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Thermodynamics of Cosmic String Densities in U(1) Scalar Field Theory
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We present a full characterization of the phase transition in U(1) scalar field theory and of the as
ciated vortex string thermodynamics in 3D. We show that phase transitions in the string densities e
and measure their critical exponents, both for the long string and the short loops. Evidence for a nat
separation between these two string populations is presented. In particular, our results strongly ind
that an infinite string population will only exist above the critical temperature. Canonical initial cond
tions for cosmic string evolution are shown to correspond to the infinite temperature limit of the theo
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Topological defects appear in a great variety of system
from condensed matter laboratory experiments to the ea
Universe. Their importance in phase transitions in th
laboratory is known to be fundamental, and their presen
in the early Universe may be the key to many of th
unsolved questions in standard cosmology.

However, in spite of the universal relevance of topo
logical defects, much about the fundamental descriptio
of their formation and evolution remains qualitative
This is a reflection of the complexities involved in firs
principle studies, owing to their nature as nonperturbativ
excitations of quantum field theories.

Particularly interesting for cosmology are stringlike
topological defects [1]. Motivated by the study of thei
creation in the early Universe [2], a variety of experiment
has been recently developed with the aim of studyin
vortex string formation in liquid crystals [3], superfluid
4He [4] and 3He [5] systems. Their new results permi
us to test with unprecedented precision theoretical ide
about defect formation and evolution.

From a theoretical standpoint, cosmic strings and oth
topological defects have been traditionally thought to b
produced at phase transitions in the early Universe as
result of the formation of correlated domains [6]. More
recently a refinement of this scenario [7] has been gaini
support, that most topological defects existing below th
phase transition are, in fact, survivors of an equilibrium
population of unstable defects existing above the pha
transition as nonlinear excitations of the fields. In orde
to exist at low energies these field configurations nee
to be frozen in by some nonequilibrium process, whic
is context dependent. In a continuous phase transitio
like the superfluid transition in4He, this process may
in addition be helped by the critical slowing down in
the response of the fields close to the critical point. A
estimate of the defect density hence produced is usua
achieved given the correlation length of the field a
the time of freeze-out. By assigning random phases
different domains and connecting by the path of minimum
phase gradient, a network of defects can in principle b
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constructed. This picture generates order of magnitud
estimates that successfully predicted the defect densiti
observed in the helium experiments.

In practice higher correlations in the phase structure o
the fields exist and can change the picture considerab
As an illustration of the shortcomings of simply using
the correlation length to predict produced defect densitie
note that similar densities would be estimated if the defe
network were frozen in above or below the critical point
provided that the correlation length was chosen to be th
same in both cases. This is clearly not what is observe
experimentally [4], suggesting that the string network
must be very different in two circumstances where th
domain structure can be expected to coincide.

In order to match theory to future, more accurate mea
surements, as well as for the sake of theoretical unde
standing, it is highly desirable to generate more detaile
predictions for the string density formed at phase trans
tions. In cosmology and in the laboratory, equilibrium
is the natural starting point. If we know the statistics o
strings at any given temperature the reference to the d
main structure in the fields becomes obsolete, while th
role of nonequilibrium in freezing in the string network, at
least in some scales, can be expected to hold as usual.

In this Letter we present the full characterization o
the behavior of the string densities with temperatur
in the U(1) scalar field theory. In doing so we go
beyond existing studies in theXY (see, e.g., [8]) model,
which belongs to the same universality class, especial
in determining the behavior of infinite strings, measuring
critical exponents associated with string densities an
confronting our findings with cosmological scenarios o
defect formation.

We first determine the field thermodynamics and locat
the critical point. In order to drive the system to
equilibrium we evolved it stochastically according to

s≠2
t 2 =2dfi 2 m2fi 1 lfi

√X
j

f2
j

!
1 h≠tfi ­ ji ,

(1)
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where hi, jj [ 1, 2. The stochastic variablejisx, td is
taken to be Gaussian, characterized by

kjisx, tdl ­ 0 , (2)

kjisx, tdjjsx0, t0dl ­
2h

b
dsx 2 x0 ddst 2 t0ddij . (3)

These relations ensure that detailed balance applies
equilibrium, which will result, independently of the choice
of initial conditions, for large times at temperature1yb.
We evolved the system Eqs. (1)–(3) using a stagger
leapfrog method, on a lattice of sizeN3 ­ 1003. We
chose the lattice spacing to bedl ­ 0.5 and setl ­ 1,
m2 ­ 1. We verified that the correlation length wa
always resolved by at least four points in each line
dimension, apart from the cases whenb ø 1. Around
the critical point all physical scales become much larg
than the lattice spacing. Universal quantities can th
be measured and shown explicitly to be independent
this ultraviolet cutoff. Away from the critical point, at
high or low temperature, universality is lost in genera
There, the results lose some of their physical meani
but retain model properties that are interesting from
theoretical point of view. This will be the case of th
infinite temperature limit of the theory.

