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Nonlinear Hydrodynamic Stability
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The variational principle of V. I. Arnold [J. Appl. Math. Mech.29, 1002 (1965)] is extended to
general ideal magnetohydrodynamics (MHD). This is done using the trick of “superdynamics,”
the replacement of certain terms in the equations of motion by arbitrary functions. The variatio
constraint thus introduced leads to a sufficient, and likely necessary, Lyapunov stability criter
All ideal MHD equilibria with fluid flow, except those with parallel sub-Alfvénic flow, are unstabl
according to this criterion. The method of superdynamics is extensible to other Hamiltonian syst
[S0031-9007(97)05240-X]

PACS numbers: 47.65.+a, 47.20.Cq, 52.30.–q
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The standard approach to hydrodynamic stability i
volves linearization about an equilibrium flow in orde
to solve for eigenfrequencies [1,2] or to establish a Ly
punov stability criterion for the linearized system [3]. A
variety of linear variational principles was developed fo
both neutral fluids [4] and magnetohydrodynamics (MHD
[5–7], in which the stability criterion is expressed in term
of a positive definite quadratic form. It is well known tha
the linearized stability does not guarantee the true (Ly
punov) stability, such as in the toy systemduydt  u2,
whose equilibriumu  0 is linearly stable.

Nonlinear stability is guaranteed by the presence of
integral of motion, for example, the energyH, which as-
sumes a nondegenerate conditional extremum (a minim
or a maximum) subject to the conservation of any oth
integrals of motion, for example, Casimir invariants [8
The possibility to write explicitly a full infinite set of in-
tegrals is mostly limited to two-dimensional systems. B
explicit we mean an integral of motion which can be writ
ten in terms of the physical fields of velocity, density, etc
in a way which does not require the solution of the equ
tions of the motion. In three dimensions, such integra
are scarce. For example, the Euler equation

≠tv  === 3 sv 3 vd, v  === 3 v , === ? v  0 ,

(1)

conserves explicitly only the energyH and the helicityI:

H 
Z v2

2
d3x, I 

Z
v ? vd3x . (2)

(Here and below all volume integrals are over the d
main occupied by the fluid. An appropriate conservativ
boundary condition, such as zero normal velocity, is im
plied.) In addition to the two explicit integrals (2), there
is also the infinity of Kelvin invariants,

Ig 
I

g
v ? d, ;

Z
v ? dS  const, (3)

expressing the velocity circulation around (or the vorticit
flux through) any closed contourgstd moving with the
fluid velocity v . Integrals (3) areimplicit in the sense that
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their definition involves contoursg whose motion must
be solved from Eq. (1). Although there is no apparen
way of incorporating integrals like (3) in a Lyapunov
functional, Arnold [9] proposed that the conservation o
all vorticity integrals (3) has the geometrical meaning
of confining the system to an “isovortical sheet” in the
infinite-dimensional phase space. Different sets of initia
vorticity integrals specify different sheets such that th
whole phase space is “foliated,” as if by isosurfaces of a
integral of motion (Fig. 1).

The usefulness of the foliation for stability is due to the
local explicit parametrization of the isovortical sheets b
an incompressible “displacement”j sxd, such that vorticity
fields sharing the sheet with the reference flowv0sxd are
written v  v0 1 dv0 1

1
2 d2v0 1 · · · , where

dv  === 3 sj 3 vd . (4)

The linear operatord defining the isovortical varia-
tion can be derived from the “superdynamics”
≠tv  === 3 s≠tj 3 vd, === ? j  0, in which the vortic-
ity is incompressibly advected in a way similar to the Eule

FIG. 1. Schematic of the infinite-dimensional phase spac
of incompressible fluid flows,vsxd, which is foliated by
isovortical invariant sheets parametrized by the displaceme
function j sxd. The dynamics keeps an orbit on a sheet. Th
arrows are meant as schematic coordinate axes, which co
stand for Fourier modes or any other discrete representation
a continuum field.
© 1998 The American Physical Society
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equation (1), but by the velocity field≠tj entirely un-
related to the actual flowv . Since the conservation of
the vorticity integrals (3) is independent of the relatio
betweenv andv, and the real dynamics (1) is a subset o
the superdynamics, Eq. (4) follows.

