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Analytic Solution of the Pion-Laser Model

T. Csorgs'? and J. Zimanyli
'Department of Physics, Columbia University, 538 W. 120th Street, New York, New York 10027
MTA KFKI RMKI, H-1525 Budapest 114, POB. 49, Hungary
(Received 22 May 1997

Brooding over bosons, wave packets, and Bose-Einstein correlations, we find that a generalization of
the pion-laser model for the case of overlapping wave packeteafytically solvablewith completen-
particle symmetrization. Explicitnultiplicity and momentum dependenmfeexclusive correlations and
spectra is found. The effective source radii educed for low valueandenlarged for high values of
the mean momentuin the rare gas limiting case. [S0031-9007(97)05015-1]

PACS numbers: 25.75.Gz, 03.65.—w, 05.30.Jp

The study of the statistical properties of quantum syswhere «; = (&;, 7, 0y, t;) refers to the parameters of
tems has a long history with important recent develthe wave packet: the center in space, the center in
opments. In high energy physics, quantum statisticamomentum space, the width in momentum space, and the
correlations are studied in order to infer the space-time diproduction time, respectively. For simplicity we assume
mensions of the elementary particle reactions. In high enthat all the wave packets are emitted at the same instant
ergy heavy ion collisions hundreds of bosons are created iand with the same widthy; = (7, &;, 7, 1g).
the present CERN SPS reactions wikn+ Pb reactions The n boson states, normalized to unity, are given as
are measured ab0A GeV laboratory bombarding energy. ; 1/2
At the RHIC accelerator, to be completed by 1999, thou- lay a,) = Z (ailay) ol a’r|0> 4)
sands of pions could be produced in a unit rapidity interval B perriE o SHE
[1,2]. If the number of pions in a unit value of phase space
is large enough, these bosons may condense into the saHere o denotes the set of all the permutations of the
quantum state and a pion laser could be created [3]. Simindexes{1,2,...,n}, and the subscriptr; denotes the
lar to this process, when a large number of bosonic atomigidex that replaces the indexin a given permutation
are collected in a magnetic trap and cooled down to infrom o ™.
crease their density in phase space, the bosonic nature ofSolution for a new type of density matrixThere is
the atoms reveals itself in the formation of a Bose-Einsteirone special density matrix, for which one can overcome
condensate [4], a macroscopic quantum state. Such a cofive difficulty, related to the nonvanishing overlap of many
densation mechanism may provide the key to the formationundreds of wave packets, even in an explicit analytical
of atomic lasers in condensed matter physics and to the fomanner. Namely, if one assumes that we have a system
mation of pion lasers in high energy particle and heavy ionn which the emission probability of a boson is increased

physics, reviewed recently in Refs. [5-7]. if there is another emission in the vicinity,
The density matrix of a generic quantum mechanical

. 1 n n
system is . pnlat, ..., a,) = N—() l_[pl(ai) (Z <C¥k|a¢rk>> .
N Z Pup (1) n) =i o0 k=1
p = nHFn» (5)

where the indexn characterizes subsystems with par-The coefficient of proportionality, V' (n), can be deter-
ticle number fixed ton, and the multiplicity distribu- Mined from the normalization condition. The density
tion is prescribed by the set dp.};—,, normalized as Matrix of Eq. (5) describes a quantum-mechanical wave-
% ,pa = 1. The density matrices are normalized asPacket system with induced emission, the amount of the
Trp = 1 andTrp, = 1, where induced emission is controlled by the overlap of the

n wave packets [8], yielding a weight in the rangd bfn!].
pn = f l_[da,- pnlay,...,an) lay,...,a,){(ay,...,a,]  Although it is very difficult numerically to operate with

i=1

(@)

such a wildly fluctuating weight, we were able to reduce
) the problem [8] to an already discovered “ring” algebra of
and the statekxy, ..., «,) denote properly normalized-
particle wave-packet boson states.

For the sake of simplicity we consider nonrelativistic

permanents for plane-wave outgoing states [3].
A wave-packet creation operator is

t_ B om0t it m) o) 1) 4t
D) (ot ’ ’ Py,
3)
916 0031-900798/80(5)/916(4)$15.00

particles,w (k) = k?/(2m). In order to define an analyti-
cally solvable model, we also assume a nonrelativistic,
nonexpanding static source at rest in the frame where the
calculations are performed,
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pi(a) = p(&)pp(m)d(t — to), pion-laser model of Pratt when a replacemént R,
| andT — T, = o7/(2m) is performed.
pr(&) = ————=exp(—&2/2R?Y), (6) Let us introduce the following auxiliary quantities:
(2w R?2)3/2

1 .
1 ==+ x+T+ = R252.

p,(m) = G exp(—w2/2mT), Y= =3 (1+x =1+ 2x), x=R;or. (17)

