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Quantum teleportation is analyzed for states of dynamical variables with continuous spectra, i
contrast to previous work with discrete (spin) variables. The entanglement fidelity of the schem
is computed, including the roles of finite quantum correlation and nonideal detection efficiency. A
protocol is presented for teleporting the wave function of a single mode of the electromagneti
field with high fidelity using squeezed-state entanglement and current experimental capability
[S0031-9007(97)05114-4]

PACS numbers: 03.67.–a, 03.65.Bz, 42.50.Dv
o-
ra-
n
ion
-

ich
re-
ate

ls
in
e
d,
n

me
in

ld

t

ut)

-
e
an
hin
ate
er
Quantum mechanics offers certain unique capabiliti
for the processing of information, whether for computa
tion or communication [1]. A particularly startling dis-
covery by Bennettet al. is the possibility for teleportation
of a quantum state, whereby anunknownstate of a spin-12
particle is transported by “Alice” from a sending station
to “Bob” at a receiving terminal by conveying 2 bits of
classical information [2]. The enabling capability for this
remarkable process is what Bell termed the irreducib
nonlocal content of quantum mechanics, namely that A
ice and Bob share an entangled quantum state and exp
its nonlocal characteristics for the teleportation proces
For spin-12 particles, this entangled state is a pair of spin
in a Bell state as in Bohm’s version of the Einstein, Podo
sky, and Rosen (EPR) paradox [3] and for which Bell fo
mulated his famous inequalities [4].

Beyond the context of dichotomic variables, Vaidma
has analyzed teleportation of the wave function of a on
dimensional particle in a beautiful variation of the origi
nal EPR paradox [5]. In this case, the nonlocal resour
shared by Alice and Bob is the EPR state with perfe
correlations in both position and momentum. The goal
this Letter is to extend Vaidman’s analysis to incorpora
finite (nonsingular) degrees of correlation among the rel
vant particles and to include inefficiencies in the measur
ment process. The “quality” of the resulting protocol fo
teleportation is quantified with the first explicit computa
tion of the fidelity of entanglement for a process acting o
an infinite dimensional Hilbert space. We further describ
a realistic implementation for the quantum teleportation
states of continuous variables, where now the entang
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state shared by Alice and Bob is a highly squeezed tw
mode state of the electromagnetic field, with the quad
ture amplitudes of the field playing the roles of positio
and momentum. Indeed, an experimental demonstrat
of the original EPR paradox for variables with a continu
ous spectrum has previously been carried out [6,7], wh
when combined with our analysis, forms the basis of a
alizable experiment to teleport the complete quantum st
of a single mode of the electromagnetic field.

Note that up until now, all experimental proposa
for teleportation have involved dichotomic variables
SUs2d [2,8–11], with optical schemes accomplishing th
Bell-operator measurement with low efficiency. Indee
the recent report of teleportation via parametric dow
conversion [12] succeeds onlya posteriori with rare
post-selected detection events. By contrast, our sche
employs linear elements corresponding to operations
SU(1,1) [13] for Bell-state detection and thus shou
operate at near unit absolute efficiency, enablinga priori
teleportation as originally envisionaged in Ref. [2].

As shown schematically in Fig. 1, an unknown inpu
state described by the Wigner functionWinsad is to be
teleported to a remote station, with the teleported (outp
state denoted byWoutsad. In analogy with the previously
proposed scheme for teleportation of the state of a spin1

2
particle, Alice (at the sending station) and Bob (at th
receiving terminal) have previously arranged to share
entangled state which is sent along paths 1 and 2. Wit
the context of our scheme in SU(1,1), the entangled st
distributed to Alice and Bob is described by the Wign
functionWEPRsa1, a2d [4]
ant
s for the
WEPRsa1; a2d ­
4

p2
exph2e22rfsx1 2 x2d2 1 s p1 1 p2d2g 2 e12rfsx1 1 x2d2 1 s p1 2 p2d2gj

! Cdsx1 1 x2dds p1 2 p2d , (1)

whereaj ­ xj 1 ipj . Here, the real quantitiessxj , pjd correspond to canonically conjugate variables for the relev
pathways and describe, for example, position and momentum for a massive particle, and quadrature amplitude
© 1998 The American Physical Society 869
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FIG. 1. Scheme for quantum teleportation of an (unknow
input stateWinsad from Alice’s sending stationS to Bob’s
remote receiving terminalR, resulting in the teleported output
stateWoutsad.

electromagnetic field. Note that forr ! `, the state
described by Eq. (1) becomes precisely the EPR state
Ref. [3] employed by Vaidman [5] and provides an ide
entangled “pair” shared between the teleportation send
and receiving stations, albeit with divergent energy in th
limit.

