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We show that the classical dynamics of independent particles can determine the quantum prope
of interacting electrons in the ballistic regime. This connection is established using diagramma
perturbation theory and semiclassical finite-temperature Green functions. Specifically, the orb
magnetism is greatly enhanced by the combined effects of interactions and finite size. The presenc
families of periodic orbits in regular systems makes their susceptibility parametrically larger than th
of chaotic systems, a difference which emerges from correlation terms. [S0031-9007(97)05133-8
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The connection between classical dynamics and wa
interference has recently attracted attention in many fiel
of physics [1], including atomic, mesoscopic, and optic
physics. A central question is to what extent the quantu
properties of classically regular and chaotic system
differ. On the whole, this question has been address
for noninteracting systems. It is now known that man
quantum properties are, in fact, strongly influenced b
the nature of the classical dynamics—the density
states, the quantum corrections to the conductance, a
the optical absorption, to name a few.

We wish to address this question forinteracting sys-
tems and, in particular, to investigate the role of the clas
cal dynamics of the noninteracting system in this contex
If the interactions are strong, the noninteracting classic
dynamics will be of little relevance. However, if the in-
teractions are short range and not too strong, the nonint
acting classical dynamics may be important, and its ro
can be assessed with perturbation theory. This regim
is physically relevant: It applies to a high-density two
dimensional electron gas in which the quasiparticles i
teract weakly through the short-range screened Coulom
interaction. We find that atfirst order in the interaction
there is a difference between regular and chaotic system
but one which is only numerical, not qualitative. Intrigu
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ingly, as the perturbation theory is carried out tohigher
orders a qualitative difference emerges: Thermodynam
properties scale differently with Fermi energy for chaot
and regular systems. This correlation effect shows th
the nature of the classical dynamics can have a subst
tial effect on the quantum properties of an interactin
system.

To be specific, we study the magnetic response of
ensemble of ballistic quantum dots formed from a two
dimensional electron gas. Recent fabrication progress
made possible phase-coherent electronic microstructu
much smaller than the mean free path. In these “ballist
quantum dots, one can think of electrons moving alo
straight lines between specular reflections off the confi
ing potential. Because this motion is qualitatively differ
ent from that taking place in bulk materials, a variety o
new behavior has been observed [2]. In particular, t
magnetic susceptibility of an ensemble of ballistic squar
has been measured [3], and a large enhancement over
Landau response was found. First attempts to underst
this experiment within noninteracting models pointed
the importance of the classical dynamics [3–5]. The i
clusion of interactions in such systems is our main co
cern, though much of the discussion applies to ballis
structures in general.
© 1998 The American Physical Society 895
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For the magnetic response, the high-density expans
[random-phase approximation] of the thermodynamic p
tential [6] has to be extended by including Cooper-lik
correlations, as carried out previously for disordered me
als [7–9]. Such expansions are typically used beyond t
high-density limit and yield reliable results for the bulk
provided some sets of terms are properly resummed. W
continue to follow this point of view for quantum dots
where the “small parameter”rs  r0ya0 is about 2. (pr2

0
is the average area per electron, anda0 is the Bohr radius
in the material.) We show that these expansions are p
ticularly insightful when combined with a semiclassica
approximation from which the connection to the nature o
the classical dynamics can be made. Thus, we will a
sume thatkFa ¿ 1 (a is the size of the microstructures
andkF the Fermi wave vector) and that the magnetic fie
B is classically weak (cyclotron radius¿a).

Semiclassical approach.—The perturbation expansion
[6,8,9] for the interaction contribution to the thermo
dynamic potentialV yields the magnetic susceptibility
through x ; s21ya2d≠2Vy≠B2. A series of terms is
shown in Fig. 1. The screened Coulomb interactio
(wavy lines) is treated as local [10],Usr 2 r0d 
l0Ns0d21dsr 2 r0d, with Ns0d the density of states and
l0  1 identifying the order of perturbation. Straigh
lines represent the “free” finite-temperature Gree
function in the presence of the confining potential,

Gr,r 0send  usendGR
r,r0sEF 1 iend

1 us2endGA
r,r0sEF 1 iend .

Here,EF is the Fermi energy,en  s2n 1 1dpyb are the
Matsubara frequencies, andGR,A is the retarded, advanced
Green functions related byGA

r,r0sEd  fGR
r0,rsEpdgp.

Semiclassically,GR is the sum of the contributionsG
R;j
r,r0

of each classical trajectoryj from r to r0 [1]: In 2D,

GR
r,r0 sEd .

