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Manifestation of Quantum Chaos in Scattering Techniques: Application to Low-Energy
and Photoelectron Diffraction Intensities
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Intensities of low-energy electron diffraction and photoelectron diffraction are analyzed from
a statistical point of view. The probability distribution is compared with a Porter-Thomas law,
characteristic of a chaotic quantum system. The agreement obtained is understood in terms of analogies
between simple models and Berry’s conjecture for a typical wave function of a chaotic system. The
consequences of this behavior on surface structural analysis are qualitatively discussed by looking at the
behavior of standard correlation factors. [S0031-9007(97)05221-6]

PACS numbers: 61.14.Dc, 05.45.+b, 61.14.Hg

There is a continuous interest in understanding the reinvestigated. These techniques are dominated in most
lationship between chaos and quantum mechanics. Longxperimental systems by MS, yielding a clear similitude
ago, Wigner investigated the influence of chaos on quarto the band structure problem mentioned above. In
tum mechanical scattering experiments in nuclear systensurface structural work, it is a common belief that MS
[1]. Thereafter, much work has concentrated on the analyintroduces a richer but more difficult analysis. This
sis of energy levels of bound states inside closed systengeneral statement is analyzed here from the point of
(like various types of billiard geometries). While theseview of the chaotic component of the LEED and PED
studies offer obvious advantages, a great deal of inforexperiments. Ultimately, our aim is the understanding of
mation is lost by neglecting the examination of the wavethe relationship between complex scattering phenomena
functions. In fact, a good understanding of wave func-and the emergence of quantum chaos.
tions is crucial in explaining open systems, like the stan- To characterize chaotic wave functions Porter and
dard probe-target-detector setup used in most scatterinthomas [7] advanced the hypothesis that wave func-
experiments. Therefore, it is quite perplexing to find sotions of a chaotic system should displayyd statistical
few examples in the literature related to quantum chaoprobability distribution. Subsequently, this hypothesis
manifested in experiments where wave functions ardas been rigorously justified using the supersymmetry
analyzed, which should be emphasized, correspond onfprmalism [8], and has been used as a convenient defi-
to closed geometries [2,3]. In this work, we show that re-nition of quantum chaos, which at least can be thought
flected intensities of surface scattering experiments, whichs a necessary condition. Dyson [9] demonstrated that
are directly related to the modulus squared of the wavevithin the RMT only three universal classes can exist
function, are consistent with quantum chaos. Thereforegepending on whether the Hamiltonian is constructed
we are proposing a new class of simple experimental syswith real numbers, complex numbers or quaternions,
tems where quantum chaos is manifested in the propertieorresponding, respectively, to = 1,2, and 4 degrees
of wave functions. of freedom. Since scattering wave functions are complex

One reason to expect quantum chaotic behavior in aumbersy = 2 is expected.
scattering experiment comes from the existence of classical An interesting theoretical result on the wave function
chaos when three or more scattering potentials are involveaf a chaotic system is due to Berry [10]. Analyzing the
[4]. Mucciolo et al.[5] have recently shown that the semiclassical mechanics of regular and irregular motion,
high energy region of the calculated band structure of She realized that a typical chaotic wave function should
and Al,Ga - As is complex enough to obey the statisticalbe a linear combination of plane waves with random
distribution of levels corresponding to random matrixx orientations (at a fixed constant energy), and random
theory (RMT) [6]. Based on this statistical analysis, thecomplex coefficients:
authors claim that these systems exhibit quantum chaos. e
Although just a theoretical prediction, this is a remarkable Y@ = Y ajel¥eiT, 1)
result because no disorder or incommensurate geometries J=LN
are involved, and the physical reason for chaos shoultfieller et al. [10] have further investigated the properties
be found elsewhere [e.g., the intrinsic multiple scatteringof these chaotic wave functions, finding that in 2D they
(MS) originating Bloch states]. present characteristic scars. Berry’s chaotic wave func-

In this Letter, the manifestation of chaos on standardion can be interpreted as the result of multiple random
surface scattering techniques like low energy electromeflections of a plane wave. It can also be thought as the
diffraction (LEED) or photoelectron diffraction (PED) is superposition of plane waves originating At points
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propagating with the same energy in random orientations,
and mixed with appropriate coefficients. Guided by these
images, we try to find a physical system where a similar
wave function can be realized. )

First of all, we consider a PED experiment where an 107
electron inside an atomic core is excited by an incident
x-ray photon, to be subsequently diffracted by a cluster of
n atoms surrounding the original source. Making some
approximations a simple expression for the wave field at a
distancer (far-field) is [11]:

ikR n+(5)+..

