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Nonlinear Hydrodynamic Stability
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The variational principle of V.I. Arnold [J. Appl. Math. Mec29, 1002 (1965)] is extended to
general ideal magnetohydrodynamics (MHD). This is done using the trick of “superdynamics,” or
the replacement of certain terms in the equations of motion by arbitrary functions. The variational
constraint thus introduced leads to a sufficient, and likely necessary, Lyapunov stability criterion.
All ideal MHD equilibria with fluid flow, except those with parallel sub-Alfvénic flow, are unstable
according to this criterion. The method of superdynamics is extensible to other Hamiltonian systems.
[S0031-9007(97)05240-X]

PACS numbers: 47.65.+a, 47.20.Cq, 52.30.—q

The standard approach to hydrodynamic stability in-their definition involves contoury whose motion must
volves linearization about an equilibrium flow in order be solved from Eqg. (1). Although there is no apparent
to solve for eigenfrequencies [1,2] or to establish a Lyaway of incorporating integrals like (3) in a Lyapunov
punov stability criterion for the linearized system [3]. A functional, Arnold [9] proposed that the conservation of
variety of linear variational principles was developed forall vorticity integrals (3) has the geometrical meaning
both neutral fluids [4] and magnetohydrodynamics (MHD)of confining the system to an “isovortical sheet” in the
[5-7], in which the stability criterion is expressed in termsinfinite-dimensional phase space. Different sets of initial
of a positive definite quadratic form. It is well known that vorticity integrals specify different sheets such that the
the linearized stability does not guarantee the true (Lyawhole phase space is “foliated,” as if by isosurfaces of an
punov) stability, such as in the toy systain/dt = u?,  integral of motion (Fig. 1).
whose equilibriumu = 0 is linearly stable. The usefulness of the foliation for stability is due to the

Nonlinear stability is guaranteed by the presence of atocal explicit parametrization of the isovortical sheets by
integral of motion, for example, the energ¥, which as- an incompressible “displacemerg(x), such that vorticity
sumes a nondegenerate conditional extremum (a minimuiields sharing the sheet with the reference fl@y(x) are
or a maximum) subject to the conservation of any othewritten w = wy + dwy + %Bzwo + ---, where
integrals of motion, for example, Casimir invariants [8]. .

The possibility to write explicitly a full infinite set of in- b =V X (£ X o). (4)
tegrals is mostly limited to two-dimensional systems. ByThe linear operators defining the isovortical varia-
explicitwe mean an integral of motion which can be writ-tion can be derived from the “superdynamics”
ten in terms of the physical fields of velocity, density, etc.,0:@ =V X (9;& X w), V - & = 0, in which the vortic-

in a way which does not require the solution of the equaity is incompressibly advected in a way similar to the Euler
tions of the motion. In three dimensions, such integrals

are scarce. For example, the Euler equation
0w =VX(VXw), o=VXy, V-v=0,
1)
conserves explicitly only the enerdy and the helicityr: %
v2
H=[7d3x, I=fv'wd3x. 2 é %
(Here and below all volume integrals are over the do-
main occupied by the fluid. An appropriate conservative ®
boundary condition, such as zero normal velocity, is im-
plied.) In addition to the two explicit integrals (2), there

is also the infinity of Kelvin invariants,
FIG. 1. Schematic of the infinite-dimensional phase space
— . = ) — of incompressible fluid flows,w(x), which is foliated by
Iy jgy vodl f @ - dS = const (3) isovortical invariant sheets parametrized by the displacement

. o . . .. function £(x). The dynamics keeps an orbit on a sheet. The
expressing the velocity circulation around (or the Vort'c'tyarrows are meant as schematic coordinate axes, which could

flux through) any closed contouy(z) moving with the  stand for Fourier modes or any other discrete representation of
fluid velocity v. Integrals (3) arémplicit in the sense that a continuum field.
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equation (1), but by the velocity field,& entirely un- and instead of (1) we now have

related to the actual flow. Since the conservation of B P apdp

the vorticity integrals (3) is independent of the relation 9, = V X <v Xw+ jxX—+ [ %Vs).

betweenv andw, and the real dynamics (1) is a subset of P P

the superdynamics, Eq. (4) follows. (12)
Arnold’s variation (4) makes the HamiltonialH sta-

tionary if and only if the flowv is in equilibrium. Then

the second energy variation,

One can introduce superdynamics for Eqgs. (6)—(9) in
many different ways [14]. Our choice is dictated by the
desire to have a zero energy variation for equilibrium
flows. After many trials, the following procedure works
to our satisfaction: We replace— 9,& in Egs. (7)—(9)
and (12). In Eq. (12), we also writp— d,np (V - =
0) and replace the integral by a scalgrr. The result is
the generalized isovortical variation,

62H=f[((‘iv)2 —éEXw- VX (&XV]dx, ((5)

if definite for all incompressibleg, guarantees that the
equilibrium is stable [9,10].