X
j:r!r0

DjeiSj y h̄2ipnjy2, (1)

whereSj 
Rr0

r p ? dr is the classical action of trajectory
j, D2

j  s Ùx Ùx0d21j≠2Sjy≠y≠y0jy2psih̄d3 is the classical den-
sity, andnj is a Maslov index. Usings≠Sjy≠Ed  tj and
s≠Sjy≠Bd  seycdAj, where tj and Aj are the traversal
time and area, one finds

G
R;j
r,r0 sEF 1 ien, Bd  G

R;j
r,r0 sEF , B  0d 3 expf2entjyh̄g

3 expfi2pBAjyf0g , (2)

where f0  hcye is the flux quantum. Note that tem-
perature introduces time and length scalestT  LT yyF 
h̄byp which exponentially suppress the contributions o

FIG. 1. Leading Cooper-channel diagrams for the interactio
contribution to the thermodynamic potential.
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long paths through the termentjyh̄  s2n 1 1dtjytT . (yF

is the Fermi velocity of a billiard.) This provides a com
plete description in the semiclassical perturbative regim

We start with the first-order (Hartree-Fock) term in th
diagrammatic expansion

Vs1d 
l0

b

X
vm

TrhSr,r0 svmdj , (3)

where the trace implies an integral over the spat
arguments of the particle-particle propagator [6]

Sr,r0svd 
1

bNs0d

EFX
en

Gr,r0 sendGr,r0sv 2 end (4)

and vm ; 2mpyb. The short-length (high-frequency)
behavior is incorporated in the screened interaction, th
requiring a cutoff of the frequency sums atEF [8]. Semi-
classically,Sr,r0 is a sum over pairs of trajectories joining
r to r0. However, most pairs yield highly oscillating
contributions which, after the spatial integrations, giv
higher-order terms in1ykFa. To leading order, only
those pairs contribute to the susceptibility whose dynam
cal phases expfiSjsB  0dyh̄g cancel while retaining a
magnetic-field dependence. One way this can be achie
is by pairing each orbitj with its time reverse. The trace
in Eq. (3) yields a sum over closed but not necessar
periodic trajectories [see Fig. 2 (left) for a square]. Th
“diagonal” or “Cooper channel” is present, independe
of the nature of the classical dynamics, and we will r
turn to it below. We first turn to an additional contri
bution present for integrable systems which is central
this paper.

Nondiagonal channel.—In integrable systems, periodic
orbits come in families within which the action integra
is constant. If, as is generally the case, two orbits of t
same family cross at a given point, it is possible to canc
the dynamical phases by pairing them [Fig. 2 (right)
This pair contributes to the trace in Eq. (3) because bo
orbits are continuously deformable so that the phase
canceled throughout an entire region of space. For clos
but nonperiodic orbits, this condition is met only if the
are time reversed (i.e., in the Cooper channel).

This nondiagonal first-order contribution involves
term for each family of periodic orbits. For the squar
billiard at not too lowT sLT & 2ad, only the shortest of

FIG. 2. Typical pairs of real-space trajectories that contribu
to the average susceptibility to first order in the interaction
the diagonal channel (left) and the nondiagonal channel (righ
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FIG. 3. Temperature dependence of the zero-field suscepti
ity (solid line) for an ensemble of squares atkFa  50. The
contribution of the nondiagonal channel [dashed, family (1
and repetitions] exceeds that of the diagonal Cooper chan
(dotted) at low temperaturesskBT0  h̄yFy2pad. Inset: ex-
panded scale shows change in sign as a function ofT .

these periodic orbits contributes, namely, the family (1
with lengthL11  2

p
2 a shown in Fig. 2 (right). In this

case, we find for the susceptibility in terms of the Landa
susceptibilityxL s e2y12mc2d

kxnondiag
11 l
xL

 2l0
3kFa

4
p

2 p3

d2C 2swd
dw2 R2

µ
L11

LT

∂
, (5)

where, as above, one should takel0 ; 1 so that the inter-
action strength is̄U  Ns0d21 [10]. The temperature de-
pendence is governed by the functionRsxd  xy sinhsxd
and the field dependence byC swd  s2wd21y2fcos3

spwdCsppw d 1 sinspwdSsppw dg, with w  Ba2yf0
and C and S Fresnel functions. As in the noninteract
ing case [4,5], the contribution of Eq. (5) is linear inkFa
and has a temperature scale related to the length of
periodic orbit. Quantitatively, the nondiagonal contribu
tion of the family (11) and its repetitions is shown as th
dashed curve in Fig. 3.Thus the existence of a family
of periodic orbits—a characteristic of the noninteractin
classical dynamics—is associated with an additional firs
order interaction contribution to the susceptibility.