A e g
k) = 1+ > e ™|, (2
Pelk) = —— 2 e (2)

107+
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where the complex coefficients; , include appropriate 107 4
scattering factors and the expansion can be extended to
any desired order of scattering. It is important to realize

the similarity of this MS series with Berry’s: taking away "
the prefactor and the source wave, and given a fixed 10 I [ I
direction in real space determined byit is written as a 0.05 0.1 05 10 50 100

sum of N plane waves* 7+ with complex coefficients,

where the many, may result oriented in uncorrelated I/<I>

directions if enough scattering is allowed. The following

question arises in this context: how many p|ane Wa\/e§|G. 1. Probability distribution for simplified models: Thick

are necessary to allow Eg. (1) to follow a Porter-Thoma%v?:Ld Jl}ni: 2)_(22dgvrv];_ dtohtitr(l.dS(I)illiw((ja _ Iigcé:rrﬁgrrvx\/,;sv gva;xﬁctfitérrllct‘iltv)i?h

statl_stlcal distribution? As an e_xamplek|f= 2, we find N = 10; dot,ted line: simple PED model for eight Ni atoms on

thatjustv = 10 are enough to find a reasonable agreemeny cube, simple scatteringZ(= 1.8 a.u.,d = 1.0 a.u.); dashed

(e.g., see Fig. 1); the result for as fewds= 2 is given line: same as dotted line with = 0.2 a.u.; dashed two-dotted

in the same figure for comparison. line: simple PED model for 27 Ni atoms, double scattering
Secondly, we notice that an expression that is formallf£ = 1.8 a.u.d = 1.0 a.u.).

similar to Eq. (2) can be written for the diffuse LEED _
(DLEED) wave field [12]: cluster of atoms. A cube df X 2 X 2 Ni atoms cen-

. . - i) tered around the origin at a distance of 5 a.u. is cho-
(k) = Fo(k)e™ " + Z Fo(k)e “, (3)  sen. Phase shifts up fg.x = 7 are used to compute the
“« scattering factors. In order to simulate small geometri-

. outi dard b cal irregularities caused by relaxations, reconstructions, or
ing MS contributions. Standard LEED I(V) curves can begjm ) the effect of temperature, the atoms are randomly

described in the same way, for a given energy, just keefyjgpiaced from their perfect positions in the cube with
ing in mind that if the system exhibits perfect periodicity 5| ,as uniformly distributed between 0 an@d. Fig-

in the parallel d_i_rection, only.a discrete set of points given; e 1 shows the result of such a simulationdo= 1 a.u.
by Bragg conditions are available.

Before trying to analyze real experiments, a set of
controlled theoretical simulations of relevant systems is
considered. We investigate the behavior of the single
scattering term in Eq. (2) performing the summation over
a set of 500 atoms randomly distributed around the origin
betweenr, = 10 a.u. andr, = 150 a.u. (atomic units
will be used throughout the paper, expressing distances
in Bohrs and energies in Hartrees). The central region
(magnified ten times) of a typicaly;|*> (k = 6 a.u)
measured on a sphere at an asymptotic distance is shown
in Fig. 2. A typical wormlike image is obtained when
the pattern saturates at high energies or highklistances.
The corresponding probability distribution of intensities
(normalized to the average) is seen to follow yd@

distribution rather well. . . FIG. 2. Small portion of a wave function (modulus squared)
Using the same model, we explore the probability dis-obtained using Eq. (2) for a set of 500 atoms at random
tribution of intensities produced by a small quasiregulampositions.

whereF, represents generalized scattering factors includ
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The agreement with the Porter-Thomas law is really good. 10 [ L1
In the same figure, the effect of a smaller arbitrary dis-
placement(d = 0.2 a.u) is also shown, together with a
similar calculation for a double-scattering term in a cubic
array of 3 X 3 X 3 Ni atoms with comparable results.
The analysis of Eq. (1) proves that fluctuations are respon-
sible for the appearance of the ideal Porter-Thomas distri-
bution. Deviations from the/ distribution observed for
the scattering series should be explained by studying their
fluctuations, which is beyond the scope of this work.

