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We present a general analysis of the tunneling process through localized resonant states between one-
dimensional continuums. We show that complete transfer can occur between the continuums by creating
resonant states of different symmetry, and by forcingaanidentaldegeneracy between them. The
degeneracy must exist in both the real and imaginary parts of the frequency. We illustrate the results
of the analysis by performing computational simulations on the transport properties of electromagnetic
waves in a two-dimensional photonic crystal. [S0031-9007(97)05091-6]

PACS numbers: 42.79.Ci, 42.70.Qs, 85.30.Mn, 85.30.Vw

Resonant tunneling processes can occur between statsemplete transfer, these two components must be made
when they interact through a coupling element which supto interfere destructively. The reflected amplitudedn
ports localized resonances. Of particular interest is then the other hand, originates entirely from the decay of
complete channel drop tunneling between one-dimensiondihe localized states. Hence, at least two states are needed
continuums, i.e., the selective transfer of a single propagafer the decaying amplitudes to cancel in the backward
ing state (i.e., monoenergy electron, or single-frequencyirection.
photon) from one continuum to the other, leaving all other To ensure the cancellation of the reflected signal,
states unaffected. Examples include the transfer of statege consider a structure with a mirror plane symmetry
between electron waveguides [1,2] through a quantum dqterpendicular to bottC and C, and assume that there
device, and the transfer of photonic states between dieleexist two localized states with different symmetry with
tric waveguides through an optical resonator system. Suctespect to the mirror plane, one even labdled and one
transfer processes are important for single-energy electravdd labeledo). The incoming wave exXpkx) can then be
spectroscopy or wavelength demultiplexing in optical com-decomposed into the form dés) + i sin(kx), wherex
munication systems [3,4]. However, to our knowledge, thecorresponds to the direction along bathand C. The
general conditions needed to realize optimal transfer untitogkx) part, which is even with respect to the mirror
now have not been recognized. plane, couples only to the even resonant state, and the

In this Letter, we determine the general characterissin(kx) part, which is odd, couples only to the odd state.
tics of the coupling element required to achieve comdn the specific case where the coupling constants and the
plete channel drop tunneling. We begin by presenting drequencies are equal for both modes, a resonant state of
qualitative analysis using symmetry and energy conservahe form|e) + i|o) is excited, which in turn decays i@
tion arguments which identifies the important ingredientsonly along the forward direction. As a result, reflection is
needed in constructing an analytical theory. Using a rig€ompletely absent.
orous mathematical formalism, we then demonstrate that From conservation of energy, the state is completely
complete transfer can occur by creating resonant states tinsferred toC by eliminating both the reflection and
different symmetry, and by forcing atcidentaldegener- the transmission irC. The amplitude of the transferred
acy of both the real and imaginary parts of the frequencyvave and that of the input wave therefore must be equal,
between the resonant states. We illustrate the results @fhich implies that the resonances must decay equally into
the analysis by simulating the transport properties of elec-

tromagnetic waves in a two-dimensional photonic crystal. INPUT
The schematic diagram of a generic coupled system c [— > |
REFLECTION TRANSMISSION

is shown in Fig. 1. The two continuums are labeléd
andC. We consider the gedanken experiment where we

y

. : o Coupling L
excite a propagating state hand study how it is affected Element X
by the coupling element. At resonance, the propagating BACKWARD FORWARD
state excites the resonant modes, which in turn decay into TRANSFER TRANSFER

c | — — |

both continuums. The transmitted signaldris made up

of the input signal and the signal which originates fromriG. 1. Schematic diagram of two continuums coupled
the decay of the localized states. In order to achievéhrough an element which supports localized resonant states.

960 0031-900798/80(5)/960(4)$15.00 ~ © 1998 The American Physical Society



VOLUME 80, NUMBER 5 PHYSICAL REVIEW LETTERS 2 EBRUARY 1998

C andC. This requirement can be satisfied by imposing IIyle) = le), II,lo) = lo). @)

an additional mirror-plane symmetry parallel to bath i o ) ]
andC halfway between the two continuums. With these conditions, it can easily be shown that the

