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Shifts of Random Energy Levels by a Local Perturbation
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We consider the effect of a local perturbation on the energy levels of a system described by ran
matrix theory. An analytic expression for the joint distribution function of initial and final energy leve
is obtained. In the case of unitary ensemble we also find the two-point correlation function of ini
and final densities of states. [S0031-9007(97)05246-0]
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The random matrix theory [1–3] of energy levels in
complex systems was developed in the 1950s for t
description of the absorption spectra of large nucle
In this approach one gives up any attempt to stud
the position of each particular resonance, but inste
concentrates on the characteristics averaged over a la
number of resonances. The positions of the resonanc
are identified with the eigenvalues of some matrix, and th
averaging is performed over the elements of this matrix.

The statistical properties of the eigenvalues´i of a Her-
mitian random matrixĤ of size N 3 N are completely
described by their joint distribution functionPsh´ijd,
which can be written in the following simplified form:

Psh´ijd ~
Y
i.j

s´i 2 ´jdb . (1)

Here the energieśi are ordered:́ i , ´i11; the exponent
b ­ 1, 2, 4 for ensembles of orthogonal, unitary, and
symplectic matrices, respectively.

Expression (1) vanishes when any two energy leve
approach each other; this effect is commonly referred
as level repulsion. This repulsion can also be illustrated
by rewritingPsh´ijd as

Psh´ijd ­ e2bE , E ­ 2
X
i.j

lns´i 2 ´jd . (2)

ThusPsh´ijd can be interpreted as Gibbs distribution of
gas of classical particles at points´i with logarithmic re-
pulsion between them. In physically interesting situation
there must be a finite average distanceD between the par-
ticles (energy levels). This is usually achieved by eithe
introducing a parabolic confining potentialdE ­ a

P
i ´

2
i

or by confining the particles to a circle [4].
More recently the random matrix theory was applie

to a number of physically different systems, such a
metallic grains [5,6] and microwave cavities [7]. In thes
systems one can easily modify the matrix̂H, e.g., by
applying magnetic field to the grain or by deforming th
microwave cavity. Such modification can be describe
by a perturbationV̂ , and one is usually interested in
the correlations of the energy levels of the old and ne
systems described by matricesĤ andĤ 1 V̂ .
0031-9007y98y80(4)y814(3)$15.00
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Dyson [8] suggested to describe such correlations
terms of the viscous Brownian motion of the infinitely
heavy particles (2) with the same logarithmic interaction
between them. The external perturbation in this approa
plays the role of the fictitious time in which the Brownian
motion occurs. What remains then is to find the distribu
tion of the positions of all the particles after some tim
t, provided initial distribution (1). Timet can be related
to the characteristic value of the potentialV̂ , so that the
parametric correlations are universal functions of only on
parameter.

However, the Brownian-motion approach is not alway
applicable. Consider a perturbation of the general form

V̂ ­ N
NX

i­1

yijil kij , (3)

where jil form a complete set of states, and the matri
dimensionN is included for proper definition of limit
N ! `. For the Brownian-motion model to be applicable
[8,9], the conditionyi ø D must hold, whereD is the
mean level spacing. SinceN ¿ 1, the sum

P
i y

2
i which

has the meaning of the fictitious timet in the Brownian-
motion picture, can still be arbitrarily large.

In a number of interesting physical situations one dea
with a local perturbation described by Eq. (3) withyi ­
ydi1, wherey is not necessarily small. An example of
such perturbation is a short-range impurity in a metall
grain. When such an impurity is added to the system,
levels´i shift to new positionsli . The new many-particle
ground statejCl has a rather small overlap with the old
one, jFl; this phenomenon [10] is called orthogonality
catastrophe. The overlap can be expressed in terms of
old and new energy levels:

jkCjFlj2 ­
MY

i­1

NY
j­M11

slj 2 ´id s´j 2 lid
slj 2 lid s´j 2 ´id

, (4)

where M is the number of electrons in the system
[11]. Therefore to treat the orthogonality catastrophe
a metallic grain one needs the knowledge of the join
distribution functionPsh´ij, hlijd of both old and new
energy levels.

