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Thermodynamics of Cosmic String Densities in U(1) Scalar Field Theory
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We present a full characterization of the phase transition in U(1) scalar field theory and of the asso-
ciated vortex string thermodynamics in 3D. We show that phase transitions in the string densities exist
and measure their critical exponents, both for the long string and the short loops. Evidence for a natural
separation between these two string populations is presented. In particular, our results strongly indicate
that an infinite string population will only exist above the critical temperature. Canonical initial condi-
tions for cosmic string evolution are shown to correspond to the infinite temperature limit of the theory.
[S0031-9007(97)05189-2]
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Topological defects appear in a great variety of systemsonstructed. This picture generates order of magnitude
from condensed matter laboratory experiments to the earlgstimates that successfully predicted the defect densities
Universe. Their importance in phase transitions in theobserved in the helium experiments.
laboratory is known to be fundamental, and their presence In practice higher correlations in the phase structure of
in the early Universe may be the key to many of thethe fields exist and can change the picture considerably.
unsolved questions in standard cosmology. As an illustration of the shortcomings of simply using

However, in spite of the universal relevance of topo-the correlation length to predict produced defect densities
logical defects, much about the fundamental descriptiomote that similar densities would be estimated if the defect
of their formation and evolution remains qualitative. network were frozen in above or below the critical point,
This is a reflection of the complexities involved in first provided that the correlation length was chosen to be the
principle studies, owing to their nature as nonperturbativesame in both cases. This is clearly not what is observed
excitations of quantum field theories. experimentally [4], suggesting that the string network

Particularly interesting for cosmology are stringlike must be very different in two circumstances where the
topological defects [1]. Motivated by the study of their domain structure can be expected to coincide.
creation in the early Universe [2], a variety of experiments In order to match theory to future, more accurate mea-
has been recently developed with the aim of studyingsurements, as well as for the sake of theoretical under-
vortex string formation in liquid crystals [3], superfluid standing, it is highly desirable to generate more detailed
“He [4] and3He [5] systems. Their new results permit predictions for the string density formed at phase transi-
us to test with unprecedented precision theoretical ideasons. In cosmology and in the laboratory, equilibrium
about defect formation and evolution. is the natural starting point. If we know the statistics of

From a theoretical standpoint, cosmic strings and othestrings at any given temperature the reference to the do-
topological defects have been traditionally thought to bamain structure in the fields becomes obsolete, while the
produced at phase transitions in the early Universe as m@le of nonequilibrium in freezing in the string network, at
result of the formation of correlated domains [6]. More least in some scales, can be expected to hold as usual.
recently a refinement of this scenario [7] has been gaining In this Letter we present the full characterization of
support, that most topological defects existing below theéhe behavior of the string densities with temperature
phase transition are, in fact, survivors of an equilibriumin the U(1) scalar field theory. In doing so we go
population of unstable defects existing above the phaskeyond existing studies in thgY (see, e.g., [8]) model,
transition as nonlinear excitations of the fields. In ordemwhich belongs to the same universality class, especially
to exist at low energies these field configurations neeih determining the behavior of infinite strings, measuring
to be frozen in by some nonequilibrium process, whichcritical exponents associated with string densities and
is context dependent. In a continuous phase transitiorgonfronting our findings with cosmological scenarios of
like the superfluid transition irfHe, this process may defect formation.
in addition be helped by the critical slowing down in  We first determine the field thermodynamics and locate
the response of the fields close to the critical point. Anthe critical point. In order to drive the system to
estimate of the defect density hence produced is usuallgquilibrium we evolved it stochastically according to
achieved given the correlation length of the field at
the time of freeze-out. By assigning random phases Q2 — v2)¢, — m?¢; + Mbi(z ¢]2> + 0 = &,
different domains and connecting by the path of minimum 7
phase gradient, a network of defects can in principle be @
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where {i, j} € 1,2. The stochastic variabl&;(x, ) is (o YoY: Jtmmm—
taken to be Gaussian, characterized by

(&i(x,1)) =0, 2)

(& &K 1) = %" sx — )5 — 5. (3)

These relations ensure that detailed balance applies in
equilibrium, which will result, independently of the choice
of initial conditions, for large times at temperaturgg.

