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We show that the classical dynamics of independent particles can determine the quantum properties
of interacting electrons in the ballistic regime. This connection is established using diagrammatic
perturbation theory and semiclassical finite-temperature Green functions. Specifically, the orbital
magnetism is greatly enhanced by the combined effects of interactions and finite size. The presence of
families of periodic orbits in regular systems makes their susceptibility parametrically larger than that
of chaotic systems, a difference which emerges from correlation terms. [S0031-9007(97)05133-8]
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The connection between classical dynamics and wavingly, as the perturbation theory is carried outhigher
interference has recently attracted attention in many fieldsrders a qualitative difference emerges: Thermodynamic
of physics [1], including atomic, mesoscopic, and opticalproperties scale differently with Fermi energy for chaotic
physics. A central question is to what extent the quantunand regular systems. This correlation effect shows that
properties of classically regular and chaotic systemshe nature of the classical dynamics can have a substan-
differ. On the whole, this question has been addressetial effect on the quantum properties of an interacting
for noninteracting systems. It is now known that manysystem.
quantum properties are, in fact, strongly influenced by To be specific, we study the magnetic response of an
the nature of the classical dynamics—the density ofnsemble of ballistic quantum dots formed from a two-
states, the quantum corrections to the conductance, amimensional electron gas. Recent fabrication progress has
the optical absorption, to name a few. made possible phase-coherent electronic microstructures

We wish to address this question fimteractingsys-  much smaller than the mean free path. In these “ballistic”
tems and, in particular, to investigate the role of the classiguantum dots, one can think of electrons moving along
cal dynamics of the noninteracting system in this contextstraight lines between specular reflections off the confin-
If the interactions are strong, the noninteracting classicahg potential. Because this motion is qualitatively differ-
dynamics will be of little relevance. However, if the in- ent from that taking place in bulk materials, a variety of
teractions are short range and not too strong, the nonintenew behavior has been observed [2]. In particular, the
acting classical dynamics may be important, and its rolenagnetic susceptibility of an ensemble of ballistic squares
can be assessed with perturbation theory. This regimkas been measured [3], and a large enhancement over the
is physically relevant: It applies to a high-density two- Landau response was found. First attempts to understand
dimensional electron gas in which the quasiparticles inthis experiment within noninteracting models pointed to
teract weakly through the short-range screened Coulomtihe importance of the classical dynamics [3—5]. The in-
interaction. We find that dfirst order in the interaction clusion of interactions in such systems is our main con-
there is a difference between regular and chaotic systemsern, though much of the discussion applies to ballistic
but one which is only numerical, not qualitative. Intrigu- structures in general.
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For the magnetic response, the high-density expansiolong paths through the terey¢; /i = 2n + 1)t;/tr. (ve
[random-phase approximation] of the thermodynamic pois the Fermi velocity of a billiard.) This provides a com-
tential [6] has to be extended by including Cooper-likeplete description in the semiclassical perturbative regime.
correlations, as carried out previously for disordered met- We start with the first-order (Hartree-Fock) term in the
als [7—9]. Such expansions are typically used beyond thdiagrammatic expansion
high-density limit and yield reliable results for the bulk A
provided some sets of terms are properly resummed. We o =20 Z T (wm)}, 3)
continue to follow this point of view for quantum dots, B o

1 » o H 2
where the “small parameters = ro/ao is about 2. €76 \here the trace implies an integral over the spatial
is the average area per electron, agds the Bohr radius 5.4 ments of the particle-particle propagator [6]
in the material.) We show that these expansions are par-

