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We present a general analysis of the tunneling process through localized resonant states between one-
dimensional continuums. We show that complete transfer can occur between the continuums by creating
resonant states of different symmetry, and by forcing anaccidentaldegeneracy between them. The
degeneracy must exist in both the real and imaginary parts of the frequency. We illustrate the results
of the analysis by performing computational simulations on the transport properties of electromagnetic
waves in a two-dimensional photonic crystal. [S0031-9007(97)05091-6]
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Resonant tunneling processes can occur between sta
when they interact through a coupling element which sup
ports localized resonances. Of particular interest is th
complete channel drop tunneling between one-dimension
continuums, i.e., the selective transfer of a single propaga
ing state (i.e., monoenergy electron, or single-frequenc
photon) from one continuum to the other, leaving all othe
states unaffected. Examples include the transfer of sta
between electron waveguides [1,2] through a quantum d
device, and the transfer of photonic states between diele
tric waveguides through an optical resonator system. Su
transfer processes are important for single-energy electr
spectroscopy or wavelength demultiplexing in optical com
munication systems [3,4]. However, to our knowledge, th
general conditions needed to realize optimal transfer un
now have not been recognized.

In this Letter, we determine the general characteris
tics of the coupling element required to achieve com
plete channel drop tunneling. We begin by presenting
qualitative analysis using symmetry and energy conserv
tion arguments which identifies the important ingredient
needed in constructing an analytical theory. Using a rig
orous mathematical formalism, we then demonstrate th
complete transfer can occur by creating resonant states
different symmetry, and by forcing anaccidentaldegener-
acy of both the real and imaginary parts of the frequenc
between the resonant states. We illustrate the results
the analysis by simulating the transport properties of ele
tromagnetic waves in a two-dimensional photonic crysta

The schematic diagram of a generic coupled syste
is shown in Fig. 1. The two continuums are labeledC
andC. We consider the gedanken experiment where w
excite a propagating state inC and study how it is affected
by the coupling element. At resonance, the propagatin
state excites the resonant modes, which in turn decay in
both continuums. The transmitted signal inC is made up
of the input signal and the signal which originates from
the decay of the localized states. In order to achiev
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complete transfer, these two components must be m
to interfere destructively. The reflected amplitude inC,
on the other hand, originates entirely from the decay
the localized states. Hence, at least two states are nee
for the decaying amplitudes to cancel in the backwa
direction.

To ensure the cancellation of the reflected sign
we consider a structure with a mirror plane symmet
perpendicular to bothC and C, and assume that there
exist two localized states with different symmetry wit
respect to the mirror plane, one even labeledjel, and one
odd labeledjol. The incoming wave expsikxd can then be
decomposed into the form cosskxd 1 i sinskxd, wherex
corresponds to the direction along bothC and C. The
cosskxd part, which is even with respect to the mirro
plane, couples only to the even resonant state, and
sinskxd part, which is odd, couples only to the odd stat
In the specific case where the coupling constants and
frequencies are equal for both modes, a resonant stat
the form jel 1 ijol is excited, which in turn decays inC
only along the forward direction. As a result, reflection
completely absent.

From conservation of energy, the state is complete
transferred toC by eliminating both the reflection and
the transmission inC. The amplitude of the transferred
wave and that of the input wave therefore must be equ
which implies that the resonances must decay equally in

FIG. 1. Schematic diagram of two continuums couple
through an element which supports localized resonant states
© 1998 The American Physical Society
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C andC. This requirement can be satisfied by imposin
an additional mirror-plane symmetry parallel to bothC
andC halfway between the two continuums.

Based on the qualitative arguments presented above
construct an analytical theory by considering a structu
that possesses two mirror planes, one parallel to t
continuums and one perpendicular. The structure a
supports two resonant states of opposite symmetry w
respect to the mirror plane perpendicular toC andC. This
structure can be characterized by the propagating mod
in C and C, which are labeled by their wave vectorsk
and k, respectively, and by the even and odd resona
states which are labeledjel and jol. The interaction
between these states determines the transport proper
of the structure. We can describe the interactions
a HamiltonianH which can be written as the sum of
four parts, namelyH  Hcontinuum 1 Hcoupling-element 1

Ve 1 Vo , where

Hcontinuum 
X

k

vskdjkl kkj 1
X

k

vskdjkl kkj , (1)

Hcoupling-element  vejel kej 1 vojol koj , (2)

Ve 
q

1yL
X

k

fEskdjel kkj 1 Epskdjkl kejg

1
X

k

fEskdjel kkj 1 Epskdjkl kejg , (3)

Vo 
q

1yL
X
k

fOskdjol kkj 1 Opskdjkl kojg

1
X

k

fOskdjol kkj 1 Opskdjkl kojg , (4)

and vskd and vskd are the dispersion relations inC
and C, respectively. The coefficientsEskd, Oskd, Eskd,
Oskd are the coupling constants between the resonan
and the propagating states. The

p
1yL factor in Eqs. (3)

and (4) arises from a box normalization of lengthL.
Similar Hamiltonians have been used by Fano [5] and
Anderson [6] to describe the interaction between localiz
resonances and continuums in different contexts.