As for the protocol itself, the first step in teleporting
the (unknown) stateWinsaind is to form new variables
ba,b along pathssa, bd which are linear superpositions
of those of the initially independent pathwaysin and
1 at the sending stationS of Fig. 1, namely ba,b ­

1p
2

sa1 6 aind. The resulting Wigner function in the
variables sba; bb; a2d exhibits “entanglement” between
the paths sa, bd and the remote path 2. Step 2 a
S is then to measure the observables correspond
to Reba ­ 1p

2
sx1 1 xind ; xa and Imbb ­ 1p

2
s p1 2

pind ; pb at the detectorssDa, Dbd shown in Fig. 1,
with the resulting classical outcomes denoted bysixz

, ipb
d,

respectively. We define ideal measurement ofsxa, pbd to
be that for which the distributionPabsixa ; ipb d is identical
to the associated Wigner functionWabsxa; pbd. With the
entangled state of paths (1,2) given by Eq. (1), we find

Pabsixa ; ipb d ­ 2
Z

d2aWinsadGnf
p

2sixa 2 iipb d 2 ag

; 2fWin ± Gng f
p

2sixa 2 iipb dg , (2)

with ± denoting convolution andGn as a complex Gauss-
ian distribution with variancen ­ cosh2ry2. Note
that such ideal detectors provide “perfect” informatio
about sxa, pbd via sixa

, ipb
d, while all information about

spa, xbd ; sssIm ba ­ 1p
2

s p1 1 pind, Rebb ­ 1p
2

sx1 2

xindddd is lost. Furthermore, althoughsixa , ipb d contains
a small amount of information about the fiducial sta
Winsad ­ Winsxin, pind, this information goes to zero
870
n)

of
al
ing
is

t
ing

n

te

for r ! `. Nonetheless, the third and final step at th
sending station is to transmit thisclassicalinformation to
the receiving terminal.

As illustrated in Fig. 1, receipt ofsixa , ipb d allows Bob
to construct the teleported stateWoutsa2d from compo-
nent 2 of the EPR state. That this resurrection is po
sible can be understood by examining the (unnormalize
Wigner function for the system obtained by integratin
out s pa, xbd in correspondence to Alice’s detection o
sxa, pbd, namely

Gnsa2d fWin ± Gtg s
p

2sixa 2 iipb d 1 tanh2ra2d , (3)

where the variancet ­ sech2ry2. Note that asr !

`, Gtsad quickly approaches a delta function, while
Gnsad describes a broad background state. Thus, f
large r, the reduced state of mode 2 is described by
broad pedestal with negligible probability upon which sit
a randomly located peak ata2 ø

p
2 sixa 2 iipb d closely

mimicing the incoming stateWinsad. The location of this
random “displacement” is distributed according to Eq. (2
and is the classical information that Alice sends to Bob.

By way of the actuatorAx,p shown in Fig. 1, Bob
thus performs linear displacements of the real and ima
inery components of the complex amplitudea2 to pro-
duce aout ­ a2 1

p
2 sixa 2 iipb d, where the quantities

sixa , ipb d are scaled tosxa, pbd. Integrating outixa andipb

yields the ensemble description of states produced at
output of the teleportation device on an ensemble of inp
statesWin, namely

Wout ­ Win ± Gs , (4)

wheres ­ e22r is the variance of the complex Gaussia
Gs , thus completing the teleportation process.

