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Manifestation of Quantum Chaos in Scattering Techniques: Application to Low-Energy
and Photoelectron Diffraction Intensities

P. L. de Andres and J. A. Vergés
Instituto de Ciencia de Materiales, Consejo Superior de Investigaciones Cientı´ficas, Cantoblanco, E-28049 Madrid, Spain

(Received 23 May 1997)

Intensities of low-energy electron diffraction and photoelectron diffraction are analyzed from
a statistical point of view. The probability distribution is compared with a Porter-Thomas law,
characteristic of a chaotic quantum system. The agreement obtained is understood in terms of analogies
between simple models and Berry’s conjecture for a typical wave function of a chaotic system. The
consequences of this behavior on surface structural analysis are qualitatively discussed by looking at the
behavior of standard correlation factors. [S0031-9007(97)05221-6]

PACS numbers: 61.14.Dc, 05.45.+b, 61.14.Hg
st
e
In

of

f
na

d
c-

s
ry
fi-
ht
at
t
d
s,

x

n,
d

m

y
c-

he
There is a continuous interest in understanding the r
lationship between chaos and quantum mechanics. Lo
ago, Wigner investigated the influence of chaos on qua
tum mechanical scattering experiments in nuclear syste
[1]. Thereafter, much work has concentrated on the ana
sis of energy levels of bound states inside closed syste
(like various types of billiard geometries). While thes
studies offer obvious advantages, a great deal of info
mation is lost by neglecting the examination of the wav
functions. In fact, a good understanding of wave func
tions is crucial in explaining open systems, like the sta
dard probe-target-detector setup used in most scatter
experiments. Therefore, it is quite perplexing to find s
few examples in the literature related to quantum cha
manifested in experiments where wave functions a
analyzed, which should be emphasized, correspond o
to closed geometries [2,3]. In this work, we show that re
flected intensities of surface scattering experiments, whi
are directly related to the modulus squared of the wa
function, are consistent with quantum chaos. Therefo
we are proposing a new class of simple experimental sy
tems where quantum chaos is manifested in the propert
of wave functions.

One reason to expect quantum chaotic behavior in
scattering experiment comes from the existence of classi
chaos when three or more scattering potentials are involv
[4]. Mucciolo et al. [5] have recently shown that the
high energy region of the calculated band structure of
and AlxGa12xAs is complex enough to obey the statistica
distribution of levels corresponding to random matri
theory (RMT) [6]. Based on this statistical analysis, th
authors claim that these systems exhibit quantum cha
Although just a theoretical prediction, this is a remarkab
result because no disorder or incommensurate geomet
are involved, and the physical reason for chaos shou
be found elsewhere [e.g., the intrinsic multiple scatterin
(MS) originating Bloch states].

In this Letter, the manifestation of chaos on standa
surface scattering techniques like low energy electro
diffraction (LEED) or photoelectron diffraction (PED) is
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investigated. These techniques are dominated in mo
experimental systems by MS, yielding a clear similitud
to the band structure problem mentioned above.
surface structural work, it is a common belief that MS
introduces a richer but more difficult analysis. This
general statement is analyzed here from the point
view of the chaotic component of the LEED and PED
experiments. Ultimately, our aim is the understanding o
the relationship between complex scattering phenome
and the emergence of quantum chaos.

To characterize chaotic wave functions Porter an
Thomas [7] advanced the hypothesis that wave fun
tions of a chaotic system should display ax2

n statistical
probability distribution. Subsequently, this hypothesi
has been rigorously justified using the supersymmet
formalism [8], and has been used as a convenient de
nition of quantum chaos, which at least can be thoug
as a necessary condition. Dyson [9] demonstrated th
within the RMT only three universal classes can exis
depending on whether the Hamiltonian is constructe
with real numbers, complex numbers or quaternion
corresponding, respectively, ton ­ 1, 2, and 4 degrees
of freedom. Since scattering wave functions are comple
numbers,n ­ 2 is expected.

An interesting theoretical result on the wave function
of a chaotic system is due to Berry [10]. Analyzing the
semiclassical mechanics of regular and irregular motio
he realized that a typical chaotic wave function shoul
be a linear combination of plane waves with random
$k orientations (at a fixed constant energy), and rando
complex coefficients:

cks $xd ~
X

j­1,N

ajeidj ei $kj?$x . (1)

Heller et al. [10] have further investigated the properties
of these chaotic wave functions, finding that in 2D the
present characteristic scars. Berry’s chaotic wave fun
tion can be interpreted as the result of multiple random
reflections of a plane wave. It can also be thought as t
superposition of plane waves originating atN points
© 1998 The American Physical Society
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propagating with the same energy in random orientation
and mixed with appropriate coefficients. Guided by thes
images, we try to find a physical system where a simila
wave function can be realized.

