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How Fast Do Fluids Squeeze through Microscopic Single-File Pores?

Tom Chou
DAMTP, Cambridge University, Cambridge CB3 9EW, England

(Received 18 August 1997)

A one dimensional symmetric exclusion model is used to study pressure and osmosis driven fl
through molecular-sized channels, such as biological membrane channels and zeolite pores. An
expressions are found for the steady-state flow as a function of pore radius, pore energetics, res
temperature, driving force, and internal defects. We find a flux maximum as a function of partic
pore interactions: This, and other nonlinear dependences suggest numerous diagnostic experime
biological and zeolitic systems. [S0031-9007(97)05268-X]
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The answer to the title question is tremendously impo
tant for modeling biological and industrial processes, an
has received recent attention with experimental (NMR
and theoretical findings that motions of interacting (due
excluded volume) tracer particles in molecular-sized por
are governed by subdiffusive dynamics [1]. Biologica
examples include integral membranes channels that
molecular sized and are specific to water and ion tran
port which participate in hydrostatic or osmotic pressur
controlled cellular volume regulation [2]. Man-made ma
terials such as zeolites and carbon nanotubes may a
contain many microscopic, nearly single-file channels th
can selectively absorb fluids. This size specificity can b
exploited in the separation of linear and branched cha
alkanes, where the zeolite acts as a sponge, absorb
only the desired species [3]. Confining particles in zeolit
pores can also serve to catalyze reactions: How fast c
one get reagents into micropores and the products out?

Therefore, the design and manufacture of porous m
terials [4] is an economically motivated area of researc
and numerous molecular dynamics (MD) studies have be
performed on a variety of specific systems [5]. Anomalie
in numerically computed (MD) “diffusion” constants have
been found [6]. However, numerical simulations neithe
access the long time scales required to study steady s
flow, nor offer a unifying physical picture of the parame
ters important for transport. To obtain reasonable flo
rates using MD, artificial external forces such as gravit
are often imposed [7]; in 1D systems such external forc
can yield qualitatively different behavior (such as shoc
profiles) from osmosis and pressure driven flow [8], whic
occur in the absence of such intrinsic forces.

A model that physically describes transport and ho
flows depend on microscopic molecular parameters a
macroscopic thermodynamic constraints would serve
a useful benchmark in more sophisticated models a
complement more detailed MD simulations. Conside
the molecular-sized pore shown in Fig. 1, with particle
driven from sLd to sRd either by osmotic “pressure”DP,
or by hydrostatic pressureDP. The pore is divided into
i sections of length, each with possible activation en-
ergies between bulk and pore particles shown. Entran
0031-9007y98y80(1)y85(4)$15.00
r-
d
)

to
es
l
are
s-
e
-
lso
at
e
in
ing
e
an

a-
h,
en
s

r
tate
-
w
y
es
k
h

w
nd
as
nd
r
s

ce

(exit) rates at the left and right boundary sites are de
fined by asgd and dsbd, respectively. Here,adt and
ddt are the probabilities for pore entry in timedt only if
the occupations (ti ­ 0 or1) t1 ­ 0 andtN ­ 0, respec-
tively. The probability per unit time a randomly picked
interior particle within sectioni moves to the right (left)
is psqd only if the site to the right (left) is unoccupied.
The implicit random particle hop updating is valid when
long wavelength collective modes are irrelevant. The a
sumption of no pass pores is accurate even for pore d
ameters,s2 2 3d3 particle diameters since overtaking
requires a restricted subset of geometries and will b
statistically rare. Even when overtaking occurs, inter
change between particles at sitesi and i 1 1 does not
contribute to net flux as long as the average number
particles in a cylindrical section of length, is ,1. Con-
sider the instantaneous number flux between sectionsi
andi 1 1,

Jistd ­ ptistd f1 2 ti11stdg 2 qti11std f1 2 tistdg

; pftistd 2 ti11stdg 1 eti11std 2 etistdti11std .
(1)

FIG. 1. Schematic of osmosis and pressure driven flo
through membrane pores separating infinite reservoirssLd and
sRd. The coefficientsa, b, g, and d are conditional solvent
entrance and exit probabilities at pore ends.
© 1997 The American Physical Society 85
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Although much attention has focused on the asymme
exclusion model (e ; p 2 q fi 0), particularly in the
thermodynamic limit, where some exact results are kno
[8], the symmetric exclusion model (e ­ 0) is valid in
the absence of external electric or gravitational force
Locally, particles in microscopic pores that are weak
self-attracting are as likely to move to the left or righ
if both left and right adjacent sites are unoccupie
However, a gradient inti yields biased diffusion and a
net flux. Related models have been proposed for o
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lane traffic flow [9]; however, these are highly asymmetri
(e ­ p since drivers rarely reverse) and include random
p and acceleration effects.

