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A “black hole sector” of nonperturbative canonical quantum gravity is introduced. The quantum
black hole degrees of freedom are shown to be described by a Chern-Simons field theory on the
horizon. It is shown that the entropy of a large nonrotating black hole is proportional to its horizon
area. The constant of proportionality depends upon the Immirzi parameter, which fixes the spectrum of
the area operator in loop quantum gravity; an appropriate choice of this parameter gives the Bekenstein-
Hawking formula S = A/4¢%. With the same choiceof the Immirzi parameter, this result also
holds for black holes carrying electric or dilatonic charge, which are not necessarily near extremal.
[S0031-9007(97)05183-1]
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The statistical mechanical origin of black hole entropytwo sets of ideas by introducing certain boundary condi-
has drawn a great deal of attention recently (for reviewstions on regions bounded by 2-spheres. Finally, Carlip’s
see, for example, [1-3]). Most of the work based on[1] considerations of surface states in the context of three-
string theory has focused on the extremal and neadimensional black holes also played a suggestive role in
extremal cases. The purpose of this Letter is to introducéhe classical part of our treatment.

a new framework, based on nonperturbative quantum Let us begin with uncharged, nonrotating black holes.
gravity [4,5], that enables one to treat general black holes sector of the classical phase space corresponding to
in four dimensions. an isolated, nonrotating black hole can be constructed as

The basic ideas can be summarized as follows. We firdbllows. Consider the manifold (with boundary) repre-
introduce a sector of the classical theory that correspondsenting the asymptotic region of Fig. 1. We refer to the
to isolated, nonrotating black holes and find the associateduter boundary ag and the inner boundary a&f. Our
phase space description. Then we quantize the resultirdynamical fields are a soldering fora4’ for SL(2,C)
phase space. Finally, we isolate the quantum states thgpinors and an SL(2,C) connectio,® [4,14]. (In a
describe the geometry of the horizon. It is these degreedassical solution,g., = o2 o is the Lorentzian
of freedom that account for the black hole entropy in ourspace-time metric and,,” is the self-dual connection that
approach. We find that the statistical mechanical entropyperates only on unprimed spinors.) @nfields are re-
of the black hole is proportional to its horizon area. quired to satisfy the standard asymptotically flat boundary

Recently, nonperturbative techniques have led to @onditions. The conditions oft{, on the other hand, are

quantum theory of geometry in which operators corre-more subtle and will be discussed in detail elsewhere. The
sponding to lengths, areas, and volumes have discrete

spectra. Of particular interest are the spin-network states
associated with graphs in 3-space with edges labeled by
spinsj = % 1,..., and vertices labeled by intertwining
operators [6,7]. If a single edge punctures a 2-surface
transversely, it contributes an area proportional to
JJj(j + 1) [8,9]. Over the last two years, this picture
led to certain constructions which in turn inspired the
present work. First, while working with a space-time re-
gion with boundary in Euclidean general relativity with
nonzero cosmological constant, Smolin [10] was led to
introduce gravitational surface states which could be iden-
tified with the states of the SU(2) Chern-Simons theory
on a surface with punctures. Second, Rovelli [11], moti-
vated by the work of Krasnov [12], estimated the number
of spin-network states which endow a 2-sphere with a
given, large area and applied this estimate to black hole
horizons. Third, Krasnov [13] proposed to combine the FIG. 1. Example of a spacetime of interest.
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key requirements are as follows: (B is a null surface sists of real field§”A,,”S,,) that are asymptotically flat
with respect to the metrig,,; (ii) on a “finite patch”A  at infinity and satisfy the following condition &t
of H, the area of any cross section is a constagt,the
Weyl spinor is of Petrov types 2-2, and its only nonzero YFOR = — 4. =ab> (2)
component,¥,, is given by, = 27 /Ag; and (iii) the $ o
2-flats onA, orthogonal to the two principal null direc- Where underbars denote pullbacks So This in tumn
tions of the Weyl tensor, span 2-spheres, and the pullbadPlies that the restriction ofA to S yields a “’;‘duc_'blf’
of the connectiom, to these 2-spheres is real. ponnectlon, i.e., one satlsfy|.rigar = ( for some “radial

In what follows, we focus only on the patt of H internal \{ectorr_. A_Ithough |t_|s not necessary to do so,
and the corresponding regia of the spacetime (see for technical simplicity, we fixr on S using the SU(2)
Fig. 1). Roughly, condition (i) implies that there is no 9auge freedom. Then the gauge group on the boundary
gravitational radiation falling inta\ (i.e., the black hole 1S reduced to U(1) and only the component of (2) is
is “isolated” there), while the first part of (iii) implies that nontrivial. , _
it is “nonrotating.” The three conditions together imply ~ On this manifestly real phase space, the symplectic
that, on partial Cauchy surfaces (suchMisthat intersect  Structure derived from (1) is given by
A in the preferred 2-spheres, the 2-spheres are_marginaIIyQ|(YA’YE)((57A, 873),(87A,873)))
outer trapped surfaces. These boundary conditions have |
been extracted from the geometrical structure available = — ] Tr[87S A 8YA" — 873 A 87A]
at the Schwarzschild horizon. However, we dot 87G Jm

require staticity and allow gravitational waves in the k ,
exterior region. Therefore, our phase space will be infinite o S Tr[87A A 87AT], (3)
dimensional; the boundary conditions are quite weak.