We evolved the system Eqgs. (1)—(3) using a staggered-
leapfrog method, on a lattice of siz&> = 100°. We 0.02
chose the lattice spacing to & = 0.5 and setA = 1,

m? = 1. We verified that the correlation length was

always resolved by at least four points in each linear 0 AT i
dimension, apart from the cases whgn< 1. Around 0051 1'5ﬁ21§'5h:;51'5(r‘;d‘;'5 5556

the critical point all physical scales become much larger _ _I_) T

than the lattice spacing. Universal quantities can ther‘f:G& 1-t F'%'d Fihézlsge PLObab"ltty dftflbgtlont%etvé?finz tl_-l
be measured and shown explicitly to be independent o eaakess Lr%ﬁn[él N réngsogrppeﬁa)s'e a';r(?d th[éf) s?/m:ﬁer{r; ';ré
this ultraviolet cutoff. Away from the critical point, at spontaneously broken.

high or low temperature, universality is lost in general.

There, the results lose some of their physical meaningn

but retain model properties that are interesting from a easurements200 1000, corresponding to well sepa-
. el prop L 9 rated times. The variation of Eq. (4) and its derivative
theoretical point of view. This will be the case of the

infinite temperature limit of the theor with temperature is shown in Fig. 2. In particular, we see
P Y. that the derivative diverges at the critical point.

An equivalent equilibrium state could have been ob- The critical temperature can be measured by assumin
tained using lattice Monte Carlo methods [9]. From the P y 9

o . . . . that Eq. (4) behaves like
equilibrium point of view, the second order time deriva-
tive is redundant. However, this work is intended to be (pv(B) = A(B — B, (5)

the precursor to nonequilibrium studies of the relat'V'St',thich should hold immediately below the critical tempera-

fleldhtr:jeory,hwhere Itis rgo;e ?_a}gral to use a Langevi jure. By fitting our data at several temperatures to Eg. (5),
method such as ours, and the field equations are naturaly, yiferent inverse critical temperatur@s, we can deter-

second order in time derivatives. mine its minimaly? value. Simultaneously we obtain the

We c{eci_de when the sys't.em has r(_aached. equ,”ibriurEriticaI exponent. The critical values hence determined
by monitoring several quantities associated with d|fferen%reﬁ — 1.906 + 0.008 anda = 0.43 + 0.07. The uni-

length scales. We measure the kinetic energy of thgeqq yalue ofx is in reasonable agreement with renor-
system and check for equipartition. This characterizeg,i>ation group calculations [10].

the smallest scales in the sample. We monitor the string ,ing measured the critical behavior in the fields we

densities, associated with '|nt('arm_ed|ate Iength scales, angl, o analyze how vortex string densities vary with the
we measure the phase distribution functions across the

whole volume. By making sure that these three quantities
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have reached asymptotic average values we conclude that o b
the system is in equilibrium. The temperature of the bath j
coincides with that measured using equipartition. 0.7 ,w: 0'25;1(!1_?_0

The transition between a system displaying a preferred 0.6 ;

random direction in its manifold of field minima at low

temperature and a flat phase distribution, characteristic of § 0.5 i
the U(1) symmetry, is shown in Fig. 1. = ;
. - . o, 0.4
Although appealing the phase probability plots of Fig. 1 g

do not permit a precise determination of the critical 0.3
temperature or any of its associated critical exponents.
The critical point can more easily be found by observing
the temperature variation of 0.1

0.2

_ l - 2 o4 _
(lpvl) = <Ji§2<vadx¢z(x)> > (4) 1.2 1.4 1.6 1.8 12? 22 2.4 26 28

where the angular brackets denote ensemble averagingig. 2. The variation of(|¢y|) and its derivative, withg.
obtained in practice by averaging over many independerquares denote measured points.
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temperature. We assume ergodicity of the field evolutiorcomputational domain there was infinite string as soon
once equilibrium is reached. Using this fact we analyzeas 8 = 2.3. Both these variations supply evidence that
at given time intervals the phase of the complex field, andhs the volume is increased the temperature at which
associate a vortex to each 2D lattice cell where®hé) infinite strings first appear migrates towards the critical
phase winds throughwr. We then proceed to connect the point implying a discontinuous phase transition ggy.
vortices and construct the string network. Given a stringAt present it is, however, impossible to perform such
network, we measure the string density in loops and longxtrapolation with full confidence.