Linearity of Jstd when e ­ 0 renders the mean-field
steady state currentJ found from time averaging Eq. (1)
exact. Steady state particle conservation along the po
length results in a linear density profileJ ­ pst1 2

tN dysN 2 1d; this, along with the steady state boundary
conditions J0 ­ J ­ as1 2 t1d 2 gt1 and JN ­ J ­
btN 2 ds1 2 tN d, determine the steady state particle
number flux
JsNd ­
psab 2 gdd

sN 2 1d sa 1 gd sb 1 dd 1 psa 1 b 1 g 1 dd
. (2)
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The kinetic parametershmj ; sa, b, g, dd are related
to the relative enthalpies of activationEm between pore
and bath particles. We assume local thermodynam
equilibrium (LTE), valid when collision timesø mean
transport times. In liquid phase osmosis across sing
biological pores whereJ # 109ys, typical pore diame-
ters and interparticle spacingsl , 5 Å, and ambient ther-
mal velocitiesyT . 4 3 104 cmys, yield collision times
tcoll . lyyT . 1 ps ø J21. Therefore, particles suffer
Os103d collisions before they are osmotically transported
sufficient for (LTE). As an illustrative example, we con
sider an axisymmetric right cylindrical pore (g ­ b),
where hmj in LTE will be defined by simple transport
theory,

p . syT y,d exps2EpykBTd ,

b . syT y,d exps2EbykBT d ,

afdg ; a0fd0g exps2EafdgykBTd
(3)

. 1
4 nLfRgyT spr2

pd exps2EafdgykBTd ,

whereyT ,
p

kBTym is the thermal velocity,, is chosen
to be the minimum statistical spacing between po
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le

,
-
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particles (estimated, for example, for eachhmj from a 1D
Tonk’s gas [10]), andnLfRg is the number density in the
left [right] reservoir. The internal hopping ratep given
by (3) represents a ballistic travel time over the distan
, . a, weighted by an energetic bindingEp . A larger
choice for , can be made ifs,yadti , 1 and with p
appropriately rescaled and entropic factors included
hmj (theEm are then effective free energies); this is usef
in multiple species models where steady state flows
long pores cannot be obtained analytically [11]. No
that for , ¿ a, local free diffusive transport described
by p . ,22 may obtain. Since we explore considerab
variations in hmj, we choose, , a (approximately a
repulsive hard core diameter) andEm represent enthalpies
determined entirely by molecular potentials. Thu
Easr # rpd 2 Eas0d & kBT [where Easr ­ 0d ; Ea ]
defines an effective pore radiusrp. For pores that
repel particles (top curve in Fig. 1) and have negligib
activation energies (Eb, Ep), pyb , Os1d.

Upon normalizing (denoted by an overbar) all quantiti
by b (such thatJ ; Jyb ­ 1 is the maximum flow
rate possible, whentN ­ 1, anda defines a solvent-pore
affinity, or binding constant),
JsNd ­
apD

sN 2 1d sa 1 1d sa 1 1 2 aDd 1 ps2a 1 2 2 aDd
, (4)
olu-
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where

D ­
a 2 d

a
. 1 2 eDEykBT 1

Dnsolute

nL
eDEykBT (5)

andDE ; Ea 2 EdsPR 2 PLd. Equation (5) represents
differences in number density and/or enthalpies betwe
sRd andsLd and along with (4) determine the flow throug
symmetric pores. Under isobaric conditions (pure osm
sis), DE ­ 0; in nearly ideal gases,s≠DEy≠PRdT . 0,
while hydrostatically driven flows of liquids is describe
by s≠nRy≠PdT . 0. In the first two cases, theJ results
predominately from an increased permeable particle d
sity in one of the reservoirs over the other, while pressu
driven flows of liquids result mainly from the relative re
duction of pore entrance activation energies brought ab
en

o-
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by hydrostatic compression. First considerD ­ 0.02,
which corresponds to an osmotic pressure in aqueous s
tion of DP . 25 atm or a hydrostatic pressure differenc
of DP . 0.025 atm of gas at STP. Using the Maxwel
relationship for particle volume,2s≠DEy≠PRdT . ỹ, we
find D ­ 0.02 also corresponds toPR 2 PL . 25 atm in
pressure driven flow of water at 300 K.