The coupling constants are not independent variabl
but rather they are related to each other through t
symmetry operations. We note that the HamiltonianH
is invariant with respect to the two mirror operatorsPx

andPy , i.e.,

fPx , Hg  0 , fPy , Hg  0 , (5)

wherePx is perpendicular to the continuums whilePy is
parallel. In addition, the states transform under the mirr
operators according to

Pxjkl  j2kl , Pxjel  jel ,

Pxjol  2jol , Pyjkl  jkl . (6)

Here, the two statesjel andjol are chosen to be even with
respect to the mirror operatorPy , i.e.,
g
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Pyjel  jel , Pyjol  jol . (7)

With these conditions, it can easily be shown that the
coupling constants satisfy the following constraints:

Eskd  Es2kd , Eskd  Es2kd , Eskd  Eskd ,

(8)

Oskd  Os2kd , Oskd  Os2kd , Oskd  Oskd .

(9)
The symmetries of the structure also allow us to block

diagonalize the HamiltonianH using the following linear
transformations:

jkel 
1

p
2

sjkl 1 j2kld , jkol 
1

p
2i

sjkl 1 j2kld ,

(10)

jkel 
1

p
2

sjkl 1 j2kld , jkol 
1

p
2i

sjkl 1 j2kld ,

(11)
The HamiltonianH can then be written as the sum of two
independent partsH  He 1 Ho , whereHe andHo are
defined as

He 
X

ke.0

vskedjkel kkej

1
X

ke.0

vskedjkel kkej 1 vejel kej

1
X

ke.0

s
2
L

sEskdjkel kej 1 Epskdjel kkejd

1
X

ke.0

s
2
L

sEskdjkel kej 1 Epskdjel kkejd (12)

Ho 
X

ko.0

vskodjkol kko j

1
X

ko.0

vskodjkol kkoj 1 vojol koj

1
X

ko.0

s
2
L

siOskdjkol koj 2 iOpskdjol kko jd

1
X

ko.0

s
2
L

siOskdjkol koj 2 iOpskdjol kkojd . (13)

Equations (12) and (13) describe two independent scat
tering processes. TheT matrix of each process can
be related to the single particle Green’s function of the
resonances using the standard techniques involving the
Lippman-Schwinger formalism [7]. By summing theT
matrices of the two processes, the scattering wave func
tion can be obtained, which has the following asymptotic
behavior: Transmitted amplitudesx ¿ 0d,

csxd 
1

p
L

∑
1 2

1
2

µ
iye

v 2 ṽe 1 iye

∂
2

1
2

µ
iyo

v 2 ṽo 1 iyo

∂∏
eikx ; (14)
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reflected amplitude (x ø 0),

csxd 
1

p
L

∑
2

1
2

µ
iye

v 2 ṽe 1 iye

∂
1

1
2

µ
iyo

v 2 ṽo 1 iyo

∂∏
eikx; (15)

transferred amplitude in the forward direction (x ¿ 0),

csxd 
1

p
L

∑
2

1
2

µ
iye

v 2 ṽe 1 iye

∂
2

1
2

µ
iyo

v 2 ṽo 1 iyo

∂∏
eikx; (16)

transferred amplitude in the backward direction (x ø 0),

csxd 
1

p
L

∑
2

1
2

µ
iye

v 2 ṽe 1 iye

∂
1

1
2

µ
iyo

v 2 ṽo 1 iyo

∂∏
eikx; (17)

whereṽe and ṽo are the “renormalized” frequencies o
the resonator in the presence of the continuums, andye

andyo are the linewidths of the even and odd resonanc
respectively. These four parameters are related to
dispersion relation of the guided modes and the coupli
constants. Detailed calculations are presented elsewh
[8]. For the purpose of this discussion, it is sufficient t
note that the transport properties of the structures depe
only on the frequencies and the linewidths of the even a
the odd resonances.

Of particular interest is the case whereṽe  ṽo and
ye  yo , which corresponds to the even and odd res
nances having the same frequency and the same linewi
Under these conditions it follows from Eqs. (15) and (17
that the reflected wave inC and the transferred wave to
C along the backward direction vanish over the entire fr
quency range, while Eq. (16) reveals that the wave tran
ferred toC along the forward direction has a Lorentzia
line shape with a 100% transfer efficiency at resonan
This is consistent with the qualitative discussion pr
sented above.