Clearly, for r ! ` the teleported state of Eq. (4)
reproduces the original unknown stateWin [5]. However,
note that asr ! 0, Wout also mimicsWin, now with two
extra units of vacuum noise (i.e.,s ­ 1

2 1 1
2 ). One of

these noise contributions arises from Alice’s attempt
measure bothsxin, pind [14], while the second comes from
Bob’s use of this necessarily noisy information to genera
a coherent state at

p
2 sixa 2 iipb d. In this wayquantum

mechanics extracts two tariffs(one at each instance of the
border crossing between quantum and classical domain
each of which we term the quantum duty orquduty).
Note that the limitr ­ 0 corresponds to what might be
considered “classical” teleportation for which the “bes
measurement” of the coherent amplitude of the unknow
state is made [14] and sent to the receiving station, whe
it is used to produce a coherent state of that classic
amplitude. For anyr . 0, our quantum teleportation
protocol beats this classical scheme.

Before calculating an actual figure of merit for our pro
tocol, we now specialize from general continuous var
ables to the case of a single mode of the electromagne
field and thereby to actual physical implementations o
the various transformations shown in Fig. 1. Beginnin
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with the EPR state itself, we note that such a state can
generated by nondegenerate parametric amplification w
the quantitiessxj , pjd as the quadrature-phase amplitude
of the field [6], as has been experimentally confirmed v
type-II down-conversion [7]. The linear transformation
ba,b ­ 1p

2
sa1 6 aind is accomplished by the simple su-

perposition of modesin and 1 at a50y50 beam splitter.
The detectorssDa, Dbd of Fig. 1 are now just balanced ho-
modyne detectors with the phases of their respective lo
oscillators set to recordsxa, pbd in the observed photocur-
rents sixa

, ipb
d. Note that for unit efficiency, homodyne

detection provides an ideal quantum measurement of
quadrature amplitudes required for our protocol [15–17

Nonideal detectors, each having (amplitude) efficienc
h, may be modeled by using a pair of auxiliary beam
splitters at sDa, Dbd to introduce noise from a pair
of vacuum modes described by annihilation operato
sĉa,b, d̂a,bd [15,18]. It is then convenient to introduce
annihiliation operators corresponding to the “modes” o
the photocurrents described by

îa,b ­ hb̂a,b 1

s
1 2 h2

2
sĉa,b 1 d̂a,bd , (5)

where these fictitious objects allow us to apply an analo
of the Wigner-function formalism to the photocurrent
and to incorporate the effects of nonideal photodete
tion in a straightforward fashion. For example, loss i
the response of Alice’s detectors [Eq. (2)] leads to th
convolution

P̄absixa , ipb d ­
1

h2 fPab ± Gz g fsixa 1 iipb dyhg , (6)

whereGz has variancez ­ s1 2 h2dy2h2, which goes to
zero forh ! 1 in correspondence with the ideal characte
of homodyne detection. Substituting forPab from Eq. (2)
then gives

P̄absixa
, ipb

d ­
2

h2
fWin ± Gn̄g

∑p
2

h
sixa

2 iipb
d
∏

, (7)

wheren̄ ­
1
2 cosh2r 1 s1 2 h2dyh2.

Within the context of the electromagnetic field, Bob ca
efficiently perform the required phase-space displacem
of mode 2 based upon the classical informationsixa

, ipb
d

received from Alice by combining the field of mode 2
with a (classical) coherent state of mean amplitud
Eyt, whereE ­

p
2 sixa 2 iipb dyh, at a highly reflecting

mirror of transmissivityt ! 0. The mean state after this
shift is the final teleported state, namely

Wout ­ Win ± Gs̄ , (8)

whereGs̄sad ­
1

ps̄ exps 2jaj2

s̄ d with s̄ ­ e22r 1
12h2

h2 .
The teleportation evolution described by Eq. (8) may b

written in density matrix form as

r̂out ­
Z

d2jGs̄sjdD̂sijdr̂inD̂ysijd , (9)
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wherer̂in is the original state being teleported andD̂sad
is the displacement operator. The dynamics associat
with Eq. (9) were first studied by Glauber [19] and Lachs
[20] for an “incoming” vacuum statêr ­ j0l k0j and for
squeezed vacuum by Vourdas and Weiner [21]. The d
tailed behavior of the photocount statistics under this dy
namics was investigated by Musslimaniet al. [22]. These
references also relate the development of the convolution
formalism used here (see also Refs. [23,24]).