However, these boundary conditions are strong enough wherek = As (4)
to imply that the variational principle is well defined. 8myG

More precisely, we can add to the standard self-duais later identified with the level of the Chern-Simons
action [14] a surface term so that the total action is functheory. Up to a numerical coefficient, is simply the
tionally differentiable and vyields precisely the Einsteinarea of the horizon of black hole measured in the units

equations, of Planck area¢? = G [13]. Note that, in addition
i i Ag to the familiar volume term, the symplectic structure
S(o,A) = 887G ]M T AF) - 87G 4 has a surface term which coincides with the symplectic
structure of the Chern-Simons theory.
X[ Tr(A A dA + EA AAA A). The theory has three sets of first class constraints. A
A 3 careful analysis shows that they generate the following

(1) gauge transformations: (i) SU(2) internal rotations that

HereSaf = 207, a,,” while F,;,,” is the curvature of reduce to U(1) rotations preserving a fixed vectoon
the connectiom, andG is Newton’s constant. (Through- the boundarnys; (ii) spatial diffefomorphisms that leave
out we have set = i = 1.) Note that the required sur- invariant; and (iii) canonical transformations generated by
face term is precisely the action of Chern-Simons theorythe scalar constraint with lapse fields approaching zero
It is straightforward to cast the theory into Hamiltonian at spatial infinity and onS. Somewhat surprisingly, it
form. The basic phase space variables are the restrictiotsrns out that condition (2), the pullback t® of the
of 3 andA to the spatial hypersurfadd with a boundary type 2-2 requirement, ensures full gauge invariance on
S. (Vector densities, dual to the pullback &f are the the boundary. Without it, as in the case of the scalar
familiar density weighted triads.) Unfortunately, the re- constraint, only the internal rotations whose generators
striction toM of the self-dual connectiod is a complex vanish onS could be regarded as gauge.
valued SU(2) connection and the functional analysis re- It is intuitively clear that not all the degrees of
quired to handle complex connections in quantum theoryreedom described by fieldsA, ¥3 are relevant to the
is not yet fully developed. problem of black hole entropy. In particular, there are

Therefore, at this stage, it is easier to make a transfor'volume” degrees of freedom in the theory corresponding
mation to real variables [15]. OM, A can be expressed to gravitational waves far away froth which should not
in terms of real fields ag\, = I', — iK,, whereI' is  contribute. It has often been argued (see, e.g., [3] and
the three-dimensional spin connection compatible with theeferences therein) that it is the degrees of freedom “living
triad field andK is the extrinsic curvature o#/. This  on the horizon” that should account for the entropy. We
suggests [16] that we introduce real phase space variableslopt this viewpoint in our approach.
YA, =T, — yK, and?2,, = (1/y)24, wherey is a In the classical theory that we have described, the vol-
positive real number known as Immirzi parameter. Thenume and surface degrees of freedom cannot be separated:
our boundary conditions imply that the phase space corall fields onS are determined by fields in the interior of
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M by continuity. However, in the quantum theory, the that the states be invariant under diffeomorphisma/of
fields describing geometry become discontinuous in certhat leaveS invariant and under motions generated by
tain precise sense [6], and the fields ®rare no longer the Hamiltonian constraint smeared with any lapse field
determined by fields id/; in this case there are indepen- that vanishes af and at infinity. Thus, the following
dent degrees of freedom “living” on the boundary. Thesephysical picture emerges. For each <Btof finitely
surface degrees of freedom are the ones that account farany punctureg labeled by sping,,, there is a subspace
black hole entropy in our approach. Hyp of volume states having a basis given by open spin
To quantize the theory, we first construct a Hilbertnetworks whose edges interssconly at these punctures,
space " of volume states and a Hilbert spadé > of  where they are labeled by the spifs Similarly there
“surface” states, and then impose constraintsddl’ ® g g subspacéiy consisting of quantum states of U(1)