Arnold’s variation (4) makes the HamiltonianH sta-
tionary if and only if the flowv is in equilibrium. Then
the second energy variation,

d2H 
Z

fsdvd2 2 j 3 v ? === 3 sj 3 vdg d3x , (5)

if definite for all incompressiblej , guarantees that the
equilibrium is stable [9,10].

Given this long introduction, we briefly report on a gen
eralization of the Arnold method in two important ways
First, our fluid equations (6)–(9) include compressibility
varying entropy, and also magnetic field, but still no dis
sipation. In such a general formulation, it is difficult to
write all integrals generalizing Eq. (3) for arbitrary ini-
tial conditions. Therefore, and second, an analog of th
isovortical variation is formally derived from the dynam-
ics, without regard to either explicit or implicit integrals
of motion. A new outcome of this procedure is an energ
principle for ideal MHD stability with fluid flow, a long-
standing plasma-physics problem [6,7,11]. Our varia
tional method is similar to that of Friedlander and Vishik
[12] who used infinite-dimensional Lie groups and als
to that of Morrison [13] who used noncanonical Poisso
brackets. In this paper we use the simple physical arg
ment of superdynamics to derive the nonlinear MHD en
ergy principle and to make specific predictions about th
stability of MHD equilibria with fluid flow.

We consider the following hydrodynamic equations fo
an inviscid, ideally conducting fluid:

rs≠tv 1 v ? ===vd  2===psr, sd 1 j 3 B 2 r===f ,

(6)

≠tB  === 3 sv 3 Bd , (7)

≠ts 1 v ? ===s  0 , (8)

≠tr 1 === ? rv  0 . (9)

Herep is the fluid pressure,r the density,s the entropy,
f the external gravitational potential,B the magnetic
field, andj  === 3 B the electric current. The fluid flow
conserves the energy

H 
Z µ

rv2

2
1 resr, sd 1 rf 1

B2

2

∂
d3x , (10)

where e is the specific internal energy defined by th
standard thermodynamic relation

de  T ds 2 pds1yrd . (11)

The varying entropy and the Lorentz force in Eq. (6
break the “frozen-in law” for the vorticityv  === 3 v,
n
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and instead of (1) we now have

≠tv  === 3

µ
v 3 v 1 j 3

B
r

1
Z r ≠sp dr

r2 ===s

∂
.

(12)

One can introduce superdynamics for Eqs. (6)–(9)
many different ways [14]. Our choice is dictated by the
desire to have a zero energy variation for equilibrium
flows. After many trials, the following procedure works
to our satisfaction: We replacev ! ≠tj in Eqs. (7)–(9)
and (12). In Eq. (12), we also writej ! ≠th s=== ? h 
0d and replace the integral by a scalar≠ta. The result is
the generalized isovortical variation,

dv  j 3 v 1 h 3
B
r

1 a===s 1 ===b ,

h  === 3 z , (13)

dB  === 3 sj 1 Bd, ds  2j ? ===s ,

dr  2=== ? rj , (14)

which depends on two arbitrary vectorsj and z and
two arbitrary scalarsa and b. The boundary condition
for j is the same as forv (zero normal component); no
boundary conditions are imposed onz , a, andb.

A straightforward check shows that the variation (13
and (14) conserves an infinite set of local integrals
including (a) the entropy of each fluid element, (b) th
magnetic flux through each material (i.e., moving with
the fluid) contour, (c) the total cross-helicityv ? B within
each magnetic flux tube, if, initially, such tubes exis
and the entropys is constant on the magnetic flux
surfaces. [According to (a) and (b), the isosurfaces o
s and magnetic flux surfaces are material.] These are
(except the energy) known integrals conserved by ide
MHD and locally expressible through the physical field
sv , B, s, rd. Whether or not there are other nontrivial loca
integrals conserved by the variationd we do not know;
nevertheless, the wayd is introduced clearly implies that
the phase-space sheets parametrized bysj , z , a, bd are
invariant sheets, which can be interpreted as isosurfac
of some combination of integrals of motion and thus use
for stability analysis. This combination of the integrals is
very likely complete,except for the energy, which will be
varied individually subject to the constraints built in the
variationd.