An equivalent equilibrium state could have been o
tained using lattice Monte Carlo methods [9]. From th
equilibrium point of view, the second order time deriva
tive is redundant. However, this work is intended to b
the precursor to nonequilibrium studies of the relativist
field theory, where it is more natural to use a Langev
method such as ours, and the field equations are natur
second order in time derivatives.

We decide when the system has reached equilibriu
by monitoring several quantities associated with differe
length scales. We measure the kinetic energy of t
system and check for equipartition. This characteriz
the smallest scales in the sample. We monitor the stri
densities, associated with intermediate length scales,
we measure the phase distribution functions across
whole volume. By making sure that these three quantit
have reached asymptotic average values we conclude
the system is in equilibrium. The temperature of the ba
coincides with that measured using equipartition.

The transition between a system displaying a preferr
random direction in its manifold of field minima at low
temperature and a flat phase distribution, characteristic
theUs1d symmetry, is shown in Fig. 1.

Although appealing the phase probability plots of Fig.
do not permit a precise determination of the critica
temperature or any of its associated critical exponen
The critical point can more easily be found by observin
the temperature variation of

kjfV jl ­

*vuut X
i­1,2

µ
1
V

Z
V

dx fisxd
∂2

+
, (4)

where the angular brackets denote ensemble averag
obtained in practice by averaging over many independe
in
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FIG. 1. Field phase probability distribution betweenb ­ 1.1
(flattest) andb ­ 2.9 (sharpest). Atb . bc the distribution
peaks around a random phase and theUs1d symmetry are
spontaneously broken.

measurements,200 1000, corresponding to well sepa-
rated times. The variation of Eq. (4) and its derivative
with temperature is shown in Fig. 2. In particular, we se
that the derivative diverges at the critical point.

The critical temperature can be measured by assumi
that Eq. (4) behaves like

kjfV sbdjl ­ Asb 2 bcda , (5)

which should hold immediately below the critical tempera
ture. By fitting our data at several temperatures to Eq. (5
for different inverse critical temperaturesbc, we can deter-
mine its minimalx2 value. Simultaneously we obtain the
critical exponenta. The critical values hence determined
arebc ­ 1.906 6 0.008 anda ­ 0.43 6 0.07. The uni-
versal value ofa is in reasonable agreement with renor
malization group calculations [10].

Having measured the critical behavior in the fields w
want to analyze how vortex string densities vary with th

FIG. 2. The variation ofkjfV jl and its derivative, withb.
Squares denote measured points.
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temperature. We assume ergodicity of the field evolutio
once equilibrium is reached. Using this fact we analyz
at given time intervals the phase of the complex field, an
associate a vortex to each 2D lattice cell where theUs1d
phase winds through2p. We then proceed to connect the
vortices and construct the string network. Given a strin
network, we measure the string density in loops and lo
string, for different values of the bath temperature aroun
the phase transition.

Figure 3 shows how the total equilibrium density pe
lattice link of strings,rtot, as well as the density of long
and short strings (rinf and rloop, respectively) changes
with temperature. These quantities allow us a dire
comparison to algorithms of cosmic string formation. W
observe a dramatic change in the behavior of the stri
system across the phase transition. The curves of Fig
suggest that we can decompose strings into two distin
populations, one of loops, say, strings smaller than
certain cutoff lengthL` , N2 and another population
consisting of much longer strings. We will refer to the
former as the string loops and to the latter, owing to th
terminology in cosmology, as infinite strings.

At bc all three densities display abrupt changes
their behavior. These changes are phase transitions
in all three cases the derivatives of the densities pres
discontinuities at the critical point. Even more remarkab
is the fact that the appearance of infinite string seems
be linked to the criticality in the fields. The very sharp
rise in the infinite string density at the critical point may
suggest that the phase transition associated with it m
actually be discontinuous in the infinite volume limit.

In order to clarify this question we measured the infinit
string density variation withb for various values of
L`. The results are shown in Fig. 4. The temperatu
at which infinite strings first appear clearly depends o
the choice ofL`, getting closer tobc as it increases.
We also verified that for smaller lattice sizes infinite
string first appeared at lower temperatures; eg., in a203

FIG. 3. The dependence ofrtot, rloop , rinf on b.
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computational domain there was infinite string as soo
as b ­ 2.3. Both these variations supply evidence tha
as the volume is increased the temperature at whic
infinite strings first appear migrates towards the critica
point implying a discontinuous phase transition inrinf.
At present it is, however, impossible to perform such
extrapolation with full confidence.

