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Structural Relaxation Monitored by Instantaneous Shear Modulus
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This paper reports on aging of the silicone oil MS704 for sudden changes of temperature from
210.5 to 209.0 K and from 207.5 to 209.0 K studied by continuously monitoring the instantaneous shear
modulusG... The results are interpreted within the Tool-Narayanaswamy formalism with a reduced time
definition based on a recently proposed expression for the relaxation time, Gheedlects the fictive
temperature. All parameters entering the reduced time were determined from independent measurements
of the frequency-dependent shear modulus of the equilibrium liquid. [S0031-9007(98)06756-8]

PACS numbers: 64.70.Pf, 62.80.+f

Viscous liquids and the glass transition are old researchransitions between different molecular configurations is
fields, which continue to attract attention because of majovery high, because the few states that could conceivably
unsolved problems [1-11]. One problem is the almosbccur are widely separated in phase space, so proceeding
ubiquitous non-Arrhenius average relaxation times. Withfrom one to another involves a considerable change in the
few exceptions, average relaxation times of highly viscousopology of molecular entanglements. This gives rise to
liquids increase more dramatically upon cooling thannon-Arrhenius behavior because the barrier grows as the
expected from an Arrhenius law. The viscostfyis also  configurational entropy decreases upon cooling [16].
non-Arrhenius, reflecting the fact that is related to the Recently, a phenomenological model in whiGh con-
average shear relaxation timeby Maxwell’s expression trols the non-Arrhenius average relaxation time in viscous

n liquids was proposed [17]. It is assumed that the energy

=Gl (1)  barrier has two contributions, one from the rearranging

* molecules themselves and one from “shoving” aside the
Here G- is the instantaneous (infinite-frequency) shearsyrrounding liquid to reduce the first contribution. An-
modulus, a quantity that is only moderately temperaturgygrmonicity of the intermolecular potential—with harsh
dependent (usually increasing less than a factor of 4 upogspulsions but only weak attractions—implies that the
cooling in the temperature range, whereincreases by shoving work gives the dominant contribution to the ac-
10 orders of magnitude). For typical cooling rates of  tjyation energy [17,18]. The shoving work is proportional
order10’ s at the glass transition. to G.. [17,18], leading to the following expression for

Many models have been proposed for the nonthe average relaxation time (wheve is a temperature-
Arrhenius average relaxation times of viscous liquidsingependent volume):

However, only a few models are phenomenological in GV
the sense that they relatd7’) to other macroscopically T=1 ex;{ ¢ } 2)
measurable quantities. Well-known phenomenological ksT

models are thdree-volume modebf Cohen, Turnbull, Non-Arrhenius behavior arises becauSe increases as
and Grest [12-14] and thentropy modelof Gibbs, the temperature decreases. Equation (2), which was first
DiMarzio, and Adam [15,16]. Briefly, the ideas behind discussed by Nemilov in 1968 in a different context [19]
these models are the following. In the free-volumeand recently also derived by Buchenau [20], is able to
model the molecules are modeled as hard spheres. &ccount for the temperature dependence of the average
molecule is mostly confined to a cage bounded by itgelaxation times of a number of glass-forming liquids
immediate neighbors. Occasionally, there is a fluctuatio17,20].

in density which opens up a hole within the cage large Viscosity or average relaxation time is probedlimgar
enough to permit a considerable displacement of thexperiments, i.e., experiments where the liquid, in prin-
molecule. Molecular transport occurs only when a voidciple, is perturbed only infinitesimally from the equilibrium
having a “free” volume greater than some critical valuestate. It is generally believed that structural relaxation,
forms. The dramatic non-Arrhenius increaserofipon  which is inherently nonlinear, and viscous flow are caused
cooling is due to thermal contraction. In the entropyby the same basic molecular process. Therefore, if
model the variable controlling the average relaxationcorrect, Eq. (2) should also be applicable to structural
time is the configurational entropy, the entropy in excesselaxation experiments. Below, we present preliminary
of the crystal entropy. It is well known [1] that this results for two such experiments, where relaxation fol-
quantity extrapolates to zero at a nonzero temperdture lowing sudden temperature jumps—*“aging”—is probed
(the Kauzmann paradox). The basic idea of the entroppy continuously monitoringG... Similar experiments
model is that close td’x the energy barrier restricting probing nonlinear relaxation by measuring high-frequency
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moduli by a different method (Brillouin spectroscopy)

T 1.48
have been carried out by several groups [21-23], but our § R
method gives less noisy data. g 1467 el
The measurements were done on the diffusion pump sili- 3 144 e
cone oil MS704. This liquid has little dispersion at the 8 L,
resonance frequency of our experimental setup in the tem- L 142 , v '
perature range studied. The silicone oil was embedded ¢ v
in the one-disk version of the piezoelectric shear modulus ~ * 1.40 N )
gauge transducer (PSG) described elsewhere [24]. Tem- & 4 3g
perature may be kept constant within 5 mK over several 1 2 3 4 5
days with an absolute uncertainty below 0.2 K. The time
constant for the temperature control of the sample is 400 s. Log(time) [s]

