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Effect of Non-Pairwise-Additive Interactions on Bundles of Rodlike Polyelectrolytes
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Like-charged rigid polyelectrolytes can attract each other due to counterion-mediated interactions to
form bundles. However, the resulting effective interactions between rods are not pairwise additive
Here we calculate the free energy of anN-rod bundle explicitly. We find that the breakdown of
pairwise additivity dramatically affects the stability of bundles ofN rods and leads to a barrier in the
free energy that grows with increasing salt concentration. [S0031-9007(98)06735-0]

PACS numbers: 61.20.Qg, 61.25.Hq, 87.15.Da
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Experiments on a variety of stiff polyelectrolyte chains
such as DNA,F-actin, and tobacco mosaic virus, show
that they can self-assemble in solution into bundl
of a well-defined size of densely packed, approximate
parallel chains [1,2]. For DNA, this phenomenon is know
as condensation and has attracted attention because o
implications for packaging of viral DNA. Condensation i
surprising because it implies an attractive interaction, b
the chains carry the same sign of charge and Debye-Hüc
theory and nonlinear Poisson-Boltzmann theory both p
dict that the interaction should be repulsive [3]. In order
understand the attraction, recent simulations and theo
[4–7] focused on two-rod systems. In particular, w
found that two charged rods can attract each other [7] d
to the presence of condensed counterions (i.e., counteri
near the rods) [8,9]. These counterions give rise
charge fluctuations on the rods that become correla
when the two rods are sufficiently close together. Th
resulting short-ranged attractive interaction is reminisce
of the van der Waals interaction and is in quantitativ
agreement with two-rod simulations [4] with no ad
justable parameters [7]. As Podgornik and Parseg
[10] recently pointed out, however, these two-rod resu
cannot be applied to many-rod bundles, since the effe
tive interactions among rods are not pairwise additiv
[7,10,11]. This is because the interactions are attract
only when the distance between rods is much smal
than the rod length; under these conditions, the mu
pole expansion diverges. The many-body, higher-ord
multipole interactions are not pairwise additive. As
result, it is not clear that the attractive interactions foun
between two rods persist forN-rod bundles. Moreover,
given an attractive interaction, it is still not clear wh
the system chooses to form bundles of a well-defin
size. This has been explained in terms of competiti
between the short-ranged attraction and long-rang
repulsion due to the net charge (not all counterions a
condensed on the rods) [2]. However, this intuition
based on additivity of the two-rod interactions, and ma
fail for many-rod systems. To understand the formatio
of bundles and the electrostatics that control their stabili
it is therefore imperative to study bundles explicitly
without assuming pairwise additivity.
0031-9007y98y81(5)y1011(4)$15.00
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In this paper, we present a closed-form expression
the electrostatic free energy ofN-rod bundles, based on a
highly nontrivial generalization of the approach we deve
oped for two rods [7]. We find that the breakdown of pai
wise additivity has dramatic effects. Contrary to previou
expectation, the bundle size isnot limited by long-ranged
repulsion due to the net charge. At low temperatures,
rods prefer to aggregate into indefinitely large bundles.
high temperatures, where the interaction between rod
repulsive at all distances, the rods do not aggregate. Th
results hold even in the presence of salt, but they arein-
consistentwith the experimental observation of finite bun
dles. It is possible that nonelectrostatic mechanisms mi
limit the bundle size. However, our added-salt calculatio
suggest that kinetic effects might prevent the bundle fro
growing to its equilibrium size.

We study a system ofN negatively charged rods paral
lel to the z direction. Since chains are highly concen
trated within the bundle, we assume they are ordered
a square lattice with lattice constanta [12]. Each rod con-
sists ofM cylindrical monomers of lengthb and radius
r0. Each monomer carries a negative charge of2f0 (in
units of the electronic chargee). The counterions have
radiusrc and chargeZ and are divided into two classes
condensed and free [8,9]. We definefc to be the average
number of condensed counterions per monomer; we do
assume thatfc is determined by the Manning criterion, bu
solve for it self-consistently as a function of the number
rods and the lattice constanta. A condensed counterion is
approximated to lie on the nearest monomer, and to ad
chargeZ to the net charge of that monomer. Because co
densed counterions can move along the rods or excha
with free counterions, the charge of a monomer can flu
tuate. The charge on monomers of rod j can assume the
valuesqjssd ­ 2f0 1 mZ, wherem ­ 0, 1, 2, 3, etc. is
the number of condensed counterions occupying a giv
monomer. The average charge per monomer isq ­ f0 2