ticularly insightful when combined with a semiclassical 1 &
approximation from which the connection to the nature of (@) = m Zgrsr’(fn)gr,r’(‘” — &) (4
the classical dynamics can be made. Thus, we will as- o
sume thatkra > 1 (a is the size of the microstructures and w,, = 2m#/B. The short-length (high-frequency)
andkr the Fermi wave vector) and that the magnetic fieldbehavior is incorporated in the screened interaction, thus
B is classically weak (cyclotron radius-a). requiring a cutoff of the frequency sumsZt [8]. Semi-
Semiclassical approach-The perturbation expansion classically,3, . is a sum over pairs of trajectories joining
[6,8,9] for the interaction contribution to the thermo-r to r’. However, most pairs yield highly oscillating
dynamic potential) yields the magnetic susceptibility contributions which, after the spatial integrations, give
through x = (—1/4%)9*Q/aB*. A series of terms is nhigher-order terms inl/kra. To leading order, only
shown in Fig. 1. The screened Coulomb interactionthose pairs contribute to the susceptibility whose dynami-
(wavy lines) is treated as local [10]J/(r —r') = cal phases eXps;(B = 0)//] cancel while retaining a
AoN(0)7'6(r — '), with N(0) the density of states and magnetic-field dependence. One way this can be achieved
Ao = 1 identifying the order of perturbation. Straight is by pairing each orbij with its time reverse. The trace
lines represent the “free” finite-temperature Greenin Eq. (3) yields a sum over closed but not necessarily
function in the presence of the confining potential, periodic trajectories [see Fig. 2 (left) for a square]. This
Ger(€)) = 0(6n)G§rf(EF + iey) “diagonal” or “Cooper cha_mnel” is present, indeperjdent
A ) of the nature of the classical dynamics, and we will re-
+ 0(—€)Grp(Er + i€n). turn to it below. We first turn to an additional contri-
Here,Er is the Fermi energys, = (2n + 1)7/B arethe bution present for integrable systems which is central to
Matsubara frequencies, adf is the retarded, advanced this paper.

Green functions related byﬁr,(E) = [G{",,r(E*)]*. Nondiagonal channek-In integrable systems, periodic
SemiclassicallyG® is the sum of the contributiorﬁfi’; prbits come in families within which the action i.ntegral
of each classical trajectoryfrom r to ¥’ [1]: In 2D, ’ is constant. If, as is generally the case, two orbits of the

same family cross at a given point, it is possible to cancel
GR (E) = Z DjeiS,/ﬁ—iﬂv,/Z, (1) the dynamical phases by pairing them [Fig. 2 (right)].
’ jir—r! This pair contributes to the trace in Eqg. (3) because both

orbits are continuously deformable so that the phase is
canceled throughout an entire region of space. For closed
but nonperiodic orbits, this condition is met only if they
are time reversed (i.e., in the Cooper channel).

This nondiagonal first-order contribution involves a
term for each family of periodic orbits. For the square
Gf,.;rj;(EF + ie,, B) = Gf,}j;(EF,B = 0) X exq] —ent;/h] billiard at not too lowT (L7 < 2a), only the shortest of

whereS; = f:/p - dr is the classical action of trajectory
Jj, Di = (xx")7"1928;/ayay’l/2m (i k) is the classical den-
sity, andv; is a Maslov index. UsingdS;/dE) = t; and
(0S;/9B) = (e/c)A;, wheret; and A; are the traversal
time and area, one finds

X exdi2mwBA;/ $ol, 2
where ¢y = hc/e is the flux quantum. Note that tem-
perature introduces time and length scales= Ly /vr = r

i3/ which exponentially suppress the contributions of

M% ....... % ;

FIG. 2. Typical pairs of real-space trajectories that contribute
FIG. 1. Leading Cooper-channel diagrams for the interactiorto the average susceptibility to first order in the interaction in
contribution to the thermodynamic potential. the diagonal channel (left) and the nondiagonal channel (right).
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tion—and regular ones—for which the nondiagonal term
is also present—is numerical but not qualitative.
However, higher-order diagrams are essential in the
diagonal Cooper channel, as known from the theory of
superconductivity [6,7]. One should sum all terms which
(i) do not vanish upon ensemble averaging, (ii) depend on
B, and (iii) are of leading orderifi ~ 1/kra. This yields
the Cooper series [6—8] shown in Fig. 1. For instance,
(iii) is checked by power counting, since a pair of Green
functions scales a¥(0)/#, interactions agN(0)]~!, and
Matsubara sums as. Indeed, all terms in the series are
0 1 2 3 4 of order despite the formal expansion ip. Summing
T/To the series yields, for the diagonal contribution [8],
FIG. 3I-d ?’empferature depergtljen(]:ce of the zero-field sus%eptibil-
ity (solid line) for an ensemble of squares = 50. The -
c)cgn(tribution c)>f the nondiagonal cha?nnel [@t:hed, family (11) o = B < Z Triin1 + AOE (w”’)]} (6)
and repetitions] exceeds that of the diagonal Cooper channel
E)(;%té%%) Sactallgvghtgvrpspgquagfﬁéee@?ﬁ@ign Z;’ g/ fzuzgi'oﬁ!g?et' " The diagonal part® of 3 is a sum over all trajectories
longer than the cutofi\¢ = Ar/7 [associated with the

upper boundr on the Matsubara sum in Eq. (4)]:

XX

these periodic orbits contributes, namely, the family (11) ) Li>Ao R(2t /tT)
with lengthL;; = 2+/2a shown in Fig. 2 (right). In this 2y (@) = Zy. N(O Z |D;
case, we find for the susceptibility in terms of the Landau jir—r!
susceptibilityy; (= e2/12mc?) X exdi4mBA;/ o] X exd—wnt;j/h]. (7)
nondiag 2,2
X1l ) 3kra d°C*(¢) 2<L11>
o OB de? L (5)  while we cannot diagonaliz&,, analytically, it has the

nice property that (except fokg) all variations occur on
where, as above, one should take= 1 so that the inter- classical scales: Rapid quantum oscillations on the scale of
action strength i€/ = N(0)~! [10]. The temperature de- Ay have been washed out, greatly simplifying the original
pendence is governed by the functiifir) = x/sinh(x)  quantum problem. In this sens&® is a “classical”
and the field dependence b (¢) = 2¢) '/?[cosx  operator. Hence, we can discretZ& with a mesh size
(me)C(Jme) + sin(we)S(J/7e )], with ¢ = Ba*/¢y  larger thankr, sum over trajectories between cells, and so
and C and S Fresnel functions. As in the noninteract- computeQ(?) numerically.
ing case [4,5], the contribution of Eq. (5) is linearkpa We have performed this computation for the square bil-
and has a temperature scale related to the length of tHiard, obtaining the dotted curve in Fig. 3 ff7T). In this
periodic orbit. Quantitatively, the nondiagonal contribu-curve, we can distinguish three regimes. At low tempera-
tion of the family (11) and its repetitions is shown as theture, y(P) is paramagneticand decays on a scale similar
dashed curve in Fig. 3.Thus the existence of a family to the nondiagonal contribution (dashed curve), but has a
of periodic orbits—a characteristic of the noninteracting significantly smaller amplitude. In the intermediate range,
classical dynamics—is associated with an additional first-y”) is small anddiamagnetic Finally, at high tempera-
order interaction contribution to the susceptibility. tures, P is again paramagnetic, but very small. This
Higher-order terms in perturbation theory also containis naturally understood by associating each regime with
nondiagonal contributions. However, in these terms then order in the perturbation series. The |@wpart corre-
location of the additional interaction points is severely lim-sponds to the first-order term [orbits of the type in Fig. 2
ited: They must lie on both periodic orbits to cancel the(left)] which is exponentially suppressed by the tempera-
dynamical phases and so must be near the intersections tofre factorR whenL; becomes smaller than the shortest
the two orbits. Further analysis shows that these contrielosed orbit. At this point the second-order term, due to the
butions are therefore smaller by a factor lgfkra. By  closed paths of two trajectories connected by interactions,
contrast, we will now show that the diagonal contributiontakes over. There is no minimum length of these paths,
is strongly renormalized by higher-order terms. and hence the second-order term is less rapidly suppressed
Diagonal Cooper channek-The first-order contribu- by 7. For repulsive interactions, the sign is opposite to
tion to y in the diagonal channel has the same depenthe first-order term, thus the sign changeyi®’). At even
dence onkra as in Eqg. (5) and a similaf dependence; higher temperatures onder < a, this term is a surface
its magnitude is~1.4 times larger. So, to first order contribution and the third-order term takes over. The lat-
in the interaction, the difference between generic chaotiter is a bulk contribution [7] since, with three interactions,
systems—for which there is only the diagonal contribu-flux can be enclosed without bouncing off the boundary.
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Renormalization scheme-This interpretation of Fig. 3 remaining smaller than all classical lengths. Furthermore,
should be reconsidered for two reasons. First, the final ret is qualitatively reasonable that the perturbation series of
sult for the diagonal channel at lofvis much smaller than Q?) becomes convergent wheh is of ordera, since
the first-order diagonal contribution noted above. Secondyy this point the spread in length scales causing the
one observes numerically that the terms in the perturbadivergence has been eliminated. We have checked that
tion series increase in magnitude with order: One is nothis is true numerically, although this is at the border of the
in the radius of convergence of perturbation theory but irrange for a quantitative answer. The conclusion from this
its analytical continuation. Despite these facts, we showenormalization argument is thata) = 2/[2 + In(kra)]
that the interpretation is valid once the interaction enterfeplaces the coupling constahf = 1 in the perturbative
ing the diagonal contribution is replaced by a renormalizedxpressions for the diagonal channel.
interaction. Consequently, for largé&y at low T (Ly = shortest