Large values ofa represent pores which are attractiv
to the solvent (for example, the dashed energy landsc
in Fig. 1). WhenaDysa 1 1d is negligible, flows are
essentially linear inD and defined by hydraulic or osmotic
permeabilities,J > LpDP or J > PosDP. Although
Lp and Pos is often interpreted usingmacroscopicfluid
mechanics [2], a microscopic description arises here.
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the limit p ¿ sa 1 1dN, rate limiting steps involve pore
entrance or exit. Linearizing (4) and (5), we find

Lp ­
a

2sa 1 1dkBT

√
≠DE
≠PR

!
T

(6)

for pressure driven flow of dense liquids. The tem
perature dependence ofLp will be determined by
2EbykBT f2EaykBT g for a ¿ 1 fa ø 1g if the ther-
mal coefficient of expansion of the fluid is small. Whe
p ø sa 1 1dN,

Lp ­
aq

sN 2 1d sa 1 1d2kBT

√
≠DE
≠PR

!
T

, (7)

which has asEa 2 Eb 2 EpdykBTfsEb 2 Ea 2 Epdy
kBT g Arrhenius temperature dependence fora ¿

1 fa ø 1g. In the limit where (7) holds, the rate limiting
steps are particle motions within the pore interior. Ide
gas limit expressions forLpfPosg are found by replacing
s≠DEy≠PRdT by 2n21

L f1n21
L g in the corresponding

limits (6) and (7); the temperature dependences rema
unchanged.

The solid curve in Fig. 2(a) showss1.5 3 103d 3 JsNd
[from Eq. (4)] for p ­ 1, D ­ 0.02 for various pore
lengthsN . Lya. We find a maximumJ

p at

ap ­

∑
2p0 1 sN 2 1d

sN 2 1d s1 2 Dd

∏1y2

(8)

for fixed p ­ p0. The maximum at an intermediate affin
ity ap (and occupationti) occurs because the pore is con
ducting a substantial number of particles, without bein
choked off by highti . However, as the pore is made in
creasingly attractive,Eb . 0 must eventually increase,b

diminishes, andp ­ pyb ~ exp
£
sEb 2 EpdykBT

§
. We

will explicitly show, nevertheless, that the flux maxi-
mum atJp can persist. Assume no activation barriers
the pore mouths, i.e.,EbfEag ­ 0 for EafEbg . 0, and

FIG. 2. (a) 1.5 3 103JsN , ad for D ­ 0.02 and fixedp0 ­
1.0. Various lengths are indicated. The solid curve betwee
0 and 1 is the average occupation number of any site. O
this scale, the differencet1 2 tN is not apparent but varies
qualitatively asJ. (b) The solid curve is104 3 Js5d for fixed
p0 ­ 0.1. See text for explanation of curvesP0P1P2 and
P0P1P4P3.
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consider molecularly repelling pores where0 , a , a0
(Ea . 0, Eb ­ 0); here,p ø exps2EpykBTd, indepen-
dent of the pore energy level. As the pore is made
tracting,p will acquire expsEbykBTd behavior and can be
defined as

p ­ p0

"
a

a0
usa 2 a0d 1 usa0 2 ad

#
, (9)

whereusx . 1d ­ 1 is the Heaviside function indicating
the value ofa0 when the pore first becomes molec
larly attracting. Upon using (9), the current acro
infinitely attracting pores becomesJ`sNd ­ p0Dy
fa0sN 2 1d s1 2 Dd 1 p0s2 2 Ddg, which can approach
Dys2 2 Dd . J

p. For a0 ¿ ap, the maximum remains
at ap. However, whena0 & ap, a, p ø expsEbykBT d,
and the maximum in flux as a function ofa is preempted
by a current which monotonically approachesJ

`. A
high current may occur ata ! ` despite the high-pore
occupancy due to an accompanying exponential incre
in p. High currents are more difficult to achieve asa0 (as
well as N) increases,because the onset of exponential
increasingp is delayed.