Zfc and the variance in the charge per monomer isdq2 ;
kfqssd 2 kqssdlg2lq ­ Z2fc. We allow for added salt by
including free ions labeled by the indexa, carrying charge
q̄a . Finally, it is useful to introduce the Bjerrum length
,B ­ e2yekBT , namely, the length scale at which the ele
trostatic energy is comparable to the thermal energy. W
© 1998 The American Physical Society 1011



VOLUME 81, NUMBER 5 P H Y S I C A L R E V I E W L E T T E R S 3 AUGUST 1998

n

a-
or
cal
eat
ce

e-
o

g
d

m

n
per
will also use the dimensionless Bjerrum length in units
the monomer length,̃,B ; ,Byb. The Manning-Oosawa
parameter [8,9], a measure of the ratio of the electrosta
energy to the thermal energy, is given byj ­ ,̃Bf0 in our
notation.

In terms of the charge variablesqjssd on the rods and
the free ionsq̄a , along with their associated positions
rjssd andra, the electrostatic interaction Hamiltonian is

bH ­
1
2

,B

"
NX
ij

MX
ss0

qissdqjss0d
jrissd 2 rjss0dj

1 2
NX
i

MX
s

X
a

qissdq̄a

jrissd 2 raj

1
X
aa0

q̄aqa0

jra 2 ra0 j

#
, (1)

where b ­ 1ykBT . The nonzero radii of the rods and
counterions are incorporated by separating the radial a
axial components of the separationrissd 2 riss0d for two
charge variables on thesame rod i, so that jrissd 2

riss0dj2 ­ fzissd 2 ziss0dg2 1 d2. The cutoff lengthd
represents the minimum separation between two co
densed counterions on the same rod; we taked ­ 2sr0 1

rcd, whererc is the counterion radius [7].
The system can adjust the monomer chargesqissd but

not their positionsrissd. It can also adjust the free ion
positions ra but not their charges̄qa . The partition
function is therefore the sum over all realizations of th
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charge variablesqissd and the integral over the free io
positionsra:

Z ­
Z

D rake2bH lq ­
Z

D ra

Z
D qissde2bH .

(2)

We now make the Hubbard-Stratanovich transform
tion [13] and use the Gaussian approximation [7]. F
simplicity, we assume that the counterions are identi
to one of the ionic species of the added salt. We tr
the free ions within the Gaussian approximation and tra
over their positions first; this is equivalent to Deby
Hückel theory [6]. The effect of free ions is simply t
replace the bare interaction,,Byr, by a “screened” one,
,Be2kryr [6], where k is an inverse Debye screenin
length given byk2 ­ 4p,BZ2n (here we have assume
that both ions of the salt have valencyZ).

To integrate out the remaining degrees of freedo
associated with the monomeric chargesqissd, it proves
useful to Fourier transform fromz to k. We define
matricesMskd and0M to be

0Mij ­ dq22dij 1 2,̃BK0skRijd ,

Mijskd ­ dq22dij 1 2,̃BK0sRij

p
k2 1 k2d ,

(3)

whereRij is the distance between rodsi andj, Rii ; d,
and K0sxd is the zeroth-order modified Bessel functio
of the second kind. The electrostatic free energy
monomer of the rods, fora ø L, is
ents the
n
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bFrodssad ­
1
2

q2
X
ij

"
dij 2

1
dq2

0M21
ij

#
1

dq2 1
b
2

Z `

2`

dk
2p

lnfdetdq2Mskdg

2 bNdq2,̃B

Z `

2`

dk
2p

K0sd
p

k2 1 k2d . (4)

The first term in Eq. (4) represents the repulsion due to the net charge on the rods. The second term repres
attraction due to fluctuations in the monomeric charge. WhenN ­ 2, then we obtain the two-rod result [see Eq. (6) i
Ref. [7] ]. The last term is the self-energy that must be subtracted. The free energy in Eq. (4) cannot be written
pairwise sum of the two-rod interaction unless we retain only the leading term in the expansion of Eq. (4) in pow
dq2 (i.e., up to monopole-dipole interactions).

