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Shifts of Random Energy Levels by a Local Perturbation
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We consider the effect of a local perturbation on the energy levels of a system described by random
matrix theory. An analytic expression for the joint distribution function of initial and final energy levels
is obtained. In the case of unitary ensemble we also find the two-point correlation function of initial
and final densities of states. [S0031-9007(97)05246-0]

PACS numbers: 73.23.—b, 05.40.+j

The random matrix theory [1-3] of energy levels in Dyson [8] suggested to describe such correlations in
complex systems was developed in the 1950s for théerms of the viscous Brownian motion of the infinitely
description of the absorption spectra of large nucleiheavy particles (2) with the same logarithmic interactions
In this approach one gives up any attempt to studypetween them. The external perturbation in this approach
the position of each particular resonance, but insteaglays the role of the fictitious time in which the Brownian
concentrates on the characteristics averaged over a largsotion occurs. What remains then is to find the distribu-
number of resonances. The positions of the resonancéi®n of the positions of all the particles after some time
are identified with the eigenvalues of some matrix, and theé, provided initial distribution (1). Time can be related
averaging is performed over the elements of this matrix. to the characteristic value of the potentlad) so that the

The statistical properties of the eigenvalue®f a Her-  parametric correlations are universal functions of only one
mitian random matrixd of size N X N are completely parameter.

described by their joint distribution functio®({s;}), However, the Brownian-motion approach is not always
which can be written in the following simplified form: applicable. Consider a perturbation of the general form
N
P(ed) = [(er — &) 1) V=N uiliil, (3)
i>j i=1

Here the energies; are ordered:s; < ;. ,; the exponent where |i) form a complete set of states, and the matrix

B = 1,2,4 for ensembles of orthogonal, unitary, and dimensionN is included for proper definition of limit
sympléciic matrices, respectively. ' ’ N — o. For the Brownian-motion model to be applicable

Expression (1) vanishes when any two energy leveld3:9], the conditiony; <A must hold, whereAz is the
approach each other: this effect is commonly referred tg1€an level spacing. Singé > 1, the sum_; v; which

aslevel repulsion This repulsion can also be illustrated "aS the meaning of the fictitious tintén the Brownian-
by rewriting P({s,}) as motion picture, can still be arbitrarily large.

In a number of interesting physical situations one deals
P(e)) = e PE, E = — Z Ine; — ). (2) with a local pgrturbation descr_ibed by Eq. (3) with =
= vd;1, wherev is not necessarily small. An example of
such perturbation is a short-range impurity in a metallic
ThusP({e;}) can be interpreted as Gibbs distribution of agrain. When such an impurity is added to the system, its
gas of classical particles at points with logarithmic re-  |evelse; shift to new positions;. The new many-particle
pulsion between them. In physically interesting situationgyround statg¥) has a rather small overlap with the old
there must be a finite average distadcbetween the par- one, |®); this phenomenon [10] is called orthogonality
ticles (energy levels). This is usually achieved by eithercatastrophe. The overlap can be expressed in terms of the
introducing a parabolic confining potentidE = a >, s,~2 old and new energy levels:

or by confining the particles to a circle [4]. Mo N (A —g) (s — )
More recently the random matrix theory was applied Koy =[] T1] )\] — —, (4
to a number of physically different systems, such as =1 j=mi+1 (A i) () = i)

metallic grains [5,6] and microwave cavities [7]. In thesewhere M is the number of electrons in the system
systems one can easily modify the matitk e.g., by [11]. Therefore to treat the orthogonality catastrophe in
applying magnetic field to the grain or by deforming thea metallic grain one needs the knowledge of the joint
microwave cavity. Such modification can be describedlistribution function P({¢;},{A;}) of both old and new
by a perturbationV, and one is usually interested in energy levels.

the correlations of the energy levels of the old and new The determination of this joint distribution function is
systems described by matricBsand A + V. the main subject of this paper. The Brownian-motion
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model is not applicable in this case, but a closed analytic q {aAl} 1 [y =) (12)

expression forP({¢;},{A;}) can be found directly. For a_/\, - (No)V TTj=i(e; — &)
the orthogonalp = 1, and unitary 8 = 2, ensembles we In order to express the Porter-Thomas distribution

will show that function (9) in terms of the energies and A; we need

Pe () o [Tij(ei — &) (A — A) to evaluate the sur; A;. To this end we sum up both
S [lijlei — A1 =R72 sides of identity (11) oveir, and using Eq. (7), find
B } J 1 .
Xexpg——)>. (A —¢€)|. 6 — D> A= —, =1,...,N.
F{ 2 2k =) | ) aA; & Nu' N
Energy levels in Eq. (5) are constrained by the condition \y/e therefore conclude that the sum of is a linear
g = A = ¢gi+1, if v >0, function of all A; is a linear function of allx;. The

constant can be determined by noticing that according to

gi-1 = A =e,  ifv<0. ©)  Eq. (10) ath; — & we haved; — 0. Thus
Equation (5) is the central result of this paper. 1
To derive Eqg. (5) we need to relate the eigenvalues Z A= — Z(A,- - &i). (13)
A, of the perturbed matriy + vN|v)(v| to the unper- i Nv 5
turbed eigenvalues; and eigenfunctiongi); herel|v) is Finally, we substitute Egs. (1), (9), and (12) into
an arbitrary vector. This is easily accomplished: Eq. (8), and with the help of Egs. (10) and (13) get the
A 1 joint distribution function Eq. (5). Strictly speaking, the
> v - oy AiE (v li)l*. (7)  result (5) is valid only in the limitN — . This is the
i J i

physically most interesting regime where the properties of
Equation (7) enables one to finel({e;},{A;}) given the the system are universal.