The number of arbitrary functions in the variation (13
and (14) by no accident equals the number of dynamic
equations (6)–(9). Upon varying the energy (10) an
using Eq. (11), a few integrations by parts yield

dH 
Z

fj ? srv ? ===v 1 ===p 2 j 3 B 1 r===fd

2 z ? === 3 sv 3 Bd 1 arv ? ===s

2 b=== ? rvg d3x . (15)
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By design, the condition thatdH  0 for all sj , z , a, bd
is equivalent to an equilibrium solution of Eqs. (6)–(9).

The second variation of the velocity [15],

d2v  j 3 dv 1 h 3 d
B
r

1 a===ds 1 ===b , (16)

and similar expressions ford2sB, s, rd are now used to
calculate the second energy variation:

d2H 
Z ∑

d2

µ
re 1

B2

2

∂
1

µ
f 1

v2

2

∂
d2r

1 rsdvd2 1 rv ? d2v 1 2drv ? dv
∏

d3x .

(17)

Equations (13) and (14) defined2H as a functional of
sj , z , a, bd. Two comments regarding the form ofd2H
are in order.

First, the suspicious linear term===b in the second
velocity variation (16) is dotted with an incompressible
rv in Eq. (17) and thus vanishes upon integration b
parts. So, as it should be,d2H is a quadratic functional
of the independent variablessj , z , a, bd.

Second, the integrand of (17) can be written as
quadratic polynomial ofa with the coefficientrs===sd2 in
front of a2. Therefore, the definite sign ofd2H can be
only positive, and, for this, it is necessary and sufficien
that thea-minimized quadratic form be positive:

W ; min
a

d2H  Wstaticsj d 1 Wflowsj , z , bd . 0 .

(18)

Here the following notation is introduced:

Wstatic ;
Z

d2srf 1 re 1 B2y2d d3x


Z

ffd2r 1 === ? j sr≠rp=== ? j 1 j ? ===pd

1 dB ? sdB 2 j 3 jdg d3x , (19)

whered2r  2=== ? drj. The flow part ofW is

Wflow 
Z ∑

v2

2
d2r 2 rsn ? d00vd2

1 d0v ? srd00v 1 vdrd

1 rv ? h 3 d
B
r

∏
d3x , (20)

where n  ===syj===sj is the normal to the magnetic/fluid
flux surfaces, dsByrd  sByrd ? ===j 2 j ? ===sByrd,
and

d0v ; j 3 v 1 h 3 Byr 1 ===b,

d00v ; d0v 1 j ? ===v 2 v ? ===j .

No further “simple” minimization of Eq. (20) is possible
in general. (In the case of a parallel flow,vjjB, W can be
also minimized with respect toh  === 3 z .)

Since all known explicit and implicit integrals of
motion have been accounted for (the possibly conserv
974
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linear and angular momenta amount to choosing an a
propriate frame of reference),we propose that the suffi-
cient stability criterionW sj , z , bd . 0 is also necessary
for the true nonlinear stability of an ideal MHD equi-
librium. This conjecture is supported by the static lim
of zero flow, v  0, in which our energy principle re-
duces to Eq. (19), or the standard MHD energy princip
[5], whose violation means a linear instability. As a by
product, we thus find that the linear stability criterion o
Bernsteinet al. [5] for static equilibria is also a nonlinear
stability criterion. In a general situation with fluid flow,
an indefiniteW may not result in an exponential insta
bility, but rather lead to a slower, algebraic perturbatio
growth and subsequent turbulence. This scenario will
described elsewhere.

The other two limiting cases we would like to mentio
are (a) the hydrostatic equilibrium withf  gz and
v  B  0 and (b) the incompressible neutral fluid
with r  s  const andB  0. For the former case,
the conditionW . 0 yields the well known convective
stability criterion [2]:dsydz . 0 anddrydz , 0. In the
Euler limit, the incompressibility is introduced by letting
the sound speedc2  ≠rp to infinity. The minimum
of the pressure terms in Eq. (19) then implies=== ? j !

