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Photonic Band Gaps in Two Dimensional Photonic Quasicrystals
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It is generally believed that long range periodic order is instrumental in the formation of a photoni
band gap. Using a spectral method that scales linearly with the system size, we found that siza
spectral gaps for each polarization in 2D can be found in aperiodic arrangements of dielectrics th
resemble quasicrystalline tiling. Since the aperiodic arrangement has many inequivalent sites,
defect properties of these systems are more complex and interesting than conventional photonic b
gap systems. [S0031-9007(97)05157-0]

PACS numbers: 42.70.Qs, 41.20.Jb, 74.80.–g
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In the past few years, there has been much resea
activity pertaining to photonic band gap (PBG) mate
rial, which has a spectral gap in the electromagne
(EM) wave spectrum in which EM wave propagation
is forbidden in all directions [1,2]. PBG can suppres
vacuum fluctuation and spontaneous emission, and c
lead to interesting quantum electrodynamics effects [3
This is also seen as a road map to strong photon loc
ization, itself a fascinating but elusive phenomena [4
It has potential applications in quantum electronic de
vices, distributed-feedback mirror, microwave antenna
substrate [5], and its unusual optical properties can be e
ploited to control and guide the propagation of light [6].

PBG materials are often viewed as analogs of ele
tronic semiconductors. Only short-range order is ne
essary for the formation of an electronic band ga
Amorphous semiconductors exist and have band ga
that are comparable in size to those of crystalline sem
conductors. However, electrons form bound states a
photons do not. Most of the theoretical demonstration
the existence of an electronic band gap without perio
icity is based on simplified tight-binding models, which
is a reasonable description because electrons can fo
bound states. While it is now firmly established that
certain periodic arrangement of dielectric structures c
support full photonic band gaps in 2D and 3D [2], it is
not obvious whether a structure without periodic orde
can have complete photonic gaps or not. The photon
band gap we know of to date in 2D and 3D is the con
sequence of periodicity: We can define a Brillouin zon
because of the periodicity; and a complete photonic g
is formed when the spectral gaps at the Brillouin zon
boundary overlap in all directions. Can there be ph
tonic gaps without periodicity and without a Brillouin
zone? This is a fundamental question. Motivated b
the known existence of 1D stop bands in superlattic
stacked in the Fibonnaci sequence [7], and acoustic sp
tral gaps in nearest-neighbor coupled tuning fork arra
arranged in a Penrose tiling [8], we seek to show th
sizable spectral gaps can exist a in 2D “quasiperiodi
arrangement of dielectrics.
0031-9007y98y80(5)y956(4)$15.00
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The photonic band problem for a perfect photonic crys
tal can be handled well by band theoretic methods, suc
as the plane wave method [9], which scales typically lik
the third power of the size of the system. Here, we use a
equation-of-motion method [10] that employs discretiza
tion of the Maxwell equations in both the spatial and time
domain and the integration of the Maxwell equations in
the time domain; spectral intensities are obtained by
Laplace transform. If the initial field intensities are ran-
dom numbers, the spectral intensities correspond to t
density of states (DOS), and thus whether a system su
ports photonic gaps or not can be directly determined
Local density of states (LDOS) and normal mode ampli
tudes can also be obtained. Its computation effort scal
linearly with the number of grid points, which is propor-
tional to the system size, and is very favorable for larg
scale simulations of complex systems. We will focus o
quasiperiodic structures in this paper. However, our ca
culation is quite different from the usual tight-binding cal-
culations for the electronic properties of quasiperiodic o
disordered systems. The tight-binding Hamiltonians i
those studies generally employ a minimal basis (usual
single band), nearest-neighbor hopping, and each site re
resents an atom. Our calculation is a direct solution of th
Maxwell wave equations in real space. Each cylinder (ou
“atom”) is represented by many grid points. There is n
parametrization, except for the dielectric constants of th
material involved. We will useac as the unit of time, and
angular frequencies (v) are measured in units of (2pc

a ),
wherec is the velocity of light anda is the length of one
side of the square “supercell” shown in Fig. 1 [11]. We
use typically2 3 105 time steps in the simulation, with
each time step of the order of0.00015ayc.