, L) The general analytical solutionof the model is given

and a Poisson multiplicity distributiop,” for the case hyough the generating function of the multiplicity distri-

when the Bose-Einstein effects are negligible, bution p,,
©) — n_('} - N S
Pn’ = €XH(—no). 7) G(x) = D paz" = exp D Culz" — 1)), (18)
n=0 n=1

This corresponds to the very rare gas limit, and completes )

the specification of the model. The plane-wave model, tovhereC, is

which the multiparticle wave-packet model was reduced ng . n/2 _

\ o Re Co == — 277 (19)

in Ref. [8], can be further simplified [8] to a set of recur- n = LY Y- ’

rence relations with the help of the so-called “ring alge- . . . i

bra” discovered first by Pratt in Ref. [3]. The probability tpgether with thegeneral analytic solutiorfor the func
- i . X tionsG,(1,2),

of finding events with multiplicityz, as well as the single- )

particle and the two-particle momentum distribution in G.(1.2) = i exp{——” n/2k — 22

such events, is given as n(1,2) = Jn 2 [+ = v27ka)

o0 -1 /2
+ ky, — y"?k;)? }
Pn = wn(Z wk) s (8) (7+ 2 Y 1) ]
k=0 (20)
4 by \'? L oy+ —y-
n Wy —i i =
N k) = Y 6,1, (9) Jn ”0< W) Cobh= e @)

i=1 %n
The detailed proof that the analytic solution to the
n [—1 . . .o .
() _ W, multiparticle wave-packet model is indeed given by the
Ny (k1 k2) = Z Z w, [Gn(1, DG1-m(2,2) above equations is described in Ref. [8].
=2 + G,(1,2)G;— (2, D], The representation of Eq. (18) indicates that the quanti-

tiesC, are the so-called combinants [10—12] of the proba-
(10) bility distribution of p,, and in our case their explicit form
wherew, = p./po and |I'Es kn(zxvgn) f&r;;my sdeEl%f) m%cilel par?metersi .a? given by
N on B 5 5 gs. , , an . The resulting multiplicity gen-
G(i,j) = nghy exd—ay(ki + kj) + gokik;]. (11) erating function does not correspond to discrete probabil-
Averaging over the multiplicity distributiop, yields the ity generating functions in Ref. [13], so we have found a

inclusive spectra as new type of probability generating functions.
> The mean multiplicity iSn) = >, np, = >.—, iC;,
G(1,2) = > G,(1,2), (12)  Ref. [8]. The largen behavior ofnC, depends on the
n=1

ratio of No/yi/z, since for large values of we always

o i have(y_/y+)"/* <« 1. The critical value ofi is
Ni(k;) = NV (k) = G(1,1), 13
k) = 2 paNTHD) = GUD. A e TR @)

If ngp <n, one finds lim_.nC, = 0 and (n) < o; if

Na(ki, ko) = G(1,1)G2,2) + G(1,2)G(2,1).  (14) ng > n. one obtains lim.nC, = « and{n) = «; and

An auxiliary quantity is introduced as finally, if no = n. one finds liM—..nC, = 1 and(n) =
| n 3/2 . The divergence of the mean multiplicity) is related

C, = —f &’k G,(1,1) = hnn—(’(L) ) to condensation of the wave packets to the wave-packet
n n \2a, = gn (15) state with zero mean momentum, i.er,= 0 if ny =

n., Ref. [8]. The multiplicity distribution of Eq. (18) is
With the help of the notation studied at greater length in Ref. [8].

T Dense gas limiting case-This wave-packet model

> 2. (16) exhibits a lasing behavior in the dense Bose-gas limit,
oot corresponding to an optically coherent behavior, charac-
the recurrence relations that correspond to the solution dérized by a vanishing enhancement of the two-particle
the ring algebra [3,9] are obtained [8] for the case of thentensity correlations at low momentur@(k,k;) = 1,
multiparticle wave-packet model. These correspond to tha case which is described in greater detail in Ref. [8].
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Rare gas limiting case—Large source sizes or large Ak, = K(Ak - K)/(K - K), similar to Refs. [14]. The
effective temperatures correspond to the> 1 limiting ~ momentum-dependent intercept and radius parameters are

case, where the general analytical solution of the model, 2 — 91/2,-K/a}
presented above, becomes particularly simple and the Ak =1 + Y , (27)
exclusive and inclusive spectra and correlation functions (2x)
can be obtained analytically to leading orderjfx < 1. R12<,s = R?
From Eqg. (11) one obtains that R2 — 21/26—1(2/0%[(” + 2R + (2/02)]
n R? + = (2x)3/2 ‘ ’
G.(1,2) = joexp ——=(k? + k3) — —<Ak* |, (23 x
K? >
ke, a2 \3/D6-) Ry, = Ri, + =5 —re K/, (29)
in = 3o, n= o\ , (24) oy
(mah P2 n\x