We compute diffuse Leed intensities [13] for a realis-
tic adsorption geometry on the system/N)100) (oxy-
gen is placed on the hollow site at 1.51 a.u. from the
surface). All parameters are taken from a detailed struc-
tural analysis of the same system [14]. It is worthwhile
to notice two points: (i) All the Ni atoms are placed at
ideal bulklike positions. Therefore, there is not geomet-

P(I/<I>)

rical disorder in the problem, the main source of com- 107 | t

plexity being MS by the atoms in the ordered lattice. 0.01 0.1 10 10.0
(i) All the calculations are performed & = 0 K, al-

though attenuation effects are taken into account in this I/(I)

formalism via an imaginary parf/f; = 0.15 a.u.) added
to the energy. Figure 3 shows the probability distributionFIG. 3. Probability distribution for MS intensities in a
for intensities calculated theoretically at three different enDLEED model.  Different energies are shown. Thick solid
ergies (12, 14, and 16 a.u.), yielding a similar agreemeri{n®: x> law; dotted: £ =12 a.u.; dashed:E = 14 a.u;
to the y7 distribution as the previous PED example. The :)(Shéﬂcrﬁéendté% = l6.au; dashed two-dottedt = 11.1 a.u.
same results are expected from the analysis of experimerg- P '
tal intensities. As an example, Fig. 3 includes a single
energy (11.1 a.u.) extracted from the experimental databetween two different ones: a perturbative region (1), as
base measured by the Erlangen group [15]. for sufficiently small changes i we expect perturbation
The same Porter-Thomas probability distributiontheory to give a reasonable answer [17], and a random
should also appear when conventional LEED I(V) curvegegion (Ill) where wave functions for different structures
are analyzed, because our arguments above are valid fare uncorrelated. The existence of these three regions
any energy. We have simulated theoretically the LEEDis checked by analyzing tw®-factors commonly used
I(V) curves [18] for three materials with very different in surface structure analysis: (i) A root mean square
structures: Cu(100), W(100), and Si(111). An arbitrarydisplacement [18] adapted for DLEERA) and (ii) the
non-normal incidence angled (= 20°, ¢ = 30°) break- PendryR-factor [19] (Rp) often used with standard LEED.
ing the symmetry is chosen. This yields the maximum We apply R, to compare theoretically calculated
number of inequivalent beams increasing the statisticdDLEED intensities for @Ni(100) as a function of the
confidence of the analysis. The first 9 emergent beamadsorption heighk. Arbitrarily, 2 = 1.51 a.u. is chosen
are used for Cu and W while the first 13 were chosen foas the reference. This is a clean and controlled theoreti-
Si. The energy ranged from 50 to 450 eV for both metalscal experiment where only the position of one atom is
and from 30 to 300 eV for the semiconductor, yieldingchanged, but to stay closer to reality, we also consider
a database of about 100 a.u., which is easily accessibtee behavior of theRp in a recent structural analysis of
to experiment. The imaginary part of the energy is fixedc(2 X 2)-Si/Cu(110) I(V) curves, where the relaxation of
to a constant value of 0.15 a.u., afid= 0 K is used the whole surface layer is considered [20]. Both cases
again. Finally, we analyze the experimental database faghow the existence of the three regions mentioned above.
c(8 X 2)-GaAg100) [16], formed by 13 different beams Region | is obviously well characterized by the existence
measured at normal incidence. Our results are shown iof a minimum that imposes a quadratic dependence.
Fig. 4, displaying an agreement with the distribution  Region Ill is also easily identified by the saturation of the
similar to the other examples. R-factor: for Rp this happens by construction around 1
Guided by these results, we predict the existence of §he maximum value foRp can be twice this value, but
region (Il) in parameter spacé, where small changes saturation starts at values greater than 0.6). Epwe
in p (each component defining a relevant parameter foobserve that saturation occurs around the value obtained
the structure) result in rapid changes of the wave functionby comparing two sets oN random intensities, so the
On intuitive grounds, it can be assumed that these changé&sfactor is normalized to this value. Region Il may
must separate exponentially. This region is intermediatbe characterized by plotting the(R) versus a relevant
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10" | L | plexity of the scattering. Attenuation effects taken into
account via a complex optical potential fitted to experi-
ments, and defects (relaxations or reconstructions) do not
change this conclusion. Finally, analyzing the behavior of
two different R-factors, we have argued the existence of
three distinct regions, showing the rationale behind widely
used rules about whicR-factors are acceptable in stan-
- dard structural work and which are not.
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