joint distribution function of unperturbed eigenvalues and |If one is interested in nonuniversal corrections associ-
eigenfunctions. Since the distributions of eigenvalues andted with the finite size of the matrix, the Porter-Thomas
eigenvectors in the random matrix theory are uncorrelatedjistributions (9) should be replaced by [4]

we have TN oo
P((e}. 10D = PAed)piad) \ de{ gﬂ ] g T % <nA> 5(1 - Z-Ai)
’ (14)

Here P({e;}) is the distribution function (1) of the s o yesuit, the exponential factor in Eq. (5) is replaced
unperturbed energy levels, apd{A,}) is the eigenvector [14] by 5(1 — (Nv)~' 3, (A; — ;). However, for prac-

g'St:'bu_f_'ﬁn functllgn% WhICIh.aW — « Is given by the tical calculations the distribution function in the form (5)
orter-Thomas [13] formula: is more convenient.

_ N B Our result (5) contains complete information about dis-
p({A:}) = lj (27 NA;) - B2 exp( 2 NAi)’ ©) " tribution of the old and new energy levels of the system.
In applications, such as analysis of experimental spectra,
pne often needs only a small part of this information,
which is contained im-level correlation functions. The
¢ most important of them is the two-point correlation func-
tion of the old and new densities of stateés. We define
C[his quantity as

where 8 = 1 or 2. Finally, the last factor in Eq. (8) is
the Jacobian of the transformation from the eigenvecto
variablesA; to the new energies;.

To find the distribution function (8) we do not nee
to solve Eq. (7) with respect ta;. In order to find the
Jacobian in Eq. (8) one only has to solve (7) with respe
to A;. The latter is a much simpler problem since Eq. (7)

is linear inA;, and the solution can be expressed in terms Kals) = p2(E)
of Cauchy determinants. This readily yields s s
Ny XZ<6<E+——Ai>6(E———ak>>.
A = 1 j=1(/\j &i) (10) ik 2 2
" wN [T2i(e; — &) K>(s) has the meaning of the probability to find a

By definition all A, are positive; see Eq. (7). This New level at a distance from a given old level. The

immediately gives constraint (6). It follows from Eq. (10) correlation functionk, does not depend on enerds;
that provided thats is much smaller than the characteristic

energy scale over which average density of sta(@® =

4 - A (11)  X(8(E — A) varies.

I A e We have been able to obtain a compact analytic
As a result of the Jacobian in Eq. (8) is reduced to aexpression forK,(s) for the unitary ensemble only, and
Cauchy determinant, and we obtain we outline the derivation below. Becaugg does not
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depend on the particular shape @fE), it is convenient ensemble [3,4]. In the limit > 1, v/A, the integration
to get rid of energy dependence @fE) by adopting the in Eq. (18) can be easily performed and we find
circular ensemble of Dyson [2], where alllevels are put

on the circle of unit radius. Equation (5) f@ = 2 then i — s
takes the form K,=1- w (29)
(r)?
o . [ €& T & . i j
Pe = D:! 4 Sm( 2 ) sm( 2 ﬂ whereé = arctarfv/A) is the phase shift of the scatter-
% [%Z,(/‘f*&'). (15) ing off of the impurity. The sequence of periodic maxima

of the correlation function (19) is a signature of the level
Here the energies are measured in dimensionless units afepulsion, and the average shiftof the new levels with
defined within the intervdl—, 77 ]; we have also omitted respect to the old ones is consistent with the Friedel sum
the normalization constant. Mean level spacing in such &ule<A; — &;)/A = & /.

model is given byA = 27 /N. In conclusion, we studied the statistics of shifts of
We express functiornk, in terms of the functional eigenvalues of a random Hamiltonian by a local pertur-
derivative bation of arbitrary strength. Despite the fact that the con-
) ) ventional Brownian motion model is not applicable, we

Ky — A* §I[A,B] (16a) have found the whole joint distribution function of old
I[A,B] 6A8B |las-o and new levels, Eq. (5), and the correlator of the old and

new densities of states (18). Using Eq. (4), these results
can be applied to the study of orthogonality catastrophe in
small metallic grains.

of the generating functional for > 0 (negativev are
considered analogously)

1 :j del] d)\lj dezf d/\z] d)\NPC
- £ Al & Ay

x [ + Aol + B (16b)
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