To demonstrate this, we introduce a simple renormalperiodic orbit), the diagonal contribution igarametri-
ization scheme where integration over short trajectories ofally smaller than the nondiagonal contribution by a fac-
length betweem\; and a new cutoffA yields a decreased tor 1/In(kra) because higher-order correlation terms re-
effective coupling constant. The new cutdffis larger duce only the diagonal contributionTherefore, regular
than Ay but much smaller than any other characteristicsystems, for which there is a nondiagonal contribution,
length @, L7, or \/¢o/B). For each path joiningr to  show a magnetic response logarithmically larger than

r/ with L; > A, let 31 . denote its contribution t@(rf’ré the generic chaotic systems, for which only the diagonal

and define channel is open.For comparison, we note that the non-

interacting contribution obtained previously [4,5] is of the

AR i S same order as this interaction contribution for integrable
Zer = S AO[ dr g 2rr systems but smaller for chaotic ones.

oA . The reduction factor provided by(a) allows one to
+ /\%] dridra2, 2 200 + ..., (8)  understand qualitatively, first, why the diagonal contribu-
tion is less than the off-diagonal one in Fig. 3 and, second,
where ther; integration is overAy < |r,.; — r;] < A Why the diamagnetic excursion and high-temperature tail
(with 1y = 1). grl,r, is defined by Eq. (7) but with the are smaI.I. Thus, the interpretation above of the diagonal
sum restricted to “short” trajectories with lengths in theChannel is correct oncé(a) replacesio. _
range[Ao, A]; Str, is obtained from3], by continu- W!th the'nondlagonal channel,_ the magmtude,mhat
ously deforming trajectoryj. To avoid the awkward we find is m_good agreement with the experiment at the
In in Eq.(6), we introduceTl = (1/8)%, Trl + lowest expenme;nta! temperatures [3]. However, the tem-
(D) 2 ) D) ~n perature sca_llé“o in Fig. 3is s_lg.n_lflcantlly smaller than that_
AoZrp(wp)] ™!, from which Q) can be derived through jp, the experiment: After an initial rapid decay, the experi-
N g mental susceptibility decreases slowlyfamcreases. The
QP(ng) = ] =0T(A). (9) reason for this slow decay is not known.
0 Ao In conclusion, we have shown that a semiclassical treat-

) - . i ment allows one to study the high-density perturbative
ReplacingX by % in I" amounts to a reordering of the eypansion of the interaction contribution to the grand po-

perturbation expansion of" in which short paths are tentja| for ballistic quantum dots. This semiclassical ap-
gathered into lower-order terms. Moreover/lif > A, proach is an efficient tool to compute quantitatively the
small variations in the spatial arguments do not modifymagnetic response. Moreover, when combined with a
noticeably the characteristics Bf . ApproximatingSrr,  renormalization scheme, it provides an intuitive picture of
by i, in Eqg. (8) and usingX, . = 1/4x|r, — r/|>  various features specific to the ballistic regime. The most

valid for short paths, we obtain striking one is that the susceptibilities of integrable and
j chaotic geometries scale differently witira because of
)\oii,w N Ao p - /\(A)Ei,ru (10) the presence of families of periodic orbits in the former.

1+ Ao fdrlim, Another unusual property, caused by the diffefExepen-
dence of different orders in the (renormalized) interaction,
where the running coupling constant is definedMgjx) =  is that with increasing temperature the interaction contri-
Ao/[1 + (A0/2)In(A/Ap)]. Therefore, these steps amountbution changes sign from paramagnetic to diamagnetic and
to a change of both the coupling constant and the cutoffhen back to paramagnetic.
(since now trajectories shorter thanmust be excluded) R.A.J., F.vO., and K.R. thank the ITP Santa Bar-
without changingI'; that is, I'(Ag, ) = I'(A, A(A)). bara (PHY94-07194), where part of this research was
Through Eg. (9), this renormalization scheme can beerformed. R.A.J. and K. R. acknowledge support from
applied toQ®), and so to the average susceptibility. the French-German program PROCOPE. The Division de
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