Higher-order terms in perturbation theory also conta
nondiagonal contributions. However, in these terms t
location of the additional interaction points is severely lim
ited: They must lie on both periodic orbits to cancel th
dynamical phases and so must be near the intersection
the two orbits. Further analysis shows that these con
butions are therefore smaller by a factor of1ykFa. By
contrast, we will now show that the diagonal contributio
is strongly renormalized by higher-order terms.

Diagonal Cooper channel.—The first-order contribu-
tion to x in the diagonal channel has the same depe
dence onkFa as in Eq. (5) and a similarT dependence;
its magnitude is,1.4 times larger. So, to first order
in the interaction, the difference between generic chao
systems—for which there is only the diagonal contribu
bil-
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tion—and regular ones—for which the nondiagonal ter
is also present—is numerical but not qualitative.

However, higher-order diagrams are essential in t
diagonal Cooper channel, as known from the theory
superconductivity [6,7]. One should sum all terms whic
(i) do not vanish upon ensemble averaging, (ii) depend
B, and (iii) are of leading order in̄h , 1ykFa. This yields
the Cooper series [6–8] shown in Fig. 1. For instanc
(iii) is checked byh̄ power counting, since a pair of Gree
functions scales asNs0dyh̄, interactions asfNs0dg21, and
Matsubara sums as̄h. Indeed, all terms in the series ar
of order h̄ despite the formal expansion inl0. Summing
the series yields, for the diagonal contribution [8],

VsDd 
1
b

X
vm

Trhlnf1 1 l0S
sDd
r,r0svmdgj . (6)

The diagonal partSsDd of S is a sum over all trajectories
longer than the cutoffL0  lFyp [associated with the
upper boundEF on the Matsubara sum in Eq. (4)]:

S
sDd
r,r0svmd .

h̄
2pNs0d

Lj.L0X
j:r!r0

jDj j
2 Rs2tjytT d

tj

3 expfi4pBAjyf0g 3 expf2vmtjyh̄g . (7)

While we cannot diagonalizeS
sDd
r,r0 analytically, it has the

nice property that (except forL0) all variations occur on
classical scales: Rapid quantum oscillations on the scal
lF have been washed out, greatly simplifying the origin
quantum problem. In this sense,SsDd is a “classical”
operator. Hence, we can discretizeSsDd with a mesh size
larger thanlF, sum over trajectories between cells, and
computeVsDd numerically.

We have performed this computation for the square b
liard, obtaining the dotted curve in Fig. 3 forxsT d. In this
curve, we can distinguish three regimes. At low tempe
ture, x sDd is paramagneticand decays on a scale simila
to the nondiagonal contribution (dashed curve), but ha
significantly smaller amplitude. In the intermediate rang
x sDd is small anddiamagnetic. Finally, at high tempera-
tures,x sDd is again paramagnetic, but very small. Th
is naturally understood by associating each regime w
an order in the perturbation series. The low-T part corre-
sponds to the first-order term [orbits of the type in Fig.
(left)] which is exponentially suppressed by the temper
ture factorR whenLT becomes smaller than the shorte
closed orbit. At this point the second-order term, due to t
closed paths of two trajectories connected by interactio
takes over. There is no minimum length of these pat
and hence the second-order term is less rapidly suppres
by T . For repulsive interactions, the sign is opposite
the first-order term, thus the sign change inx sDd. At even
higher temperatures onceLT ø a, this term is a surface
contribution and the third-order term takes over. The la
ter is a bulk contribution [7] since, with three interaction
flux can be enclosed without bouncing off the boundary
897
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Renormalization scheme.—This interpretation of Fig. 3
should be reconsidered for two reasons. First, the final r
sult for the diagonal channel at lowT is much smaller than
the first-order diagonal contribution noted above. Secon
one observes numerically that the terms in the perturb
tion series increase in magnitude with order: One is n
in the radius of convergence of perturbation theory but
its analytical continuation. Despite these facts, we sho
that the interpretation is valid once the interaction ente
ing the diagonal contribution is replaced by a renormalize
interaction.

