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Structural Relaxation Monitored by Instantaneous Shear Modulus
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This paper reports on aging of the silicone oil MS704 for sudden changes of temperature from
210.5 to 209.0 K and from 207.5 to 209.0 K studied by continuously monitoring the instantaneous shear
modulusG`. The results are interpreted within the Tool-Narayanaswamy formalism with a reduced time
definition based on a recently proposed expression for the relaxation time, whereG` reflects the fictive
temperature. All parameters entering the reduced time were determined from independent measurement
of the frequency-dependent shear modulus of the equilibrium liquid. [S0031-9007(98)06756-8]
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Viscous liquids and the glass transition are old resear
fields, which continue to attract attention because of ma
unsolved problems [1–11]. One problem is the almo
ubiquitous non-Arrhenius average relaxation times. Wi
few exceptions, average relaxation times of highly visco
liquids increase more dramatically upon cooling tha
expected from an Arrhenius law. The viscosityh is also
non-Arrhenius, reflecting the fact thath is related to the
average shear relaxation timet by Maxwell’s expression

t ­
h

G`

. (1)

Here G` is the instantaneous (infinite-frequency) she
modulus, a quantity that is only moderately temperatu
dependent (usually increasing less than a factor of 4 up
cooling in the temperature range, wheret increases by
10 orders of magnitude). For typical cooling ratest is of
order103 s at the glass transition.

Many models have been proposed for the no
Arrhenius average relaxation times of viscous liquid
However, only a few models are phenomenological
the sense that they relatetsT d to other macroscopically
measurable quantities. Well-known phenomenologic
models are thefree-volume modelof Cohen, Turnbull,
and Grest [12–14] and theentropy modelof Gibbs,
DiMarzio, and Adam [15,16]. Briefly, the ideas behin
these models are the following. In the free-volum
model the molecules are modeled as hard spheres.
molecule is mostly confined to a cage bounded by
immediate neighbors. Occasionally, there is a fluctuati
in density which opens up a hole within the cage larg
enough to permit a considerable displacement of t
molecule. Molecular transport occurs only when a vo
having a “free” volume greater than some critical valu
forms. The dramatic non-Arrhenius increase oft upon
cooling is due to thermal contraction. In the entrop
model the variable controlling the average relaxatio
time is the configurational entropy, the entropy in exce
of the crystal entropy. It is well known [1] that this
quantity extrapolates to zero at a nonzero temperatureTK

(the Kauzmann paradox). The basic idea of the entro
model is that close toTK the energy barrier restricting
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transitions between different molecular configurations is
very high, because the few states that could conceivab
occur are widely separated in phase space, so proceedi
from one to another involves a considerable change in th
topology of molecular entanglements. This gives rise to
non-Arrhenius behavior because the barrier grows as th
configurational entropy decreases upon cooling [16].

Recently, a phenomenological model in whichG` con-
trols the non-Arrhenius average relaxation time in viscous
liquids was proposed [17]. It is assumed that the energ
barrier has two contributions, one from the rearranging
molecules themselves and one from “shoving” aside th
surrounding liquid to reduce the first contribution. An-
harmonicity of the intermolecular potential—with harsh
repulsions but only weak attractions—implies that the
shoving work gives the dominant contribution to the ac-
tivation energy [17,18]. The shoving work is proportional
to G` [17,18], leading to the following expression for
the average relaxation time (whereVc is a temperature-
independent volume):

t ­ t0 exp

"
G`Vc

kBT

#
. (2)

Non-Arrhenius behavior arises becauseG` increases as
the temperature decreases. Equation (2), which was fir
discussed by Nemilov in 1968 in a different context [19]
and recently also derived by Buchenau [20], is able to
account for the temperature dependence of the averag
relaxation times of a number of glass-forming liquids
[17,20].

