
which is in turn produced by fluctuating electrons. On
can show [11] that the effective density matrix of thi
electronrV st, r1, r2d obeys theexactequation of motion

i
≠rV

≠t
­ fH0 2 eV 1, rV g 2 s1 2 rV d

eV 2

2
rV

2 rV
eV 2

2
s1 2 rV d , (15)

where H0 is the exact Hamiltonian for an electron in a
metal in the presence of impurities but in the absen
of the electron-electron interaction,V 1 ­ sV1 1 V2dy2
and V 2 ­ V1 2 V2. The single electron density matrix
r in the presence of interactions is derived by averagi
over the above stochastic fieldsr ­ krV lV 1,V 2 , and the
correlators for these fields are determined by the influen
functional obtained by integrating out all electron degre
of freedom [11]. Within this approach one arrives at th
same results [11] as those obtained here.

Equation (15) allows for a simple understanding of th
role of the Pauli principle in our problem. One can sho
[11] that fluctuations of the fieldV 2 are responsible for
collision-induced damping described by the forceF in
Eq. (3). The fieldV 2 is obviously sensitive to the Pauli
principle, and the factor tanhsjy2T d appears in Eq. (1).

In contrast toV 2, fluctuations of the fieldV 1, which
just coincides with the quasiclassical potentialV in Eq. (3),
are not sensitive to the Pauli principle. It is obviou
from Eq. (15) thatV 1st, rd is equivalent to an external
potential. All electrons “feel” the same fluctuating field
1076
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V 1, and the Pauli principle plays no role in this proces
This effect causes quantum decoherence which pers
down toT ­ 0.

The existence of a nonzero electron dephasing r
at T ­ 0 has a transparent physical interpretation. L
us represent the fluctuating fieldV as a collection of
oscillators with different frequencies, all being in th
ground state atT ­ 0. The interference contribution to
the return probability for an electron interacting withone
oscillator with a frequencyv oscillates in time and is
smaller than one for all time moments exceptt ­ 2pnyv

when the system returns to its initial state. In the case
infinitely manyoscillators with a continuous distribution
of frequencies the electron willneverreturn exactly to its
initial state. AtT ­ 0 the interference contribution will
be always suppressed by a factor exps2hr2d, whereh

depends on the interaction strength and the spectrum
oscillators andrstd is the size of the return path. Fo
an electron in a diffusive metalrstd grows with time as
r ,

p
Dt, and the interference contribution to the retu

probability will decay as~ exps2hDtd. This is the effect
of quantum dephasing atT ­ 0.

Note that this effect is qualitatively different from
that discussed in Ref. [13] where it was argued th
zero-point motion of impurities may cause dephasing
T ­ 0. Later it was pointed out in Ref. [14]—and w
fully agree with this statement [14]—thatpurely elastic
scattering considered in Ref. [13] cannot cause quant
decoherence. In contrast, in our case the energy excha
between the electron and the field oscillators is possi
even atT ­ 0: in the presence of interaction none o
them is in its “noninteracting” eigenstate, the ground sta
levels get broadened, and the energy can be exchan
without excitationof the field oscillators.

The saturation of the dephasing rate at lowT was
recently discussed by the authors [9] who started fro
the framework similar to that of Refs. [2,4] and th
present paper. However, in contrast to our analys
the calculation [9] involves integration over 2D (no
1D) wave vector and a phenomenologically chosen h
frequency cutoff. As a result the authors [9] arrived at t
estimate for the decoherence lengthLw , NchypF which
does not contain the elastic mean free pathl. This result
is not correct. Also the role of the Pauli principle in th
effect of quantum dephasing was not clarified in Ref. [9

Let us emphasize that the saturation oftw at low T
might not necessarily indicate the failure of the Ferm
liquid hypotheses for disordered metals atT & 1ytw

(although it does not support this hypothesis eithe
It is becausetw is the dephasing time forreal elec-
trons and not for Landau quasiparticles. In a diso
dered metal interacting electrons are “bad” particles: th
wave functions dephase even atT ­ 0. The possibil-
ity to construct “better” quasiparticles is questionab
in this case, but anyway they are not needed with
our analysis which allows one to directly calculate th
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FIG. 1. The temperature dependent decoherence rate (
(solid curves) plotted together with the experimental data f
two 1D gold wires (Au-2 and Au-6) [8] (squares).

physically measurable quantities in terms of interactin
electrons.

The results of our analysis agree sufficiently well wit
the experimental findings [8]. The corresponding compa
son of our Eq. (10) with the experimental data for tw
gold wires (Au-2 and Au-6) [8] at lowT is presented in
Fig. 1. This agreement was achieved withno fitting pa-
rametersand is even better than one could expect with
the accuracy of the cutoff procedure used in Eq. (9). T
value of the decoherence lengthLw ­

p
Dtw measured for

the samples Au-3 and Au-4 (Au-1 and Au-5) [8] is1.5 2
times (respectively,,3 times) bigger than one obtained
from (10), i.e., the agreement is reasonable also for the
maining four samples [8]. Our results both for the magn
tude and the temperature dependence oftw also agree well
with earlier experimental data [6,7]. Furthermore, in 1
wires the scalingLw ­

p
Dtw ~

p
s was observed in [7].

Similarly, in [6] the linear dependence of1ytw on the sheet
resistance of 2D films was found. These observations
also consistent with our Eqs. (11) and (14).

Finally, we would like to point out that the low tem-
perature saturation oftw should causedramatic conse-
quences for the existing picture of strong localization
low dimensional metals [15,16]. Our results demonstra
that for typical metals the effective decoherence lengthLw

is alwayssmaller than the localization lengthLloc; e.g., in
1D we haveLw , l

p
Nch ø Lloc , lNch for Nch ¿ 1.

This implies that localization should remain “weak” at a
T , and the 1D and 2D metals (at least forpFl ¿ 1) do
not become insulatorseven atT ­ 0 because of the effect
of electron-electron interaction.
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In conclusion, we point out that the low temperatur
saturation of the electron decoherence time found
recent experiments with mesoscopic conductors can
explained within the existing theory of weak localization
provided the effect of intrinsic quantum fluctuations of the
electric field is properly accounted for. Our results agre
well with the experimental data.
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