Thus the symmetrization results in a momentum-
where Ak = k; — k,. We can see from Eq. (23) that dependent intercept parametgi that starts from a
the higher order corrections will contribute to the observ-Agx—o < 1 value at low momentum anihcreaseswith
ables with reduced effective temperatures and reduceidcreasing momentum. Already in the first paper about
effective radii. Equation (24) indicates that the leadingthe pion laser model, Ref. [3], a reduction of the exact
order combinant in ther > 1 limiting case isC; with  intercept parameter was observed and interpreted as
the first subleading correction given hi,. Thus, the the onset of a coherent behavior in the low momentum
probability distribution can be considered in the rare gasnodes. First, a partially coherent system is created,
limiting case as a Poisson distribution of particle singletscharacterized byig < 1, and if the density of pions is
with a subleading correction that yields a convolutionfurther increased, one finds a fully developed pion laser
of Poisson-distributed doublets. Thvery rare gas lim- with Ax = 0; see Ref. [8] for analytic considerations.
iting case corresponds to keeping only the leading 1  Although a decrease of the intercept parameter was
order terms in the above equations. The multiplicity dis-reported in earlier numerical investigations [15], and a
tribution is a Poisson distribution witth) = nyp and no  momentum-dependent decrease of the radius parameters
influence from stimulated emission. The momentum diswas noted for the plane-wave version of the present
tribution is a static Boltzmann distribution, and the exclu-model in Ref. [16], these investigations were restricted to
sive and inclusive momentum distributions coincide [8].a few points in the parameter space only and no analytical
The leading order two-particle Bose-Einstein correlationformulation of these numerical results was given. Be-
function is a static Gaussian correlation function withcause of this, many interesting effects like the increase of
a constant intercept parameter af= 1 and with a the radii and the intercept parameter at lalgavere not
momentum-independent radius parameteR.0f= R, [8]. even expected from the earlier numerical studies. From
The probability generating function yields the following our analytical solution, however, it follows that the radius

leading order multiplicity distribution: parameters not only decrease at low mean momentum,
. 5 but they also increase at high mean momentum, as

Py = n—oexp(—no) (1 n nin — 1) — no) (25) compared toR,. This decrease of the effective source

" on! 2(2x)3/2 radii, given by Eqgs. (28) and (29), is more pronounced for

higher values of the fixed multiplicity, in contrast to the
The mean multiplicity, the factorial cumulant moments momentum dependence &k that is independent of.
of the multiplicity distribution, and the inclusive and Last, but not least, a specific term appears in the two-
exclusive momentum distributions were evaluated byparticle exclusive correlation function that contributes
keeping only the leading order terms irix in Ref. [8].  only to the out direction, which, in case of spherically
The two-particle exclusive correlation functions can alsesymmetric sources, may be identified with the direction of
be evaluated by applying a Gaussian approximation to ththe mean momentum [14]. This directional dependence

leading order corrections in the>> 1 limiting case, is related only to the direction of the relative momentum
) . as compared to the direction of the mean momentum,
(n) _ n Ny (ki ko) and does not violate the assumed spherical symmetry
C2 (klakZ) - (n) (n) . .
nn =1 N" (k)N (k,) of the boson source. This effect vanishes both at very
low or at very high values of the mean momentdm
=1+ Ax exp(—Rj Ak} — Rg ,Ak)), according to Eq. (29). The top, middle, and bottom panels

(26) of Fig. 1 indicate the momentum-dependamt intercept
parameter, and th®g ; and Rk, radius parameters for
where K = 0.5(k; + k), the sidewards and out- a fireball with R = 11 fm, T = 120 MeV. The pions
wards directions are introduced for spherical symmetriare assumed to be described by wave packets with
sources as Ak; = Ak — K(Ak - K)/(K - K) and spatial widths of o, = 2 fm, and events with fixed
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Multiparticle Symmetrization Effects is found to be the most apparent effect. The directional
dependence of the radius parameters and the enhancement
of the radii at high momentum is characteristic for a small,
cold pion gas with only a handful of particles in it. These
results can be understood qualitatively by an enhancement
099 b 1 of the wave packets in the low momentum modes, due to
multiparticle Bose-Einstein symmetrization effects, as the
system starts to approach the formation of a laser, charac-

' terized by the appearance of partial optical coherence in
i Oy =2fm, n, =600 1 the low momentum modes.
R=11fm, T=120MeV  { Our results explicitly depend on the multiplicity, pro-

101 p
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viding theoretical insights to event-by-event analysis of
heavy ion data. However, a direct comparison of the
model with experimental data is limited to the nonrela-
tivistic kinematical domain, for example, soft pions at
midrapidity, for systems where final state interactions and
o 1o 0 0 w0 0 eo 700  SPinand isospin effects are negligible.
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