The condition forJ`sNd , J
psNd (a maximum inJ re-

maining as pore well depth is increased) is determined

a0 . ap 1
ap2

ap 1 1
. (10)

Figure 2(b) compares the behavior of104 3 Js5d using
p ­ p0 ­ 0.1 (solid curve) with that of104 3 Js5d
using Eq. (9) (broken lines). ForD ­ 0.02, the maxi-
mum at ap ­

p
15y14 is destroyed when (10) is

satisfied, a0 & 1.562. Estimating a0 from (3) and
D ­ 0.02, a0 ø ap for gases, but can beOs1d for
liquids. Curve P0P1P4P3 retains the maximumJ

p

since a0 ­ 100.75 . 1.562, while P0P1P2 corresponds
to a0 ­ 1020.25 , 1.562 which gives a monotonicJ
as a ! `. Note that when a maximum persists an
the a ¿ 1 regime of (7) obtains, a curiousLp ~ r22

p
dependence arises.

According to (8), values ofa that give a maximalJp

depend strongly onD; thus,D ! 1 can yield largeap ¿
a0 where the maximum in flux is destroyed. At th
maximum valueD ­ 1 [corresponding approximately to
pure solute or vacuum insRd], the maximum flux occurs
when p ¿ N and approachesJsD ­ 1d . aysa 1 2d.
The smallest flux occurs whenp ø N and a ø 1 as
expected. The nonlinearity ofJsDd is important only
when a ¿ 1, as shown in Fig. 3, corresponding to
pore interior with high particle occupation, when partic
exclusion nonidealities are most pronounced.

A possible experimental probe for the predicted beh
ior, particularly in artificial pores, is to use adiabatic u
trasonic driving of the fluid insRd (so as to not affect
a which depends only onnL) with frequencyv ø J to
enhance transport: Upon settingDstd ­ D0 1 D1 cosvt
87
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FIG. 3. Nonlinear behavior of102 3 Js10d for p ­ 1.0 as a
function of a. Note the competition between nonlinearities i
a andD, particularly at largeD.

and averaging over one period,JsNd . JsN, D1 ­ 0d 1

c2D
2
1 where

c2 ­

8>>><>>>:
a2D

2
1

2as2 2 D0d 1 2
, p ¿ sa 1 1dN ,

D
2
1

2s1 2 D0d2
, p ø sa 1 1dN ,

(11)

for D1yD0 ø 1. In the p ¿ sa 1 1dN limit, the
temperature dependence of the flux enhancement
22EaykBT or 2EaykBT , while the second limit is tem-
perature independent. Electrostriction and mechani
deformation of the pores can also affecta and therefore
p via rp [6].

In conclusion, modifications and extensions to th
presented applications can be straightforwardly mad
For example, effects of temperature differences,T sRd 2

T sLd fi 0 can be readily extracted from (3). Further
more, effects of internal-pore defects, such as those a
ing in (i) Gramicidin A, composed of two joined barrels
each in opposite lipid bilayer leaflets, (ii) lipid bilayers
with possible stiff unsaturated bonds along the alipha
chains where molecules permeate, and (iii) zeolites, w
interconnected cages and joints, can be calculated. I
pore hasNpsNpd junctions (independent of spatial distri
bution) with quenched hopping ratespspp

kd, the flux is
given by (2) ifN is replaced byNp 1

PNp

k­1spypp
k 2 1d.

This result is also an exact solution to the Heisenbe
spin chain Hamiltonian with boundary conditions dete
mined by hmj and quenched random energies [12]. O
mosis experiments on Gramicidin Aybilayer liposomes
reveal rich temperature dependences which are int
preted as lipid phase transitions inducing changes
how the Gramicidin A barrels are joined [13]. Actua
flow measurements are ensemble averages over ma
scopic membrane regions containing many pores:kJl ­P`

N ,Np,pp fsN, Np , pp
kdJsN, Np, pp

k d, whered is the mem-
brane thickness,Nmin . dy,, andfsN , Np, pp

kd is the dis-
tribution of channels with arc-lengthL ­ N,, number of
defectsNp, and defect strengthspp

k . Finally, effects of
unstirred or polarization layers (present only in osm
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sis) near the pore mouths can be treated with a mac
scopic convection-diffusion equation which yields a
implicit equationJ ~ DsJd [11].

We have presented an exact nonlinear model of mic
porous transport valid when excluded particle volume co
tributions to the free energy dominate. The main resu
are a correspondence between microscopic interactions
macroscopic permeabilities defined by (6), (7), and th
correspondingkBT dependences. Furthermore, we deli
eate cases whereJsad has a maximum, represented b
Fig. 2, and find nontrivialrp dependences. Since relation
ships among the various kinetic parameters can be de
mined by equilibrium measurements such as solvent-so
heats and volumes of mixing, the simple model presen
along with the numerous applicable physical systems
fers a framework for experimental tests and will lead to
better understanding of more complex systems, includ
multispecies transport and chemical reactions in pores.
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