The determination of this joint distribution function is
the main subject of this paper. The Brownian-motio
© 1998 The American Physical Society
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model is not applicable in this case, but a closed analy
expression forPsh´ij, hlijd can be found directly. For
the orthogonal,b ­ 1, and unitary,b ­ 2, ensembles we
will show that

Psh´ij, hlijd ~

Q
i.js´i 2 ´jd sli 2 ljdQ

i,j j´i 2 ljj12by2

3 exp

∑
2

b

2y

X
isli 2 ´id

∏
. (5)

Energy levels in Eq. (5) are constrained by the conditio

´i # li # ´i11, if y . 0 ,

´i21 # li # ´i , if y , 0 . (6)

Equation (5) is the central result of this paper.
To derive Eq. (5) we need to relate the eigenvalu

lj of the perturbed matrix̂H 1 yNjyl kyj to the unper-
turbed eigenvalueśi and eigenfunctionsjil; here jyl is
an arbitrary vector. This is easily accomplished:X

i

Ai

lj 2 ´i
­

1
yN

, Ai ; jkyjilj2. (7)

Equation (7) enables one to findPsh´ij, hlijd given the
joint distribution function of unperturbed eigenvalues an
eigenfunctions. Since the distributions of eigenvalues a
eigenvectors in the random matrix theory are uncorrelat
we have

Psh´ij, hlijd ­ Psh´ijdpshAijd
Ç

det

∑
≠Ai

≠lj

∏ Ç
. (8)

Here Psh´ijd is the distribution function (1) of the
unperturbed energy levels, andpshAkjd is the eigenvector
distribution function, which atN ! ` is given by the
Porter-Thomas [13] formula:

pshAijd ­
Y

i

N
s2pNAid12by2

exp

µ
2

b

2
NAi

∂
, (9)

whereb ­ 1 or 2. Finally, the last factor in Eq. (8) is
the Jacobian of the transformation from the eigenvec
variablesAi to the new energieslj.

To find the distribution function (8) we do not need
to solve Eq. (7) with respect tolj. In order to find the
Jacobian in Eq. (8) one only has to solve (7) with respe
to Ai. The latter is a much simpler problem since Eq. (7
is linear inAi, and the solution can be expressed in term
of Cauchy determinants. This readily yields

Ai ­
1

yN

QN
j­1slj 2 ´idQ
jfiis´j 2 ´id

. (10)

By definition all Ai are positive; see Eq. (7). This
immediately gives constraint (6). It follows from Eq. (10
that

≠Ai

≠lj
­

Ai

lj 2 ´i
. (11)

As a result of the Jacobian in Eq. (8) is reduced to
Cauchy determinant, and we obtain
tic

n

es

d
nd
ed,

tor

ct
)
s

)

a

det

∑
≠Ai

≠lj

∏
­

1
sNydN

Q
j.islj 2 lidQ
j.is´j 2 ´id

. (12)

In order to express the Porter-Thomas distributio
function (9) in terms of the energieśi and lj we need
to evaluate the sum

P
i Ai. To this end we sum up both

sides of identity (11) overi, and using Eq. (7), find

≠

≠lj

X
i

Ai ­
1

Ny
, j ­ 1, . . . , N .

We therefore conclude that the sum ofAi is a linear
function of all li is a linear function of allli . The
constant can be determined by noticing that according
Eq. (10) atli ! ´i we haveAi ! 0. ThusX

i

Ai ­
1

Ny

X
i

sli 2 ´id . (13)

Finally, we substitute Eqs. (1), (9), and (12) int
Eq. (8), and with the help of Eqs. (10) and (13) get th
joint distribution function Eq. (5). Strictly speaking, the
result (5) is valid only in the limitN ! `. This is the
physically most interesting regime where the properties
the system are universal.

If one is interested in nonuniversal corrections asso
ated with the finite size of the matrix, the Porter-Thom
distributions (9) should be replaced by [4]

pshAijd ­
GsbNy2d
Gsby2dN

µY
i

Ai

∂by221

d

µ
1 2

X
i Ai

∂
.

(14)

As a result, the exponential factor in Eq. (5) is replac
[14] by ds1 2 sNyd21

P
isli 2 ´idd. However, for prac-

tical calculations the distribution function in the form (5
is more convenient.