Viscosity or average relaxation time is probed bylinear
experiments, i.e., experiments where the liquid, in prin-
ciple, is perturbed only infinitesimally from the equilibrium
state. It is generally believed that structural relaxation
which is inherently nonlinear, and viscous flow are cause
by the same basic molecular process. Therefore,
correct, Eq. (2) should also be applicable to structura
relaxation experiments. Below, we present preliminary
results for two such experiments, where relaxation fol-
lowing sudden temperature jumps—“aging”—is probed
by continuously monitoringG`. Similar experiments
probing nonlinear relaxation by measuring high-frequency
© 1998 The American Physical Society 1031
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moduli by a different method (Brillouin spectroscopy
have been carried out by several groups [21–23], but o
method gives less noisy data.

The measurements were done on the diffusion pump s
cone oil MS704. This liquid has little dispersion at th
resonance frequency of our experimental setup in the te
perature range studied. The silicone oil was embedd
in the one-disk version of the piezoelectric shear modul
gauge transducer (PSG) described elsewhere [24]. Te
perature may be kept constant within 5 mK over seve
days with an absolute uncertainty below 0.2 K. The tim
constant for the temperature control of the sample is 400

The silicone oil was subjected to two sudden temper
ture jumps applied to well-annealed states of the samp
The first experiment involved a sudden change of tempe
ture from 207.5 to 209.0 K (“up-jump”), the second in
volved a sudden temperature change from 210.5 to 209.
(“down-jump”). During the approach to equilibrium,G`

was monitored by measuring the first resonance frequen
v0 of the PSG. Assuming that there are no significa
shear relaxations abovev0, G` is given [24] by

G` ­ rdhsv2
0 2 V2

0d , (3)

wherer is the density of the piezoceramic,d is the thick-
ness of the liquid layer,h is the thickness of the piezo-
ceramic disk, andV0 is the resonance frequency of th
empty axially clamped transducer.V0 was determined
from a calibration of the transducer at 212 K by comparin
the instantaneous shear modulus obtained by the resona
method with that obtained by the quasistatic method usi
the three-disk version [24] of the PSG. Typical values
v0 are about1.3 3 106 radys. The high-Q factor of the
resonance peak (about 200) makes accurate measurem
of the resonance frequency possible. The estimated re
tive uncertainty of resonance frequency is 3 ppm, which
better than the relative variation due to the 5 mK temper
ture instability.

Figure 1 shows our data for up-jump and down-jum
As usual [3,25–27] the down-jump proceeds faster th
the up-jump. This is because the “fictive temperatur
Tf [3,6,25–29], which controls the structural relaxatio
time is higher for the down-jump than for the up-jump
Asymptotically, of course, the fictive temperature in bot
cases converges to 209.0 K.

We consider the simplest possible model consiste
with Eq. (2). If G`,eq is the equilibrium value ofG`,
this model follows Tool [28] in assuming that relaxatio
towards equilibrium is governed by the following simpl
first-order differential equation:

d
dt

sG` 2 G`,eqd ­ 2
G` 2 G`,eq

tsG`d
. (4)

In terms of the dimensionless variablesx ­ VcsG` 2

G`,eqdyskBT d andt̃ ­ tyht0 expfVcG`,eqyskBT dgj, Eq. (4)
becomesdxydt̃ ­ 2xy expsxd. If Eisxd denotes the
1032
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FIG. 1. Instantaneous shear modulusG` for the silicone oil
MS704 as function of time after sudden temperature jum
from 207.5 to 209.0 K (up triangles) and from 210.5 to 209.0
(down triangles). The horizontal line marks the equilibrium
value of G` at 209.0 K. As usual, in structural relaxation
the relaxation towards equilibrium proceeds faster for dow
jump than for up-jump. G` was monitored by means of the
piezoelectric shear modulus gauge transducer in the resona
mode [24]. This method measures the shear modulusGsvd
at aboutv ­ 1.3 3 106 radys [the identification ofGsvd with
G` involves the assumption that there are no significant she
losses at higher frequencies].

exponential integral characterized byd
dx Eisxd ­

expsxdyx, the solution is

t̃ ­ Eisssxs0dddd 2 Eisssxst̃dddd . (5)

Our experiments, however, are poorly fitted by Eq. (5
The reason is the well-known fact that a distribution of re
laxation times is always involved in structural relaxation
This is reflected in memory effects as seen in, e.g., t
overshoot phenomenon [26].