To illustrate the protocol, consider teleportation of the
coherent superposition state

jcl ~ j 1 al 1 eifj 2 al , (10)

with corresponding Wigner functionWinsad illustrated
in Fig. 2(a). The teleported Wigner functionWoutsad as
computed from Eq. (8) is shown for Fig. 2(b) for parame
ters corresponding to210 dB of squeezing (i.e.,r ­
1.15) with efficiency h2 ­ 0.99, which should be com-
pared to the parameters of Ref. [25] [namely squeezin
r ­ 0.69 (i.e., 6 dB of squeezing), and detectors with ab
solute quantum efficiencyh2 ­ 0.99 6 0.02]. Note that
the quantum character of the state survives teleportatio
including negative values forWout associated with quan-
tum interference for the off-diagonal components ofr̂in.
For comparison, note that for classical teleportation (i.e
r ­ 0), Wcl

out consists of the (incoherent) superposition o
two distributions centered at6a, each of which is broad-
ened by thequduty.

To provide a quantitative measure of the “quality” of
the output state, we note that the strongest measure
fidelity of a teleported state relative to the input state i
given by theentanglement fidelity[26]. For processes
described by Eq. (9), it is given by

Fe ­
Z

d2jGs̄sjdjxWin
sjdj2 , (11)

FIG. 2. (a) Wigner functionWinsad for the input state of
Eq. (10) with a ­ 1.5i and f ­ p. (b) Teleported output
stateWoutsad for r ­ 1.15 andh2 ­ 0.99.
871
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where xWin
sjd ­ tr D̂sijdr̂in is the characteristic func-

tion for the incoming state’s Wigner function.
For the coherent superposition of Eq. (10) direct subs

tution yields a fidelity of entanglementFe of

1
1 1 s̄

2
1 1 e24jaj2

2 exps24s̄jaj2

11s̄ d 2 exps 24jaj2

11s̄ d
2s1 1 s̄d s1 1 e22jaj2 cosfd2

.

(12)

For the state shown in Fig. 2(b) this fidelity is 0.6285 fo
r ­ 1.15 and h2 ­ 0.99 compared to 0.2487 forr ­ 0
and the same detector efficiency. This latter fidelit
precludes observation of any quantum features in t
classically teleported state, while the former case yiel
observable quantum characteristics as seen in Fig. 2.

Beyond any one particular state, let us now concentra
on high fidelity teleportation in general. In this cas
the Gaussian weighting described byGs̄ is sufficiently
narrow so that only the lowest terms in an expansio
aboutj ­ 0 of xWin will contribute. That is,jxWinsjdj2
may be approximated by

1 2 jp2sDad2 2 j2sDapd2 2 2jjj2jDaj2 , (13)

where jDaj2 ; kjaj2l 2 jkalj2 averaged overWinsad.
Thus, the condition for high fidelity teleportation (i.e.
1 2 Fe ø 1) becomes1yjDaj2 ¿ s̄. Now jDaj2 is
just the number of photons (plus12 ) in the incoming
stateafter it has been shifted so as to haveno coherent
amplitude. Roughly speaking it is the maximal rm
spread of the Wigner function of the unknown quantum
state being teleported, and so its reciprocal bounds the s
of “important” small scale features in that state, thoug
there can indeed be smaller features. Apparently then
condition for high entanglement fidelity says that feature
in the Wigner function smaller than1yjDaj do not give a
significant contribution to the state’s identity.

In conclusion, our analysis suggests that existin
experimental capabilities should suffice to telepo
manifestly quantum or nonclassical states of the ele
tromagnetic field with reasonable fidelity. For suc
experiments, extensions of our analysis to the telepor
tion of broad bandwidth information must be made an
will be discussed elsewhere. In qualitative terms, o
scheme should allow efficient teleportation every invers
bandwidth, in sharp contrast to relatively rare transfe
for proposals involving weak down conversion for spi
degrees of freedom. Although our analysis is the fir
to obtain explicitly the fidelity of entanglement on an
infinite dimensional Hilbert space, an unresolved issu
is whether or not our protocol is “optimum,” either with
respect to this measure or with regard to other criteria
the area of quantum communication (e.g., the ability
teleport optimally an “alphabet”hjj of orthogonal states
W

j
in). More generally, the work presented here is part

a larger program to extend classical communication wi
complex amplitutes into the quantum domain.
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