The silicone oil was subjected to two sudden temperaFIG. 1. Instantaneous shear modulds for the silicone oil
ture jumps applied to well-annealed states of the samplé/S704 as function of time after sudden temperature jumps
The first experiment involved a sudden change of temperdflt 252 20RO AU He sl S0 o i
ture from 207.5 to 209.0 K (*up-jump?), the second in- value of G at 209.0 K. As usual, in structural relaxation,
volved a sudden temperature change from 210.5 t0 209.0 ffe relaxation towards equilibrium proceeds faster for down-
(“down-jump”). During the approach to equilibriund..  jump than for up-jump. G.. was monitored by means of the
was monitored by measuring the first resonance frequendyiezoelectric shear modulus gauge transducer in the resonance
wo Of the PSG. Assuming that there are no significantiode [24]. This method measures the shear moddlts)

: . at aboutw = 1.3 X 10° rad/s [the identification ofG(w) with
shear relaxations abovey, G-- is given [24] by G.. involves the assumption that there are no significant shear

losses at higher frequencies].
G = pdh(wg — Q3F), 3)

exponential integral characterized byj—x Ei(x) =
wherep is the density of the piezoceramit is the thick-  exp(x)/x, the solution is
ness of the liquid layerk is the thickness of the piezo- . . o
ceramic disk,qancnoyis the resonance frequencypof the t= Ei(x(0) — Ei(x(7)). (5)
empty axially clamped transducer(), was determined Our experiments, however, are poorly fitted by Eq. (5).
from a calibration of the transducer at 212 K by comparingThe reason is the well-known fact that a distribution of re-

the instantaneous shear modulus obtained by the resonariggation times is always involved in structural relaxation.
method with that obtained by the quasistatic method usinghis is reflected in memory effects as seen in, e.g., the

the three-disk version [24] of the PSG. Typical values ofpvershoot phenomenon [26].
wo are aboutl.3 X 10° rad/s. The high@ factor of the A distribution of relaxation times is allowed for in the
resonance peak (about 200) makes accurate measuremengs|-Narayanaswamy (TN) formalism [3,25-35]. For
of the resonance frequency possible. The estimated rela- sudden temperature jump at= 0 the TN formalism
tive uncertainty of resonance frequency is 3 ppm, which igredicts that the normalized relaxation function is a
better than the relative variation due to the 5 mK temperafunction solely of the “reduced time” that has passed
ture instability. sincer = 0. The reduced time increment is the time
Figure 1 shows our data for up-jump and down-jump.increment measured in units of the relaxation time
As usual [3,25-27] the down-jump proceeds faster tharthe latter quantity itself relaxing with time). The two
the up-jump. This is because the “fictive temperature’most commonly used relaxation time formulas are the
Ty [3,6,25-29], which controls the structural relaxation Narayanaswamy-Moynihan [30,31] and the Adam-Gibbs
time is higher for the down-jump than for the up-jump. expressions [16,32,35]. Based on Eq. (2) for the relaxa-
Asymptotically, of course, the fictive temperature in bothtion time, whereG.. itself is a measure of the fictive

cases converges to 209.0 K. temperature, we here define the reduced tinsy
We consider the simplest possible model consistent p dt!
with EQ. (2). If Gx¢q is the equilibrium value oG, &= f —_. (6)
o 7(G=(1)

this model follows Tool [28] in assuming that relaxation
towards equilibrium is governed by the following simple According to the TN formalism, both relaxation experi-

first-order differential equation: ments are—for some suitable functi@i{¢)—described
by
d Gac - Gscc
(G = Gug) = ———— 0 (4) Goo(t) = Gageq
: — " = F(§). 7

dt 7(G) Go(0) — Goeg () (1)
In terms of the dimensionless variables= V.(G. — In Eq. (7) the glassy (instantaneous) changeGof is
Goeq)/(kpT) and? = t/{ro eXdV.Gxcq/(ksT)]}, EQ. (4) not subtracted as usually done, because, assuming that
becomesdx/di = —x/explx). If Ei(x) denotes the both the glassy change and the overall chang&.ofare
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proportional to the temperature change, this is not neceshan the TN formalism with either the Narayanaswamy-

sary when the two temperature jumps have equal magnMoynihan [30,31] or the Adam-Gibbs [16,32,35] reduced

tude. Note that the simple model of Eq. (4) correspondsime definitions.

to F(¢) = exp(—¢) and no glassy change 6f.. This work was supported by the Danish Natural Science
Figure 2 shows the normalized relaxation functionResearch Council.
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