Based on the qualitative arguments presented above v#9UPIiNG constants satisfy the following constraints:
construct an analytical 'Fheory by considering a structure E(k) = E(—k), E() =E(-k), EKk) =E®),
that possesses two mirror planes, one parallel to the
continuums and one perpendicular. The structure also (8)
supports two resonant states of opposite symmetry with — =T\ — (T _ A7
respect to the mirror plane perpendiculact@ndC. This O(k) = 0(=k), OW) = 0(=k), Ok) = Ok).
structure can be characterized by the propagating modes (9)
in C_and C, which are labeled by their wave vectats The symmetries of the structure also allow us to block
and k, respectively, and by the even and odd resonantliagonalize the Hamiltonia® using the following linear
states which are labelett) and o). The interaction transformations:

between these states determines the transport properties 1 1
of the structure. We can describe the interactions by lke) = ﬁﬂk) +1=K), ko) = Eﬂk) + 1=k,
a Hamiltonian H which can be written as the sum of (10)
four parts, namelW = Heontinuum + Hcoupling-element + — 1 — — — 1 — —
V, + V,, where |ke) = E(l’() +1=k)), ko) = E(l@ + |=k)),
Heontinuum = > 0(OIK) (k| + > o @IR) &I, (1) (11)
[ X The HamiltonianH can then be written as the sum of two
independent partd = H® + H°, whereH¢ andH’ are
Hcoupling-element = we|e><e| + wo|0><0| s (2) defined as
_ . H = Y wok)lk) k|
Ve = VI/L QIEM) (k] + E Gk el] =
(1 T T\ + ke ke ke + w,
+ STE®IOGE + E@RE]. @) 2 k) el + wcle) (el
k 2
+ D | (E®)k) (el + E*(K)le) (k,])
Vo = 1/L YT0W)lo) k| + 0" (K)lk)ol] oV L
k 2 _ . _
e + > 7 EDlk) (el + E*R)le) (k) (12)
+ D T0®lo) Kl + O ®IK)(ol], (4 %.~0
k
and w(k) and (k) are the dispersion relations i@ H’ = > w(k,)lk,) &,
and C, respectively. The coefficient8(k), O(k), E(k), %>0
O(k) are the coupling constants between the resonances
and the propagating states. Tié/L factor in Egs. (3) + kz>0w(k0)|k0><k0| + w,lo) (ol

and (4) arises from a box normalization of length >
Similar Hamiltonians have been used by Fano [5] and by + > /= (i0(k)Ik,) (o] — i0*(K)lo) (k,|)
Anderson [6] to describe the interaction between localized ol L

resonances and continuums in different contexts. 2 — N —

The coupling constants are not independent variables, _Z i ([0(W)lk,) (o] = i0"(K)lo) (ko) . (13)
but rather they are related to each other through the ko>0
symmetry operations. We note that the Hamiltonfén Equations (12) and (13) describe two independent scat-
is invariant with respect to the two mirror operatdis tering processes. Th& matrix of each process can
andll,, i.e., be related to the single particle Green’s function of the

[T,,H] =0, [11,,H] =0, (5) resonances us'ing the standard techniques ir_wolving the
] ] ’ ] ] Lippman-Schwinger formalism [7]. By summing tie
wherell, is perpendicular to the continuums whilg, is  matrices of the two processes, the scattering wave func-
parallel. In addition, the states transform under the mirrogjgn can be obtained, which has the following asymptotic

operators according to behavior: Transmitted amplitude > 0),
MKy = 1=k),  TLe) = le), | |
o -0, mw-m. @ Ozl Gman)
Here, the two statelg) and|o) are chosen to be even with 1 iv, i
respect to the mirror operatdt,, i.e., ) <m>}e P14
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reflected amplitudex( < 0), 0000000000000 0000 0
. eeeccco0s0000000000000

():L 1 Ve 0000000000000 00000000

Plx JL 2\w — @, + iv, 0000000000000 0000000

1 iv , 00000000 0000 0000000
+—<—0>:|e’kx~ (15) 0000000000000 00000000

2 \w — @, t+ iv, ’ 00000000 -0000:-0000000

transferred amplitude in the forward direction > 0), tececeeeteeee’eecenns
,’y(y):L[_l(#) 0000000000000 00000000
JL 2 \w — @, + iv, 000000000000 000000000
000000000000 000000000

000000000000 000000000

— L <+>:|6th, (16)
2\o — @, tiv, FIG. 2. Photonic crystal structure with two waveguides and
transferred amplitude in the backward directian< 0), two cavities. The black circles correspond to rods with a
1 1 iv dielectric constant of 11.56, while the gray circles correspond
Y(x) = —= [— — <~—e> to rods with a dielectric constant of 9.5. The two smaller rods
VL 2\w — @, t+iv, have a dielectric constant of 6.6, and a radiu®).06a, where

1 . a is the lattice constant.
< Y, >:|eikf. (17)