JH'® to obtain the space of physical states. We t@€  Chern-Simons theory on the punctured surfsce The
to consist of certain square-integrable functions on thegtal physical Hilbert space is given by

space of generalized SU(2) connections [6]Mrmodulo v s
gauge transformations that are the identitySonThe form oo = Dr[FHp ® Hp]
of the Hilbert space/{ S of surface states is motivated by phy gauge

the fact that in the quantum theory we wish to impose tht?Nhere “
boundary condition (2) as an operator equation. That i
given a spin network stat®y in " and a state¥ in
IS, the quantum version of the component of Eq. (2)
should read

gauge” means internal SU(2) rotations that reduce
U(1l) on S, diffeomorphisms preserving, and the
motions generated by the Hamiltonian constraint. The
quotient by diffeomorphisms identifies any two Hilbert
spaces associated with ses that can be mapped into
each other by a diffeomorphism ¢h Thus, what matters
is only the spins labeling punctures, not the locations
(5) of individual punctures. Unfortunately, we do not have
. . _ yet a complete control over the quantum Hamiltonian
The structure of this equation implies thaty and  ¢qngtraint, despite the recent progress on this front [17].
Vs should be eigenstates & ,, - r and £, - 7, Te- T proceed, we make a rather weak assumption about the
spectively. Now, the “polymer nature” of quantum ge- qyantum dynamics: namely, generically there is at least
ometry in M implies that eigenvalues ok, - r are  one solution of this constraint ity ® F5 for any set

A N N
<1®—SFab-r+2ab-r@l)%@\m:o.
27y -

distributional, given by [9] P of punctures labeled by spins.
5 . o2 We are not interested in this full Hilbert space since
8 lp Z Jid™ (%, i) nap (6) it includes, e.g., states of gravitational waves far away

) ) from A. Rather, we wish to consider only states of the
for some pointsp; on S, where j; are half-integerss®>  horizon of a black hole with large arelg. Thus we trace
is the delta distribution or§, and 7., the Levi-Civita  gyer the volume states to construct a density makix
density onS. Therefore, (5) implies that the surface statesgescribing a maximal-entropy mixture of surface states for
Vs have support only on generalized connections thafyhich the area of the horizon lies in the range = 3.
are everywhere flat except at a finite number of pointsrpe statistical mechanical black hole entropy is then given

pi. It turns out that such generalized connections car Soh = —Tr ppn IN pon. As usual, this can be computed
be identified with ordinary connections with distributional gimply by counting statessy, = In Ny, whereNy, is the

curvature. Since the surface symplectic structure is tha{ymper of Chern-Simons surface states satisfying the area
of Chern-Simons theory, for any fixed choice constraint.

P ={(p1sJp)s-s(Pusip )} (7) Fortunately, the eigenvalues of the area operator are
explicitly known. For the case now under consideration,

_ . . §
of points in S labeled by spins, we wistH{ S to have a they are given by [8,9]

subspace{$ given by the space of states of U(1) Chern-

Simons theory on a sphere with punctugedabeled by .
spinsj,. The total spaceH S is the direct sum of these ap = 8myl} Z VipGip + 1), (8)
subspaces. The prequantization condition of the Chern- b
Simons theory requires that the “leved"defined in (4) be where j, are the spins labeling the punctures as in (7).
an integer. Thus,Ny, = > p Np, where the summation extends over
Note now that(k/27)E is the generator of internal those sets of labeled punctursfor which Ag — =
rotations in Chern-Simons theory. Thus, the meaningip = Ag + €% and Np is the dimension of the Hilbert
of (5) turns out to be rather simple: it ensures that thespace of the Chern-Simons theory associated \fth
volume and surface states are “coupled” in precisely thélote that even thoughs = 87k{? wherek is an integer,
correct way so that the total state is invariant under U(1for large k there exist manyap satisfying the area
internal rotations af. The remaining constraints require constraint. Using the fact (from Chern-Simons theory)

906



VOLUME 80, NUMBER 5 PHYSICAL REVIEW LETTERS 2 EBRUARY 1998

that for a large number of punctures the dimengign of (iv) Our approach provides only an “effective” descrip-
H; grows as tion of a quantum black hole, for we first isolated a black
hole sector classically and then quantized that sector. The
Np ~ l_[ 2j, + 1), (9) issue of extracting this sector from a complete theory of
irE€P guantum gravity is yet to be explored. Nonetheless, it
it is straightforward to calculate the entropy. For lafge is rather striking that subtle results from quite different
it is given by areas—classical general relativity, quantum geometry, and
Chern-Simons theory—fit tightly without a mismatch to
Yo In2 ; . .
Sbh = —5 — As, Yo = —F=, (10)  provide a coherent picture of the microstates of a black
4€py w3

) hole. The detailed implications of this picture for the black
where the appearance gfcan be traced back directly to pole evaporation process are now being explored [19].
the formula for the eigenvalues of the area operator, (8). \we are grateful to Don Marolf and Carlo Rovelli for
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