A distribution of relaxation times is allowed for in the
Tool-Narayanaswamy (TN) formalism [3,25–35]. Fo
a sudden temperature jump att ­ 0 the TN formalism
predicts that the normalized relaxation function is
function solely of the “reduced time” that has passe
since t ­ 0. The reduced time increment is the tim
increment measured in units of the relaxation tim
(the latter quantity itself relaxing with time). The two
most commonly used relaxation time formulas are th
Narayanaswamy-Moynihan [30,31] and the Adam-Gib
expressions [16,32,35]. Based on Eq. (2) for the relax
tion time, whereG` itself is a measure of the fictive
temperature, we here define the reduced timej by

j ­
Z t

0

dt0

tsssG`st0dddd
. (6)

According to the TN formalism, both relaxation exper
ments are—for some suitable functionFsjd—described
by

G`std 2 G`,eq

G`s0d 2 G`,eq
­ Fsjd . (7)

In Eq. (7) the glassy (instantaneous) change ofG` is
not subtracted as usually done, because, assuming
both the glassy change and the overall change ofG` are
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proportional to the temperature change, this is not nec
sary when the two temperature jumps have equal mag
tude. Note that the simple model of Eq. (4) correspon
to Fsjd ­ exps2jd and no glassy change ofG`.

Figure 2 shows the normalized relaxation functio
plotted as a function ofj for both up- and down-jump
on a linear time scale (used because, due to the lo
thermal time constant of the setup, only in the last 1–1
decade of the measurements of Fig. 1 is the temperat
equilibrated). The two curves coincide, showing th
structural relaxation ofG` is consistently described by
the TN formalism in conjunction with Eq. (2). The
parameterst0 and Vc of Eq. (2) were determined from
measurements ofG` and the shear mechanical loss pea
frequency in the equilibrium liquid state, bothlinear
experiments. These measurements were carried ou
212 and 214 K (the lowest temperatures possible), lead
to the following parameters of Eq. (2):Vc ­ 81 Å3 and
t0 ­ 8 3 10216 s.

In the present experiment, only relatively small tem
perature jumps were studied, and the overall change
G` is just 5%. However, this is much larger than th
changes of other directly measurable quantities mode
by the TN formalism such as volume [36] or refractiv
index [37]. Also, it should be noted that for the liquid
studied the 5% change ofG` corresponds to more than 1
order of magnitude change of the average relaxation tim
thus ensuring that the experiment is far from linearity.

In conclusion, we have shown that aging of th
instantaneous shear modulus in MS704 may be descri
by the TN formalism in conjunction with the reduced
time definition of Eq. (6). This, however, does no
provide a definitive test of Eq. (2). Such a test wou
involve showing that the above approach works bett

FIG. 2. Normalized relaxation function for the two tempera
ture jumps of Fig. 1 plotted as a function of the reduced tim
defined in Eq. (6) (solid symbols) on a linear time scale. Th
open symbols give the “raw” normalized relaxation function a
a function of a dimensionless time defined by the overall sc
ing of the actual time with the equilibrium average relaxatio
time at 209.0 K. The fact that the two curves of solid symbo
coincide shows that the Tool-Narayanaswamy formalism wi
the reduced time definition given in Eq. (6) works well for th
aging of MS704.
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than the TN formalism with either the Narayanaswamy
Moynihan [30,31] or the Adam-Gibbs [16,32,35] reduced
time definitions.
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