First of all, we consider a PED experiment where a
electron inside an atomic core is excited by an incide
x-ray photon, to be subsequently diffracted by a cluster
n atoms surrounding the original source. Making som
approximations a simple expression for the wave field at
distanceR (far-field) is [11]:

cksk̂d ­
eikR

ikR

0B@1 1

n1s n
2 d1...X

v­1

c$rv
e2i $k?$rv

1CA , (2)

where the complex coefficients,c$rv
, include appropriate

scattering factors and the expansion can be extended
any desired order of scattering. It is important to realiz
the similarity of this MS series with Berry’s: taking away
the prefactor and the source wave, and given a fixe
direction in real space determined byk̂, it is written as a
sum of N plane wavesei $k?$rv with complex coefficients,
where the many$rv may result oriented in uncorrelated
directions if enough scattering is allowed. The following
question arises in this context: how many plane wav
are necessary to allow Eq. (1) to follow a Porter-Thoma
statistical distribution? As an example, ifk ­ 2p, we find
that justN ­ 10 are enough to find a reasonable agreeme
(e.g., see Fig. 1); the result for as few asN ­ 2 is given
in the same figure for comparison.

Secondly, we notice that an expression that is formal
similar to Eq. (2) can be written for the diffuse LEED
(DLEED) wave field [12]:

cksk̂d ­ F0s $kdei $k?$r 1
X
a

Fas $kdei $k?s$r2$rad, (3)

whereFa represents generalized scattering factors inclu
ing MS contributions. Standard LEED I(V) curves can b
described in the same way, for a given energy, just kee
ing in mind that if the system exhibits perfect periodicity
in the parallel direction, only a discrete set of points give
by Bragg conditions are available.

Before trying to analyze real experiments, a set o
controlled theoretical simulations of relevant systems
considered. We investigate the behavior of the sing
scattering term in Eq. (2) performing the summation ove
a set of 500 atoms randomly distributed around the orig
betweenra ­ 10 a.u. andra ­ 150 a.u. (atomic units
will be used throughout the paper, expressing distanc
in Bohrs and energies in Hartrees). The central regio
(magnified ten times) of a typicaljckj2 sk ­ 6 a.u.d
measured on a sphere at an asymptotic distance is sho
in Fig. 2. A typical wormlike image is obtained when
the pattern saturates at high energies or highra distances.
The corresponding probability distribution of intensitie
(normalized to the average) is seen to follow ax

2
2

distribution rather well.
Using the same model, we explore the probability dis

tribution of intensities produced by a small quasiregula
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FIG. 1. Probability distribution for simplified models: Thick
solid line: x

2
2 law; thin solid line: Berry’s wave function

with N ­ 2; dash-dotted line: Berry’s wave function with
N ­ 10; dotted line: simple PED model for eight Ni atoms o
a cube, simple scattering (E ­ 1.8 a.u., d ­ 1.0 a.u.); dashed
line: same as dotted line withd ­ 0.2 a.u.; dashed two-dotted
line: simple PED model for 27 Ni atoms, double scatterin
(E ­ 1.8 a.u.,d ­ 1.0 a.u.).

cluster of atoms. A cube of2 3 2 3 2 Ni atoms cen-
tered around the origin at a distance of 5 a.u. is ch
sen. Phase shifts up tolmax ­ 7 are used to compute the
scattering factors. In order to simulate small geomet
cal irregularities caused by relaxations, reconstructions
simply the effect of temperature, the atoms are random
displaced from their perfect positions in the cube wi
values uniformly distributed between 0 and

p
3 d. Fig-

ure 1 shows the result of such a simulation ford ­ 1 a.u.

FIG. 2. Small portion of a wave function (modulus square
obtained using Eq. (2) for a set of 500 atoms at rando
positions.
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The agreement with the Porter-Thomas law is really goo
In the same figure, the effect of a smaller arbitrary dis
placementsd ­ 0.2 a.u.d is also shown, together with a
similar calculation for a double-scattering term in a cubi
array of 3 3 3 3 3 Ni atoms with comparable results.
The analysis of Eq. (1) proves that fluctuations are respo
sible for the appearance of the ideal Porter-Thomas dist
bution. Deviations from thex2

2 distribution observed for
the scattering series should be explained by studying th
fluctuations, which is beyond the scope of this work.

We compute diffuse Leed intensities [13] for a realis
tic adsorption geometry on the system OyNi(100) (oxy-
gen is placed on the hollow site at 1.51 a.u. from th
surface). All parameters are taken from a detailed stru
tural analysis of the same system [14]. It is worthwhil
to notice two points: (i) All the Ni atoms are placed a
ideal bulklike positions. Therefore, there is not geome
rical disorder in the problem, the main source of com
plexity being MS by the atoms in the ordered lattice
(ii) All the calculations are performed atT ­ 0 K, al-
though attenuation effects are taken into account in th
formalism via an imaginary part (V0i ­ 0.15 a.u.) added
to the energy. Figure 3 shows the probability distributio
for intensities calculated theoretically at three different en
ergies (12, 14, and 16 a.u.), yielding a similar agreeme
to thex

2
2 distribution as the previous PED example. Th

same results are expected from the analysis of experim
tal intensities. As an example, Fig. 3 includes a sing
energy (11.1 a.u.) extracted from the experimental dat
base measured by the Erlangen group [15].