We consider an array of dielectric cylinders with circular
cross sections ofe ­ 10 positioned at the vertices of
an octagonal quasiperiodic tiling [12], shown schemat
cally in Fig. 1. The background hase ­ 1. A periodic
boundary condition was imposed on the square superc
of 164 cylinders (Fig. 1), discretized by a616 3 616 grid.
The cylinders occupy about 30% of the total volume. Th
solid line in Fig. 2 is the corresponding DOS for the TM
© 1998 The American Physical Society
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FIG. 1. “Octagonal tiling” arrangement of dielectric cylinders
with e ­ 10.

modes, withE field parallel to the cylinders. The DOS
has a multiple of spectral gaps inside which TM mod
propagation is forbidden. These spectral gaps are
intrinsic property of the aperiodic arrangement. If th
gaps are an artifact of the periodic boundary conditio
the position and size of the gaps should depend sensitiv
on the size of the supercell chosen. We found that t
opposite is true. The dotted line shown in Fig. 2 is the TM
mode DOS of a bigger realization (274 cylinders) of th
octagonal aperiodic structure, and the frequency and s
of the first two dominant gaps are virtually identical to th
smaller 164-cylinder cell [13]. These cylinder arrays ar
not periodic, but the structure is generated from a simp
deterministic algorithm. We now consider a structur
shown in Fig. 3, which contains only a small portion
(a circular cluster of 33 cylinders) of the quasiperiodi
structure. The rest is replaced by an effective medium
equal average dielectric constant for the TM mode (i.e
e ­ 0.7 3 1 1 0.3 3 10). We sample the photon LDOS
at grid points up to half of the radius [14] of the circula
cluster, and the DOS is shown in Fig. 4. Comparin
with Fig. 2, we see that the gaps have almost the sa

FIG. 2. Solid line: the density of states for TM modes for th
structure shown in Fig. 1. Dotted line is the DOS for a large
square supercell. See text and Ref. [11] for the definition ofa.
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FIG. 3. A small circular segment of Fig. 1.

midgap frequency and size as the complete structure. T
shows that these TM-mode gaps are not an artifact
the boundary condition, and the short-range environme
governs the existence of the gaps.

We next consider the TE modes, with theH field
parallel to thez axis. We found that, for TE modes
to have sizable spectral gaps, the structure should b
connected network. One possible configuration is sho
in Fig. 5, in which the high dielectric “veins” ofe ­ 10
occupy about 25% of the volume. The TE mode DO
is shown in Fig. 6, showing a spectral gap at just belo
five frequency units. The fact that isolated cylinde
are good for photonic gaps for the TM mode and
connected network is good for the TE mode has be
demonstrated for periodic structures [15]. We found th
quasiperiodic arrangements behave in a similar mann
and the structures that have sizable spectral gaps for
and TM are different. This is not a serious limitation sinc
these two polarizations are decoupled in 2D.

The study of defects in PBG material is at least a
important as the study of the perfect PBG materials.
is because many plausible applications of PBG materi
in laser, LED, frequency selective filters, and waveguid

FIG. 4. TM mode DOS for the structure shown in Fig.
(see text).
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FIG. 5. The structure with spectral gaps in TE modes.

are based on the highly localized defect states in
photonic gap. We first remove a cylinder from the cent
of our cylinder array (labeledA in Fig. 1). This defect
site is surrounded by eight cylinders. We found th
defect modes are introduced atv ­ 3.96 (first gap),
5.96 (second gap), and 9.57 (fourth gap). Since the
defect modes have frequencies that are not allowed in
system, the mode has to be localized around the def
This is confirmed in Fig. 7, where we show theE2

z for the
defect state in the first gap projected onto the 2D plan
If we remove one of the cylinders surrounding the cent
cylinder, labeledB in Fig. 1, the defect mode frequenc
and patterns are very different. There is no defect mode
the first gap, and one defect mode is observed deep ins
the second gap atv ­ 6.3, and the mode distribution is
shown in Fig. 8. This mode is more localized than th
mode shown in Fig. 7, consistent with the fact that it
farther away from the band edges and deeper into
spectral gap.