We can establish that the phase transition in the field
and in the string densities coincide by finding the critica
point and exponents for the latter.

At the critical temperature the density of strings drop
suddenly and keeps falling for lower temperatures. Th
decay ofrtot, which coincides withrloop , is excellently
described by the exponential law

rtotsbd ­ rtotsbcde2sb2bcdE , (6)

where rtotsbcd . 0.2 is a universal number (see, e.g.,
[8] for a very different study yielding the same result)
and E ­ 1.836, implying that at temperatures below the
critical point strings are Boltzmann suppressed. At low
temperatures (in practice forb * 6) there is long-range
order and no strings survive.

Just above the critical temperature the variation of th
string densities can be best characterized by defining t
quantitydr ; frsT d 2 rsTcdgyrsTcd. The behavior of
the infinite string densityrinf is well described by an
ansatz similar to Eq. (5),drinf ~ sT 2 Tcdginf . Note the
change fromb in Eq. (5) toT . We find ginf ­ 0.25 6

0.01 and bc ­ 1.911 6 0.001, in agreement with all
previous estimates. Forrtot we finddrtot ~ sT 2 Tcdgtot ,
with bc ­ 1.912 6 0.002 andgtot ­ 0.39 6 0.01.

For temperatures well above the phase transition th
loop density can be well described by a quadratic form

rloopsbd . rloops0d

"
1 1

b

3
2

1
3

√
b

2

!2#
, (7)

whererloops0d . 1y12. This corresponds to a fraction of
25 6 1% of all strings in loops forb ­ 0.

FIG. 4. The dependence ofrinf on b, for several values of
L`, measured in lattice units.
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The variations are more complicated forrtot andrinf.
The large size of the derivatives close tob ­ 0 makes it
hard to approximate the curves, and a good fit can on
be achieved by a polynomial of large degree, typical
9 or 10, with coefficients of alternating signs. Indeed
the behavior looks nonpolynomial instead, which woul
mean that there is no standard high-temperature expans
for rinf. This is explicable since there is no loca
operator which can distinguish an infinite string, and thu
we would not necessarily expect a polynomial behavi
aroundb ­ 0.

Particularly interesting is theT ! ` limit. Then
rtot ! 1y3 andrinfyrtot ! 75 6 1%. These results co-
incide with those obtained from canonical Vachaspa
Vilenkin (VV) algorithms for simulating string formation
in the early Universe [11–13]. Their underlying motiva
tion stems from the picture that strings result from rando
phase fluctuations within spatial domains of a given siz
Typically, the complex field is given unit modulus, with
phases assigned randomly to each site on a cubic latt
There are variations on this theme: e.g., the continuo
phase may be approximated by three values [11], whi
leads to slightly different values ofrtot and rinfyrtot.
Nonetheless, assigning phases randomly to each lat
site corresponds precisely to the infinite temperature lim
and thus VV algorithms generate ensembles of string
T ­ `. These ensembles are used as initial conditio
for the free evolution of the string network, following the
numerical solution to the classical dynamics of relativis
tic strings [1]. Thus, numerical simulations of this type
model an instantaneous quench from infinite to zero tem
perature. While these initial conditions are ultimately un
physical, the network of strings is observed to approa
rapidly a self-similar evolution, which serves to disguis
the initial state. Alternatively, if one wished to describ
a network of strings evolving from an equilibrium state
below Tc, the VV algorithm would be a completely inap-
propriate starting point. In practice, to obtain the valu
of rinfyrtot corresponding to finiteT , one could remove
a fraction of the infinite strings from a network gener
ated using VV algorithms. This procedure was first im
plemented in [14] to study the scaling properties of strin
networks. In practice it may miss important features o
the actual equilibrium distribution, though.

Finally, our observation that the phase transition in th
fields may coincide with the point where infinite string
starts forming suggests that strings do indeed play a fu
damental role in the critical behavior of the system, a
has been suggested so often in the literature [15–1
Statistical studies of string networks [19], however, com
monly identify the critical point in string densities with
the Ginzburg temperatureTG , Tc. Above we presented
evidence for the coincidence of the critical behavior in th
ly
ly
,

d
ion
l
s

or

ti-

-
m
e.

ice.
us
ch

tice
it,
at
ns

-

-
-

ch
e
e

e

-
-
g
f

e

n-
s
8].
-

e

fields and in the strings atTc. We hope to clarify these
questions in a future publication, where we analyze th
string network’s scale dependence, through the propert
of the string length distribution.
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