In general, the symmetry of the channel drop systems
low such that only one-dimensional irreducible represe
tations are allowed. Hence, the even and odd resonan
belong to different irreducible representations and an ac
dental degeneracy between the resonances must be for

To realize the results of the analytic theory, we consid
the case of two photonic crystal waveguides and tw
coupled single-mode high-Q microcavities, as shown in
Fig. 2. The photonic crystal is made of a square lattice
high-index dielectric rods with radius0.20a and dielectric
constant 11.56, wherea is the lattice constant. The wave
guides are formed by removing two rows of dielectric rod
and the cavities are introduced between the waveguides
reducing the radius of two rods. Each cavity supports
localized monopole state which is singly degenerate [9]

The even and odd states are made up of linear combi
tions of the two monopoles which are coupled indirect
through the waveguide and directly through the cryst
962
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FIG. 2. Photonic crystal structure with two waveguides an
two cavities. The black circles correspond to rods with
dielectric constant of 11.56, while the gray circles correspon
to rods with a dielectric constant of 9.5. The two smaller rod
have a dielectric constant of 6.6, and a radius of0.05a, where
a is the lattice constant.

Each coupling mechanism splits the frequency of the ev
and odd states, but with opposite sign. An accidental d
generacy, caused by an exact cancellation between the
coupling mechanisms, is enforced by reducing the diele
tric constant of four specific rods in the photonic crysta
to 9.5, as shown in Fig. 2. The cancellation could equal
have been accomplished by reducing the size of the ro
instead of their dielectric constant.

Analytically, we can show that the quality factor of
the two states can be made equal provided that t
wave vectork of the guided mode satisfies the relation
kd  np 1 py2, where d is the distance between the
two defects, andn is an integer [8]. This condition can
be reached by separating the two defects by five latti
constants, and by choosing the size and dielectric const
of the defect posts in such a way that the guided mode
the resonant frequency has a wave vector of0.25s2pa21d.

We simulate the filter response of the structure show
in Fig. 2 using a finite-difference time-domain schem
[10] with perfectly matched layer absorbing boundary con
dition [11]. A pulse is sent down one of the wave
guides and excites both the even and odd states. Th
two states then decay exponentially into the waveguide
By Fourier transforming the decaying amplitudes, we ob
tain the frequency spectrum of the even and odd stat
each with a Lorentzian line shape, as shown in Fig.
The two line shapes overlap almost perfectly, as desire

FIG. 3. Spectrum of the even and odd modes for the structu
shown in Fig. 2.
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FIG. 4. (a) Intensity spectrum of the transmitted signal i
the structure shown in Fig. 2. (b) Intensity spectrum o
the transferred signal in the forward direction. (c) Intensit
spectrum of the transferred signal in the backward directio
The solid dots are obtained from computer simulations. Th
lines result from analytical theory.

From the line shape, we can determine the widths a
the frequencies of both resonances, and calculate anal
cally the spectrum of the transmitted signal and that of th
transferred signals using Eqs. (14)–(17). These spec
are shown as solid lines in Fig. 4 and are compared to tho
obtained by Fourier transforming the computational da
(solid circles). Excellent agreement is obtained betwe
theory and simulation. Figure 4 shows that the transm
sion is close to 100% over the entire spectrum, except
the resonant frequency, where it drops to 0%. The fo
ward transferred signal shows a Lorentzian line shape w
a maximum close to 99% at resonance. The quality fa
tor is larger than 1000, as seen in Fig. 4(b). The bac
ward transferred signal is almost completely absent ov
the entire frequency range [Fig. 4(c)]. The steady-sta
field pattern at maximum transfer efficiency is shown i
Fig. 5. The simulation does indeed demonstrate comple
channel drop tunneling via localized states.

Instead of using two defects as the coupling eleme
each supporting a singly degenerate monopole state,
could also use a single defect that supports two mod
with opposite symmetries. The defect could be intro
duced, for example, by increasing the radius of a sing
rod in the crystal [9]. The accidental degeneracy is the
forced by changing the dielectric constant of the neighbo
ing rods. Equal decay of the even and odd modes into t
waveguides is best achieved with a cavity that suppo
photonic states with large orbital angular momentum.
a structure that supports defect modes with hexapole ch
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FIG. 5(color). Electric field pattern of the structure shown in
Fig. 2 at the resonant frequency. The white circles indicate t
position of the rods.

acteristics, for example, complete transfer with the quali
factor exceeding 6000 can be achieved when the defe
are separated from the center of the waveguides by th
lattice constants [8]. We also note that, in this case, th
two resonances haveoppositesymmetry properties with
respect to the mirror planeparallel to the waveguides.
Consequently, when the two resonant peaks coincide,
transferred signal propagates along the backward direct
instead of the forward direction.

In summary, we have presented the criteria for com
plete transfer between continuums through localize
states. We have demonstrated these criteria by sim
lating the propagation of electromagnetic waves in
two-dimensional photonic crystal.
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