2 \w — &, + iv,

. ) Each coupling mechanism splits the frequency of the even
where @, and @, are the “renormalized” frequencies of pling b q y

and odd states, but with opposite sign. An accidental de-

thed resonatﬁr 'IT‘ the dp;esefn%e of the ccéntlg(l;ums, @nd  generacy, caused by an exact cancellation between the two
andw, are the linewidths of the even and odd resonance oupling mechanisms, is enforced by reducing the dielec-

rc—;spect_ively. These four parameters are related to ,thﬁic constant of four specific rods in the photonic crystal
dispersion relation of the guided modes and the coupling, 9.5, as shown in Fig. 2. The cancellation could equally

constants. Detailed calculations are presented elsewhefg, o peen accomplished by reducing the size of the rods

[8]. For the purpose of this discussion, it is sufficient toiastead of their dielectric constant.

note that the transport properties of the structures depen Analytically, we can show that the quality factor of

only on the frequencies and the linewidths of the even ang}, two states can be made equal provided that the

the odd resonances. - . wave vectork of the guided mode satisfies the relation
Of particular interest is the case wheig = @, and ., _ , . | /2, whered is the distance between the
Ve = UOH which hcorrespc;nds to the e&/er? and Odl.d re;:j) wo defects, and: is an integer [8]. This condition can
r&alzjceshavmgt g. same ;eﬁ{uencfy an Et N Si‘?e ":je\T? e reached by separating the two defects by five lattice
hn e;]t esae cond ftions it fo o:;vsh rom qu. ( d) and ( )constants, and by choosing the size and dielectric constant
that the reflected wave 10" and the transferred wave 10 ¢ w0 gefect posts in such a way that the guided mode at

C along the backward direction vanish over the entire fre-,[he resonant frequency has a wave vectdr.2§(27a ).

guengy rgngle, whiLe Eq' (16d) :jgvea]s thﬁt the I\_/vave trans- \ve simulate the filter response of the structure shown
erred toC along the forward direction has a Lorentzian;, iy 5 sing a finite-difference time-domain scheme

Iin(_e shape Wi.th a 10(.)% transfer gffi(_:iency at re§onancq10] with perfectly matched layer absorbing boundary con-
This is consistent with the qualitative discussion pre-giion [11]. A pulse is sent down one of the wave-
selnted abO\qe.h fthe ch Id .guides and excites both the even and odd states. These
n general, the symmetry of the channel drop Systems iy, states then decay exponentially into the waveguides.
low such that only one-dimensional irreducible represeng,, £ rier transforming the decaying amplitudes, we ob-

tations are .aIIowed_. Hence, the even an_d odd resonanceq, e frequency spectrum of the even and odd states,
belong to different irreducible representations and an acCig,.h, with a Lorentzian line shape, as shown in Fig. 3

dental degeneracy between the resonances must be fprc e two line shapes overlap almost perfectly, as desired.
To realize the results of the analytic theory, we consider
the case of two photonic crystal waveguides and two . . .
coupled single-mode higfy- microcavities, as shown in . Even Mode | |
Fig. 2. The photonic crystal is made of a square lattice of
high-index dielectric rods with radius20a and dielectric
constant 11.56, whereis the lattice constant. The wave-
guides are formed by removing two rows of dielectric rods,
and the cavities are introduced between the waveguides by B .
reducing the radius of two rods. Each cavity supports a , I ,
localized monopole state which is singly degenerate [9]. 0.36 0.365 0.37 0.375 0.38
The even and odd states are made up of linear combina- Frequency (c/a)

tions of the two monopoles which are coupled indirectlyF|G. 3. Spectrum of the even and odd modes for the structure
through the waveguide and directly through the crystalshown in Fig. 2.
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Frequency (c/a) acteristics, for example, complete transfer with the quality

factor exceeding 6000 can be achieved when the defects
FIG. 4. (a) Intensity spectrum of the transmitted signal inare separated from the center of the waveguides by three
mg t?grl:gftgrrr% dsgiovxgl iinn tiigf%rw ért:j) Olhi;teecfglsc;';]y S(Fégfcltrf#éﬂsioﬂattice constants [8]. We also note that, in this case, the
spectrum of the tgr]ansferred signal in the backward directi(%t[wo resonances havm:pposnesymmetry propertles_wnh
The solid dots are obtained from computer simulations. Thd€SPect to the mirror planparallel to the waveguides.
lines result from analytical theory. Consequently, when the two resonant peaks coincide, the

transferred signal propagates along the backward direction

From the line shape, we can determine the widths aninstead of the forward direction.
the frequencies of both resonances, and calculate analyti- In summary, we have presented the criteria for com-
cally the spectrum of the transmitted signal and that of th@lete transfer between continuums through localized
transferred signals using Egs. (14)—(17). These spectgfates. We have demonstrated these criteria by simu-
are shown as solid lines in Fig. 4 and are compared to thodating the propagation of electromagnetic waves in a
obtained by Fourier transforming the computational datdwo-dimensional photonic crystal.
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