The electrostatic free energy in Eq. (4) depends on the average number of condensed counterions per monofc.
To solve forfc self-consistently, we enclose the bundle in a large cylinder of radiusL' and lengthL, and construct the
total free energy in terms of the number of condensed and free counterions. We then equate the chemical pote
condensed and free counterions. The total free energy valid fork21 ø L is then

bFtotal ­ Nfc

√
ln

fcMy0

Ld2 2 1

!
1 sNff 1

1
2 nbL2

'd

"
ln

√
NffM

LL2
'

1
n
2

!
y0 2 1

#
1

1
2 nbL2

'sln ny0y2 2 1d

1 NZq,̃BffK0skdy2d 1 bFrods 2
LL2

'

12p
k3 1

1
2 q2 N

ny0
,

(5)

whereff ­ s f0 2 ZfcdyZ is the number of free counterions per monomer andy0 is the counterion volume. The first
three terms in Eq. (5) correspond to the entropy of mixing of condensed counterions, free counterions (includi
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positively charged salt ions), and negatively charged s
ions, respectively. The fourth term is the interactio
of free counterions with rods, and the fifth is given in
Eq. (4). The sixth term is the standard Debye-Hück
result for the salt ions, and the last term corresponds
the repulsive interactions between free counterions. W
solve for fc by minimizing bFtotal (see Ref. [7]). We
have solved for the rod free energy numerically for sma
bundles (N # 36), and analytically in the asymptotic
largeN limit.

To calculate the equilibrium bundle size, we have ch
senZ ­ 2, T ­ 300 K, e ­ 80, b ­ 1.7 Å, andf0 ­ 1.
The rod radius isr0 ­ 4.2 Å and the counterion radius is
rc ­ 2.1 Å. In addition,M ­ 105 andL' ­ L; the re-
sults do not vary much for largerM and L'. We first
discuss what one would expect if the interactions we
pairwise additive. In Fig. 1, we have plotted the rod fre
energyFrods given in Eq. (4) as a function of the numbe
of rods in the bundle,N , for two different salt concentra-
tions. The lattice constant of the bundle isa ­ 24 Å. In
all cases, the reference free energy corresponds to infin
separation of the rods (a ! `). In the lower salt case,
k ­ 0.06 Å21 ; 0.02 M salt, the expectation based on
pairwise additivity of the results in Ref. [7] is plotted as
bold solid curve in Fig. 1. Because the interaction consis
of a short-ranged attraction and longer-ranged repulsio
the free energy has a minimum atN ø 16. In the high
salt case,k ­ 0.1 Å21 ; 0.05 M salt, on the other hand,
the pairwise additive result is plotted as a bold dash
curve. In this case, the two-rod interaction at a spacin
of a ­ 24 Å or larger is repulsive, so the minimum of the
free energy lies atN ­ 1 (completely separated rods).

The results from the fullN-rod calculation are quite
different from the pairwise-additive results, as shown b
the thin curves. At the higher salt concentration,k ­
0.1 Å21, we find qualitatively similar but quantitatively
different behavior from the pairwise-additive case. In bo
cases, the minimum of the free energy lies atN ­ 1 be-
cause the interaction is repulsive. However, the magnitu
of the free energy is significantly lower in the full analysis
implying that the repulsion is much weaker. Thus, the in
clusion of additional charge fluctuations, neglected in th
pairwise additive case, leads to more screening of the
pulsive contribution to the free energy. At lower salt con
centrations, there is a striking difference between the fu
analysis and the pairwise-additive one. Atk ­ 0.06 Å21,
we obtain the thin solid curve. In contrast to the pairwise
additive result, the full numerical analysis yields a free e
ergy that is monotonically decreasing up to the limit of ou
calculations,N ­ 36, implying an equilibrium bundle size
of N ­ `. This extrapolation is borne out by our asymp
totic analysis, where we find that the free energy per ro
FrodsyN , approaches a limiting value asN ! `, so that
Frods scales linearly withN .