Our result (5) contains complete information about di
tribution of the old and new energy levels of the system
In applications, such as analysis of experimental spec
one often needs only a small part of this informatio
which is contained inn-level correlation functions. The
most important of them is the two-point correlation func
tion of the old and new densities of statesK2. We define
this quantity as

K2ssd ­
1

r2sEd

3
X
ik

ø
d

µ
E 1

s
2

2 li

∂
d

µ
E 2

s
2

2 ´k

∂¿
.

K2ssd has the meaning of the probability to find
new level at a distances from a given old level. The
correlation functionK2 does not depend on energyE,
provided thats is much smaller than the characterist
energy scale over which average density of statesrsEd ­P

ikdsE 2 lidl varies.
We have been able to obtain a compact analy

expression forK2ssd for the unitary ensemble only, and
we outline the derivation below. BecauseK2 does not
815
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depend on the particular shape ofrsEd, it is convenient
to get rid of energy dependence ofrsEd by adopting the
circular ensemble of Dyson [2], where allN levels are put
on the circle of unit radius. Equation (5) forb ­ 2 then
takes the form

Pc ­

∑Y
i.j

4 sin

µ
´i 2 ´j

2

∂
sin

µ
li 2 lj

2

∂∏
3 e2 1

y

P
i
sli2´id. (15)

Here the energies are measured in dimensionless units
defined within the intervalf2p , pg; we have also omitted
the normalization constant. Mean level spacing in such
model is given byD ­ 2pyN.

We express functionK2 in terms of the functional
derivative

K2 ­
D2

IfA, Bg
d2IfA, Bg

dAdB

Ç
A,B­0

(16a)

of the generating functional fory . 0 (negativey are
considered analogously)

I ­
Z p

2p
d´1

Z p

´1

dl1

Z p

l1

d´2

Z p

´2

dl2 . . .
Z p

lN

dlN Pc

3
Y

k

f1 1 As´kdg f1 1 Bslkdg . (16b)

Following the procedure similar to that of Ref. [2], we
find that the generating functionalI can be rewritten as a
determinant of a certain matrixI ­ detF̂, where

Fkl ­
Z p

2p

d´
Z p

´

dlesy211ikd´2sy211ildl

3 f1 1 As´dg f1 1 B sldg . (17)

We then expand the determinant up to the second or
in small sourcesA andB . This expansion requires the
knowledge of the matrixF̂21 at A ­ B ­ 0, which
in the limit N ! ` takes the formF21

kl ­ dkl
y211ik

2p .
Substituting the result in Eq. (16a) we obtain after simp
algebra [15]

K2 ­ 1 2

∑
usrd 2

Z r

2`

dr 0e
r0D

y

sinpr 0

pr 0

∏
3

≠

≠r

∑
e2 rD

y

sinpr
pr

∏
, (18)

where r ­ syD is the energy in the units of the level
spacing. The result (18) is valid for positivev; for y , 0
one should substituter ! 2r in Eq. (18).

Let us now discuss asymptotic behavior of the two
point correlation function (18). In the limit of vanish-
ing perturbationy ! 0, we immediately obtainK2 ­
dsrd 1 1 2 ssinpryprd2 which is the well-known re-
sult for the two-point correlation function of the unitary
816
and

a

der

le

-

ensemble [3,4]. In the limitr ¿ 1, yyD, the integration
in Eq. (18) can be easily performed and we find

K2 ­ 1 2
sin2spr 2 dd

sprd2
, (19)

whered ­ arctanspyyDd is the phase shift of the scatter
ing off of the impurity. The sequence of periodic maxim
of the correlation function (19) is a signature of the lev
repulsion, and the average shiftd of the new levels with
respect to the old ones is consistent with the Friedel su
rule kli 2 ´ilyD ­ dyp.

In conclusion, we studied the statistics of shifts o
eigenvalues of a random Hamiltonian by a local pertu
bation of arbitrary strength. Despite the fact that the co
ventional Brownian motion model is not applicable, w
have found the whole joint distribution function of old
and new levels, Eq. (5), and the correlator of the old a
new densities of states (18). Using Eq. (4), these resu
can be applied to the study of orthogonality catastrophe
small metallic grains.
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