Given this long introduction, we briefly report on a gen-

eralization of the Arnold method in two important ways.
First, our fluid equations (6)—(9) include compressibility,
varying entropy, and also magnetic field, but still no dis-
sipation. In such a general formulation, it is difficult to
write all integrals generalizing Eq. (3) for arbitrary ini-
tial conditions. Therefore, and second, an analog of the 6B =V X (£ + B), 6s = —§& - Vs,
isovortical variation is formally derived from the dynam- Sp=-V-pé&, (14)
ics, without regard to either explicit or implicit integrals . )
of motion. A new outcome of this procedure is an energyVhich depends on two arbitrary vectogs and £ and
principle for ideal MHD stability with fluid flow, a long- WO arbitrary scalargx and 8. The boundary condition
standing plasma-physics problem [6,7,11]. Our variafor € is the same as fov (zero normal component); no
tional method is similar to that of Friedlander and Vishik Poundary conditions are imposed fna, andB.
[12] who used infinite-dimensional Lie groups and also A Straightforward check shows that the variation (13)
to that of Morrison [13] who used noncanonical Poissor@"d (14) conserves an infinite set of local integrals,
brackets. In this paper we use the simple physical argdncluding (a) the entropy of each fluid element, (b) the
ment of superdynamics to derive the nonlinear MHD enmagnetic flux through each material (i.e., moving with
ergy principle and to make specific predictions about théhe fluid) contour, (c) the total cross-helicity- B within

B
bv=¢Xw+n X —+ aVs + VB,
o

n=VxZ, (13

stability of MHD equilibria with fluid flow. each magnetic flux tube, if, initially, such tubes exist
We consider the following hydrodynamic equations forand the entropys is constant on the magnetic flux

an inviscid, ideally conducting fluid: surfaces. [According to (a) and (b), the isosurfaces of

. s and magnetic flux surfaces are material.] These are all

p(d,v + v -Vv)=—=Vp(p,s) + j X B - pVe, (except the energy) known integrals conserved by ideal

(6) MHD and locally expressible through the physical fields
(v, B, s, p). Whether or not there are other nontrivial local

3B =V X (vXxB), (7)  integrals conserved by the variatiéghwe do not know;
nevertheless, the way is introduced clearly implies that
d,s +v-Vs=0, 8) the phase-space sheets parametrized &y, o, 8) are
invariant sheets, which can be interpreted as isosurfaces
dp +V-pv=0. (9)  of some combination of integrals of motion and thus used

] ] ) for stability analysis. This combination of the integrals is
Here p is the fluid pressurep the densitys the entropy, very likely completeexcept for the energy, which will be
¢ the external gravitational potentiaB the magnetic yaried individually subject to the constraints built in the
field, andj = V X B the electric current. The fluid flow ygriations.
conserves the energy The number of arbitrary functions in the variation (13)

v2 B2 and (14) by no accident equals the number of dynamical
- p 3 : .

H= [ *pelp.s) + pp + — )d'x. (10)  equations (6)—(9). Upon varying the energy (10) and

where € is the specific internal energy defined by the 5'N9 Eq. (11), a few integrations by parts yield

standard thermodynamic relation SH = f[f (pv - Vv + Vp — j X B + pVe)

de = Tds — pd(1/p). (11)
The varying entropy and the Lorentz force in Eg. (6) & VX XB)+apy- Vs
break the “frozen-in law” for the vorticityp = V X v, — BV - pv]d’x. (15)
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By design, the condition tha8H = 0 for all (£,{,a,8) linear and angular momenta amount to choosing an ap-
is equivalent to an equilibrium solution of Egs. (6)—(9). propriate frame of referencelve propose that the suffi-
The second variation of the velocity [15], cient stability criterionW (£, ¢, 8) > 0 is also necessary
5 B for the true nonlinear stability of an ideal MHD equi-
v =& Xbw+t X6 " +aVés + VB, (16)  ibrium. This conjecture is supported by the static limit
of zero flow, v = 0, in which our energy principle re-
duces to Eqg. (19), or the standard MHD energy principle
B ) [5], whose violation means a linear instability. As a by-
S2H = f[52<p6 + _> + <¢ + V_>52p product, we thus find that the linear stability criterion of
2 2 Bernsteinet al. [5] for static equilibria is also a nonlinear
+ p(8v) + pv - 82v + 28pv - 6V}d3x. stability criterion. In a general situation with fluid flow,
an indefiniteW may not result in an exponential insta-
17) bility, but rather lead to a slower, algebraic perturbation
Equations (13) and (14) defing’H as a functional of growth and subsequent turbulence. This scenario will be
(£,Z,a,B). Two comments regarding the form 6fH  described elsewhere.
are in order. The other two limiting cases we would like to mention
First, the suspicious linear terfWB in the second are (a) the hydrostatic equilibrium witlp = gz and
velocity variation (16) is dotted with an incompressiblev = B =0 and (b) the incompressible neutral fluid
pv in Eg. (17) and thus vanishes upon integration bywith p = s = const andB = 0. For the former case,
parts. So, as it should bé?H is aquadraticfunctional  the conditionW > 0 yields the well known convective
of the independent variablé§, £, «, 8). stability criterion [2]:ds/dz > 0 anddp/dz < 0. Inthe
Second, the integrand of (17) can be written as &uler limit, the incompressibility is introduced by letting
quadratic polynomial ot with the coefficientp(Vs)? in  the sound speed? = 9,p to infinity. The minimum
front of «?. Therefore, the definite sign @f?H can be of the pressure terms in Eq. (19) then imples & —
only positive, and, for this, it is necessary and sufficientd for the “most dangerous” perturbations, and further