string, for different values of the bath temperature around We can establish that the phase transition in the fields
the phase transition. and in the string densities coincide by finding the critical

Figure 3 shows how the total equilibrium density perpoint and exponents for the latter.
lattice link of strings,p., as well as the density of long At the critical temperature the density of strings drops
and short strings dinsr and pioop, respectively) changes suddenly and keeps falling for lower temperatures. The
with temperature. These quantities allow us a directlecay ofp, Which coincides withpy,p, is excellently
comparison to algorithms of cosmic string formation. Wedescribed by the exponential law
observe a dramatic change in the behavior of the string (B) = (B.)e~(B=BIE (6)
system across the phase transition. The curves of Fig. 3 Prot Prort Pe ’
suggest that we can decompose strings into two distinsvhere p(B.) = 0.2 is a universal number (see, e.g.,
populations, one of loops, say, strings smaller than 48] for a very different study yielding the same result)
certain cutoff lengthL.. ~ N2 and another population and E = 1.836, implying that at temperatures below the
consisting of much longer strings. We will refer to the critical point strings are Boltzmann suppressed. At low
former as the string loops and to the latter, owing to théemperatures (in practice fg8 = 6) there is long-range
terminology in cosmology, as infinite strings. order and no strings survive.

At 8. all three densities display abrupt changes in Just above the critical temperature the variation of the
their behavior. These changes are phase transitions afing densities can be best characterized by defining the
in all three cases the derivatives of the densities presesuantity5p = [p(T) — p(T.)]/p(T.). The behavior of
discontinuities at the critical point. Even more remarkablethe infinite string densityp;,s is well described by an
is the fact that the appearance of infinite string seems tansatz similar to Eq. (5% pint = (' — T.)”"". Note the
be linked to the criticality in the fields. The very sharp change fromg in Eq. (5) to7. We find yiy,s = 0.25 =
rise in the infinite string density at the critical point may 0.01 and 8. = 1.911 = 0.001, in agreement with all
suggest that the phase transition associated with it magrevious estimates. Fok, we findSpo < (T — T.)",
actually be discontinuous in the infinite volume limit. with 8. = 1.912 = 0.002 andy: = 0.39 * 0.01.

In order to clarify this question we measured the infinite For temperatures well above the phase transition the
string density variation withg for various values of loop density can be well described by a quadratic form
L... The results are shown in Fig. 4. The temperature B 1({B 2
at which infinite strings first appear clearly depends on  pioop(B) = ploop(O){l + 3~ §(7> } @
the choice ofL., getting closer toB. as it increases.

We also verified that for smaller lattice sizes infinite wherep,,,(0) = 1/12. This corresponds to a fraction of
string first appeared at lower temperatures; eg., #0%a 25 + 1% of all strings in loops fol8 = 0.
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FIG. 3. The dependence oy, pioop, Pinf ON B. L.., measured in lattice units.
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The variations are more complicated for,, and p;,¢.  fields and in the strings a.. We hope to clarify these
The large size of the derivatives closeo= 0 makes it questions in a future publication, where we analyze the
hard to approximate the curves, and a good fit can onlgtring network’s scale dependence, through the properties
be achieved by a polynomial of large degree, typicallyof the string length distribution.

9 or 10, with coefficients of alternating signs. Indeed, Our numerical studies were performed at the Cray
the behavior looks nonpolynomial instead, which wouldT3E of the Department of Computer Science, T. U. of
mean that there is no standard high-temperature expansi@erlin. We thank A. Yates for his string tracing rou-
for pme. This is explicable since there is no local tine. N.D.A. thanks E. Copeland for useful comments.
operator which can distinguish an infinite string, and thud.. M. A. B. is supported by thédeutsche Forschungsge-
we would not necessarily expect a polynomial behaviomeinschaft N.D.A. is supported by JNICPRrograma
aroundgB = 0. Praxis XXI, Contract No. BD/2794/93-RM. M. H. is

Particularly interesting is thel' — « limit. Then supported by PPARC (U.K.), Grants No. B/93/AF/1642,
Prot — 1/3 andpins/pror — 75 * 1%. These results co- No. GR/L12899, and No. GR/K55967. This work was
incide with those obtained from canonical Vachaspatipartially supported by the European Science Foundation.
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