The same Porter-Thomas probability distributio
should also appear when conventional LEED I(V) curve
are analyzed, because our arguments above are valid
any energy. We have simulated theoretically the LEED
I(V) curves [18] for three materials with very different
structures: Cu(100), W(100), and Si(111). An arbitrar
non-normal incidence angle (u ­ 20±, f ­ 30±) break-
ing the symmetry is chosen. This yields the maximum
number of inequivalent beams increasing the statistic
confidence of the analysis. The first 9 emergent beam
are used for Cu and W while the first 13 were chosen f
Si. The energy ranged from 50 to 450 eV for both meta
and from 30 to 300 eV for the semiconductor, yielding
a database of about 100 a.u., which is easily accessi
to experiment. The imaginary part of the energy is fixe
to a constant value of 0.15 a.u., andT ­ 0 K is used
again. Finally, we analyze the experimental database
cs8 3 2d-GaAss100d [16], formed by 13 different beams
measured at normal incidence. Our results are shown
Fig. 4, displaying an agreement with thex

2
2 distribution

similar to the other examples.
Guided by these results, we predict the existence of

region (II) in parameter space,P, where small changes
in $p (each component defining a relevant parameter f
the structure) result in rapid changes of the wave functio
On intuitive grounds, it can be assumed that these chang
must separate exponentially. This region is intermedia
982
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FIG. 3. Probability distribution for MS intensities in a
DLEED model. Different energies are shown. Thick solid
line: x

2
2 law; dotted: E ­ 12 a.u.; dashed:E ­ 14 a.u.;

dash-dotted:E ­ 16 a.u.; dashed two-dotted:E ­ 11.1 a.u.
(experimental).

between two different ones: a perturbative region (I), a
for sufficiently small changes in$p we expect perturbation
theory to give a reasonable answer [17], and a rando
region (III) where wave functions for different structures
are uncorrelated. The existence of these three regio
is checked by analyzing twoR-factors commonly used
in surface structure analysis: (i) A root mean squar
displacement [18] adapted for DLEED (R2) and (ii) the
PendryR-factor [19] (RP) often used with standard LEED.

We apply R2 to compare theoretically calculated
DLEED intensities for OyNi(100) as a function of the
adsorption heighth. Arbitrarily, h ­ 1.51 a.u. is chosen
as the reference. This is a clean and controlled theore
cal experiment where only the position of one atom i
changed, but to stay closer to reality, we also conside
the behavior of theRP in a recent structural analysis of
cs2 3 2d-SiyCus110d I(V) curves, where the relaxation of
the whole surface layer is considered [20]. Both case
show the existence of the three regions mentioned abov
Region I is obviously well characterized by the existenc
of a minimum that imposes a quadratic dependenc
Region III is also easily identified by the saturation of the
R-factor: for RP this happens by construction around 1
(the maximum value forRP can be twice this value, but
saturation starts at values greater than 0.6). ForR2 we
observe that saturation occurs around the value obtain
by comparing two sets ofN random intensities, so the
R-factor is normalized to this value. Region II may
be characterized by plotting the lnsRd versus a relevant
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FIG. 4. Probability distribution for MS intensities in a
LEED model. Different materials are shown. Thick solid
line: Porter-Thomas law; dotted: Cu(100); dashed: W(100
dash-dotted: Si(111); dashed two-dotted:cs8 3 2d-GaAss100d
(experimental).

component of $p, and identifying the interval where it
behaves like a straight line. When we use these ide
to analyze the data, we find that the quadratic regi
(I) extends approximately 0.04 Å for the DLEED cas
(R2 # 0.2) and 0.05 Å for the conventional LEED analy
sis (RP # 0.25). The exponential region (II) extends
also 0.04 Å for DLEED (R2 # 0.5), while it goes to
0.09 Å for the LEED experiment (RP # 0.6). Finally,
an uncorrelated region extends beyond these interv
provided we do not approach a multiple coincidenc
minima. We notice that a perturbative technique whe
the perturbation in the potential is proportional to th
atomic displacements (the so-called tensor LEED fir
approximation [17]) is known to break down beyon
ø0.1 Å. This is close to regions I and II, considered
respectively, a truly perturbative region (quadratic) an
the onset of the breakdown for the perturbative approa
(exponential). These findings should bring more rig
to the standardR-factor analysis because they allow t
identify regions II and III, where correlations must b
taken as spurious.

We have analyzed typical wave functions for LEED
and PED experiments in the light of Berry’s proposal fo
a generic chaotic wave function. Our statistical analys
shows that scattering wave functions computed from se
eral models (including perfectly ordered structures) fo
low the Porter-Thomasx2

2 distribution. This property is
also obtained analyzing experimental data for LEED a
DLEED. The physical origin of this behavior is the com
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plexity of the scattering. Attenuation effects taken into
account via a complex optical potential fitted to experi-
ments, and defects (relaxations or reconstructions) do no
change this conclusion. Finally, analyzing the behavior of
two different R-factors, we have argued the existence of
three distinct regions, showing the rationale behind widely
used rules about whichR-factors are acceptable in stan-
dard structural work and which are not.

We are grateful to Professor K. Heinz for making avail-
able to us his experimental DLEED data on OyNi(100).
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