and similar expressions fo3?(B, s, p) are now used to
calculate the second energy variation:

that thea-minimized quadratic form be positive: minimization of (17) with respect tg8 results inV -
W = min8%H = Weaic(£) + Whow(&, ¢, 8) > 0. ov = 0 and the restricted Arnold criterion that Eq. (5)
@ be positive definite. We note that in the limit of zero

(18) magnetic field the energy principle of Ref. [16] does not

Here the following notation is introduced: reduce to a correct stability criterion for a neutral fluid.
. ) ) 3 An important conclusion can be drawn from Eqgs. (19)
Wstatic = f 6°(p¢p + pe + B7/2)dx and (20), if the necessary status of our energy principle is

adopted. It is thaalmost all dynamic 3D MHD equilibria
_ 520 +V - 9PV -E+ &E-V are unstable. The term “almost all” refers to equilibria
f[d) P §pdppV - &+ &-Vp) with the flowv nonparallel to the magnetic fieBl (up to a

+ 5B - (8B — £ X j)]d’x. 19 rigid-body rotation for axisymmetric equilibria). Indeed,
( § X pldx (19) for a very short-scale field, the perturbation energy to
wheres?p = —V - §p&. The flow part ofW is leading order,
2
Wiow = [| % 8% = ol - 5"V W= (B V7 - pln - (v VOF + G,
+ 8'v - (pd'v + vép) (21)

B can be made either positive or negative by a suitable
+pv-m X —:|d3x, (20)  choice of £, unlessv||B and pv? < B2. One of the
P implications of this conclusion is that it is not necessary
wheren = Vs/|Vs| is the normal to the magnetic/fluid to invoke the magnetic field perpendicular to an accretion
flux surfaces, 6(B/p) = (B/p) - V&€ — & - V(B/p), disk in order to have an MHD instability of the laminar

and accretion [17]; the more generic small azimuthal (parallel)
Sv=¢éXw+mXB/p+ VB, magnetic field will drive the super-Alfvénic fluid flow
" , nonlinearly unstable.
8'v=20v+§&-Vv—v- V& For fusion applications, the conclusion about the MHD

No further “simple” minimization of Eqg. (20) is possible instability of rotating plasmas should not be discouraging,
in general. (In the case of a parallel flow}|B, W can be because tokamak plasmas are almost collisionless and
also minimized with respecttp = V X {.) not accurately described by the MHD equations. For
Since all known explicit and implicit integrals of static equilibria, the difference between the collisionless
motion have been accounted for (the possibly conserved 8] and the MHD [5] energy principles is of order the
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pressure terms in Eq. (19).

For a typical tokamak, theGrants No. DE-FG03-88ER53275 and No. DE-FGO02-

kinetic energy of plasma rotation is of order the thermal86ER53223, ONR Grant No. N00014-91-J-1127, and
energy, or in the same order where the MHD approximaNSF Grant No. PHY94-21318.

tion errs.

The superdynamics-based nonlinear stability method

can be extended to other Hamiltonian partial differential
equation systems. Consider, for example, the collisionles
Vlasov equation for the distribution functiorf(z,r),
with z = (x, p, @) being the collection of the canonical
coordinates and momenta and the plasma speciesdabel

0f =[h f1=dxh - dpf — dph * Oxf .

The single-particle (mass, chargee) Hamiltonian

(22)

2
h@ﬂziibr—%Amﬂ}+ewxﬂ (23)

is coupled tof via the Maxwell equations for the elec-
tromagnetic potentialg andA. The superdynamics for
the Vlasov equation is introduced by replacing the self-
consistents in Eq. (22) by an arbitrary scalat, &(z, 7).
The resulting variation of the distribution functiodf =
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