The behavior of defects of these systems is mo
interesting, and possibly more useful than the defe
states in periodic PBG material. Removing one cylind
from a periodic array would produce one fixed set
localized defect modes. However, for a quasicrystalli

FIG. 6. The TE mode DOS for the structure shown in Fig.
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FIG. 7. E-field intensity of the defect mode in the first gap
created by removing a cylinder marked asA in Fig. 1.

arrangement of cylinders, each cylinder is located
a different environment, so that removing one cylind
from a different location can produce defect states wi
different frequencies and mode patterns as illustrated
the example given. Even if we focus on local neares
neighbor environments near a particular cylinder, the
are six types of sites with coordination numbers rangin
from three to eight. It is of course also possible to “tune
the defect mode properties in periodic PBGs by changi
the nature and size of the defects [16], but the “photon
quasicrystals” allow for a higher degree of flexibility an
tunability for defect mode properties.

Photon localization is an effect of fundamental inte
est and has motivated the introduction of the concept
photonic band gap [4]. Up to now, the realization of pho
ton localization is based on periodic order and is faci
tated by the introduction of either defect or disorder in a
otherwise perfect periodic photonic crystal. On the oth
hand, it is known from tight-binding models and force
and-spring models that quasicrystalline arrangements h
nonextended eigenstates in 1D and 2D. Figure 9 sho
the H2

z of a TE mode with frequency near the upper edg
of the photonic gap shown in Fig. 6 (marked by an arrow
This state is strongly peaked about the central eightfo

FIG. 8. E-field intensity of the defect mode in the second ga
created by removing a cylinder marked asB in Fig. 1.
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FIG. 9. The H2
z of a TE mode near the band edge. Hig

frequency oscillations have been filtered out to show th
envelope function.

coordinated cylinder. States with slightly different fre
quencies are found to be localized about other eightfo
sites in the structure. States that are in the “pass ba
far away from the band edge look extended relative to t
size of our sample. Although our system is too small f
a quantitative characterization of the localization proper
of these states, the results show that photonic “quasicr
tals” can open another possibility of realizing the loca
ization of photons, and the localization behavior may b
qualitatively different from that of disordered media. W
note that these highly localized states have nothing to
with defect or disorder.

More attention has been focused on 2D photonic cry
tals recently [17], probably because fabricating photon
band gap materials in 3D can be a major technologic
challenge [18], but it is more manageable in 2D [19
In the microwave regime, the quasiperiodic arrangeme
(Fig. 1) can be realized by putting some dielectric rods
a predefined pattern, and experiments can be perform
similar to the crystalline arrangement [20]. Scaling dow
to infrared or optical wavelengths would require definin
(say by lithography) and etching a 2D pattern vertical
downwards into a substrate. This should not be too dif
cult with current technology.

In summary, we showed that spectral gaps exist
a 2D quasiperiodic arrangement of dielectrics, and th
periodicity is not required for the opening of photoni
gaps. Since the quasiperiodic arrangement has m
inequivalent local environments, the properties of defec
are more complex and interesting then those created
photonic crystals, and may offer more flexibility in tuning
the defect state properties. Photonic quasicrystals a
offer new platforms for realizing and investigating th
localization of light. It would be interesting to see i
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the same effects can be found in 3D, but it is dangero
to extrapolate current results to higher dimensions unle
explicit calculations are performed.
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