0 for the “most dangerous” perturbations, and furth
minimization of (17) with respect tob results in === ?

dv  0 and the restricted Arnold criterion that Eq. (5
be positive definite. We note that in the limit of zero
magnetic field the energy principle of Ref. [16] does n
reduce to a correct stability criterion for a neutral fluid.

An important conclusion can be drawn from Eqs. (19
and (20), if the necessary status of our energy principle
adopted. It is thatalmost all dynamic 3D MHD equilibria
are unstable. The term “almost all” refers to equilibria
with the flowv nonparallel to the magnetic fieldB (up to a
rigid-body rotation for axisymmetric equilibria). Indeed
for a very short-scale fieldj , the perturbation energy to
leading order,

W 
Z

hsB ? ===j d2 2 rfn ? sv ? ===j dg2 1 · · ·j d3x ,

(21)

can be made either positive or negative by a suitab
choice of j , unlessv jjB and ry2 , B2. One of the
implications of this conclusion is that it is not necessa
to invoke the magnetic field perpendicular to an accreti
disk in order to have an MHD instability of the lamina
accretion [17]; the more generic small azimuthal (paralle
magnetic field will drive the super-Alfvénic fluid flow
nonlinearly unstable.

For fusion applications, the conclusion about the MH
instability of rotating plasmas should not be discouragin
because tokamak plasmas are almost collisionless
not accurately described by the MHD equations. F
static equilibria, the difference between the collisionle
[18] and the MHD [5] energy principles is of order the



VOLUME 80, NUMBER 5 P H Y S I C A L R E V I E W L E T T E R S 2 FEBRUARY 1998

-
d

,

.

.
s

t

g

e

pressure terms in Eq. (19). For a typical tokamak, th
kinetic energy of plasma rotation is of order the therm
energy, or in the same order where the MHD approxim
tion errs.

The superdynamics-based nonlinear stability meth
can be extended to other Hamiltonian partial differenti
equation systems. Consider, for example, the collisionle
Vlasov equation for the distribution functionfsz, td,
with z  sx, p, ad being the collection of the canonical
coordinates and momenta and the plasma species labea:

≠tf  fh, fg ; ≠xh ? ≠pf 2 ≠ph ? ≠xf . (22)

The single-particle (massm, chargee) Hamiltonian

hsz, td 
1

2m

∑
p 2

e
c

Asx, td
∏2

1 efsx, td (23)

is coupled tof via the Maxwell equations for the elec-
tromagnetic potentialsf andA. The superdynamics for
the Vlasov equation is introduced by replacing the se
consistenth in Eq. (22) by an arbitrary scalar≠tjsz, td.
The resulting variation of the distribution function,df 
fj, fg, automatically conserves an infinity of Casimir in
variants

R
Cs f, ad d6z. (The z integration includes the

summation overa.) Then the first variation of the
total plasma energy is zero if and only if there is a
equilibrium, dH 

R
jfh, fg d6z, and the second varia-

tion gives an energy principle in the form of a quadrati
functional of jszd. The detailed investigation of this
and other kinetic energy principles will be presente
elsewhere.

The exact mathematical meaning of the generaliz
isovortical variation (13) and (14) and the status of th
resulting stability criterion (18) remain unclear to this au
thor. For example, noa priori estimates exist for three-
dimensional hydrodynamic perturbations, unlike those
two dimensions, where all Casimir integrals are explic
[8,10,19]. On the “physical level,” the sufficient stabil-
ity criterion (18) looks rigorous. To prove the less rig
orous conjecture, namely, that the condition (18) is als
necessary for nonlinear stability, will require to develo
an analytical theory of nonlinear (that is, nonexpone
tial) ideal hydrodynamic instabilities. At this time, very
little is known about such instabilities for a generic hydro
dynamic equilibrium, although some interesting exampl
exist [20]. For a nonlinear instability to occur, it appear
important that the corresponding linear continuum spe
trum have both positive- and negative-energy modes [1
The nonlinear interaction of the continuum modes wi
likely lead to an algebraic growth, as suggested by t
universal algebraic damping of such modes in the stab
case [21].
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