To demonstrate this, we introduce a simple renorma
ization scheme where integration over short trajectories
length betweenL0 and a new cutoffL yields a decreased
effective coupling constant. The new cutoffL is larger
than L0 but much smaller than any other characterist
length (a, LT , or

p
f0yB). For each pathj joining r to

r0 with Lj . L, let S
j
r,r0 denote its contribution toS

sDd
r,r0

and define

S̃
j
r,r0 ; S

j
r,r0 2 l0

Z
dr1Sj

r,r1
Ŝr1,r0

1 l2
0

Z
dr1dr2Sj

r,r1
Ŝr1,r2 Ŝr2,r0 1 . . . , (8)

where theri integration is overL0 , jri21 2 ri j , L

(with r0 ; r0). Ŝr1,r0 is defined by Eq. (7) but with the
sum restricted to “short” trajectories with lengths in th
range fL0, Lg; S

j
r,r1 is obtained fromS

j
r,r0 by continu-

ously deforming trajectoryj. To avoid the awkward
ln in Eq. (6), we introduceG  s1ybd

P
vm

Trf1 1

l0S
sDd
r,r0 svmdg21, from whichVsDd can be derived through

VsDdsl0d 
Z l0

0

dl
0
0

l
0
0

Gsl0
0d . (9)

ReplacingS by S̃ in G amounts to a reordering of the
perturbation expansion ofG in which short paths are
gathered into lower-order terms. Moreover, ifLj ¿ L,
small variations in the spatial arguments do not modif
noticeably the characteristics ofSj . ApproximatingS

j
r,r1

by S
j
r,r0 in Eq. (8) and usingŜr1,r0 . 1y4p jr1 2 r0j2

valid for short paths, we obtain

l0S̃
j
r,r0 .

l0S
j
r,r0

1 1 l0

R
dr1Ŝr1,r0

. lsLdSj
r,r0 , (10)

where the running coupling constant is defined bylsLd 
l0yf1 1 sl0y2d lnsLyL0dg. Therefore, these steps amoun
to a change of both the coupling constant and the cuto
(since now trajectories shorter thanL must be excluded)
without changingG; that is, GsL0, l0d  GsssL, lsLdddd.
Through Eq. (9), this renormalization scheme can b
applied toVsDd, and so to the average susceptibility.

In this way, we have eliminated the last “quantum scale
L0 from SsDd: L can be made much larger thanlF while
898
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remaining smaller than all classical lengths. Furthermo
it is qualitatively reasonable that the perturbation series
VsDd becomes convergent whenL is of order a, since
by this point the spread in length scales causing
divergence has been eliminated. We have checked
this is true numerically, although this is at the border of t
range for a quantitative answer. The conclusion from t
renormalization argument is thatlsad . 2yf2 1 lnskFadg
replaces the coupling constantl0  1 in the perturbative
expressions for the diagonal channel.

Consequently, for largekF at low T (LT * shortest
periodic orbit), the diagonal contribution isparametri-
cally smaller than the nondiagonal contribution by a fa
tor 1y lnskFad because higher-order correlation terms r
duce only the diagonal contribution.Therefore, regular
systems, for which there is a nondiagonal contributio
show a magnetic response logarithmically larger tha
the generic chaotic systems, for which only the diago
channel is open.For comparison, we note that the no
interacting contribution obtained previously [4,5] is of th
same order as this interaction contribution for integra
systems but smaller for chaotic ones.

The reduction factor provided bylsad allows one to
understand qualitatively, first, why the diagonal contrib
tion is less than the off-diagonal one in Fig. 3 and, seco
why the diamagnetic excursion and high-temperature
are small. Thus, the interpretation above of the diago
channel is correct oncelsad replacesl0.

With the nondiagonal channel, the magnitude ofx that
we find is in good agreement with the experiment at t
lowest experimental temperatures [3]. However, the te
perature scaleT0 in Fig. 3 is significantly smaller than tha
in the experiment: After an initial rapid decay, the expe
mental susceptibility decreases slowly asT increases. The
reason for this slow decay is not known.

In conclusion, we have shown that a semiclassical tre
ment allows one to study the high-density perturbat
expansion of the interaction contribution to the grand p
tential for ballistic quantum dots. This semiclassical a
proach is an efficient tool to compute quantitatively t
magnetic response. Moreover, when combined with
renormalization scheme, it provides an intuitive picture
various features specific to the ballistic regime. The m
striking one is that the susceptibilities of integrable a
chaotic geometries scale differently withkFa because of
the presence of families of periodic orbits in the forme
Another unusual property, caused by the differentT depen-
dence of different orders in the (renormalized) interactio
is that with increasing temperature the interaction con
bution changes sign from paramagnetic to diamagnetic
then back to paramagnetic.
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