As the salt concentration increases, the onset of attr
tion moves to smaller lattice spacingsa. This is shown
in Fig. 2, where we have plotted the rod free energy p
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FIG. 1. Electrostatic rod free energy,Frods, as a function
of the number of rods in the bundle,N. The parameters
used areT ­ 300 K, e ­ 80, f0 ­ 1, and Z ­ 2 (divalent
counterions). The lattice constant isa ­ 24 Å. The bold and
thin solid curves correspond tok ­ 0.06 Å21; the bold curve
is the result assuming pairwise additivity, and the thin curve
the result of the fullN-rod analysis. Similarly, the bold and
thin dashed curves correspond to the pairwise-additive and
results fork ­ 0.1 Å21.

monomer,frods ; FrodsyNM, for 16 rods as a function of
a. Since the system is free to adjust its lattice spacing,
must consider the global minimum of the free energy. A
shown in Fig. 2, the free energy minimum is at smalla, so
the rods collapse to form a dense bundle, independen
salt concentration. This is true for all salt concentratio
up to kc ­ 0.25 Å21 ; 0.3 M of a 2:2 salt [14]. Above
kc, the onset of attraction is smaller than the cutoff distan
d, so there is no attractive regime. In other words, the eq
librium bundle size isN ­ ` for k # kc, andN ­ 1 for
k . kc. Our calculations are consistent with Brownia
dynamics [15] and molecular dynamics [16] simulations

The physical reason why electrostatics preferN ­ `

is that the condensed counterions along the rods can
come correlated over the entire bundle, not just pair
pair. At very low temperatures, the system becom
an ionic crystal [4], and it is not surprising that th
ionic crystal is not limited in size by electrostatic re
pulsion. However, our finding is in direct contradiction
with the experiments [1,2], which find well-defined finite
bundles. One possible explanation for the difference
that nonelectrostatic mechanisms are at play. Since
have treated rigid rods, we have not allowed repulsio
due to conformational fluctuations [17] or topological de
fects that are introduced by the winding of chains in
a torus [18]; these mechanisms might limit the bund
1013
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FIG. 2. The electrostatic rod free energy per monome
frods ­ FrodsyNM, as a function of the lattice constanta for
the same parameter values as in Fig. 1, for a 16-rod bund
The bold solid curve corresponds tofrods, the bold dashed
curve to the attractive contribution tofrods, and the bold dot-
dashed curve to the repulsive contribution tofrods, for the
casek ­ 0.001 Å21. The thin solid, dashed, and dot-dashe
curves correspond tofrods, and the attractive and repulsive
contributions tofrods, respectively, fork ­ 0.1 Å21. Note that
the free energy develops a repulsive barrier as the amount
added salt increases.

size. Another possibility is that bundles cannot reac
their equilibrium size for kinetic reasons. We find partia
support for this hypothesis by looking at the free energ
per monomer as a function of lattice constant, as in Fig.
The solid curves correspond tofrods. Note that there is a
barrier in the high-salt casek ­ 0.1 Å21. The free energy
develops a repulsive barrier that increases with increas
salt. We find qualitatively similar behavior when we bring
one rod up to a bundle ofN rods.

To understand the origin of the barrier, we have plotte
the repulsive and attractive contributions separately [the
correspond to the first and second terms in Eq. (4), resp
tively]. The attractive term is plotted as a dashed curv
(heavy for k ­ 0.001 Å21 and light for k ­ 0.1 Å21).
As the amount of salt increases, the attractive term d
creases in magnitude because the attractive counteri
mediated interaction is screened [6]. The barrier, howev
arises from therepulsivecontribution to the free energy
(dot-dashed curves). At low salt (heavy dot-dashed curv
the repulsive term is small and nearly independent of t
separation between rods, while at high salt (thin dot-dash
curve), the repulsive contribution is large and depen
strongly on the lattice constanta. This is because the
amount of counterion condensation,fc, decreases with salt.
In addition, salt screens the one-dimensional charge flu
tuations along the rods that screen the rod-rod repulsion

Our results show that the breakdown of pairwise add
tivity leads to qualitatively new predictions. When is pair
wise additivity valid? Podgornik and Parsegian [10] hav
shown that pairwise additivity is recovered at sufficientl
high salt concentrations. Based on our asymptotic analy
1014
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for large N , we find the following criterion for pairwise
additivity to hold: k2a2 ¿ dq2,Byb. For the case of
k ­ 0.1 Å21, the criterion requiresa $ 30 Å. In this
regime, the interaction is repulsive. We always find th
pairwise additivity is valid only far on the repulsive sid
of the barrier.

It has long been recognized that many-body, no
pairwise-additive interactions play an important role
electrostatic systems such as colloidal suspensions
polyelectrolyte solutions. The great difficulty has been
formulate a theoretical approach that includes these in
actions. We have shown that it is possible to calcula
the free energy explicitly for a many-rod system.
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