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Wave Function for Beryllium from X-Ray Diffraction Data
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We describe a procedure to extract a single determinant wave function from x-ray charge density
structure factors. The orbitals obtained can be seen as Hartree-Fock orbitals constrained to give the ex-
perimental density to a prescribed accuracy. The method is applied to beryllium metal. From our wave
function we extract the binding energy and work function for the crystal. Both are in qualitative agree-
ment with independent experiments. There is no evidence for non-nuclear maxima in the charge density.
[S0031-9007(97)04985-5]
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In some interesting recent work, Zhao, Morrison, andof charge density modeling, but will allow useful formal
Parr [1] have obtained the Kohn-Sham wave functiontheoretical results to be used.
of density functional theory from gheoretical electron We begin by reviewing the method of Zhao and Parr
density distribution. They observed that for the Be atom[1]. Consider a single determinant wave function whose
the Kohn-Sham orbitals were nearly indistinguishable fronorbitals ¢; are obtained from a model Hamiltoni&n
the Hartree-Fock orbitals. On this evidence, they claim 1
that the problem of finding a physically meaningful model hep; = <__ v + v>¢i =€ ;. (1)
wave function from an electron density is “solved.” 2

In this Letter, we derive a modgl wave fur_10tion_ from the density is given by
real charge densities measured using x-ray diffraction ex- N.J2
periments on the beryllium system. Although there is (r) =2 Z |:(r)[2
a long history associated with this problem [2-6], the P - ! '
use of model wave functions in physics (as distinct fromIf . ined to be th h d
model Hamiltonians) is surprisingly undeveloped, given', ¥ IS constrained to be the same as the exact ground state
their promise for understanding and enhancing the qualitgens'typo’ then the orbitals will satisfy the equation
of first principles calculations. The idea used here is con- hettp; = (h + Av.)d; = €, 3)
ceptually simple and general: we extract the determinant . -
which yields the observed electron density and minimizeg\f[he.ret’\ [lf‘hth‘f* Lagr?ng% muIt|de|er ag]ached t.?. theh con-
the Hartree-Fock energy. (The Kohn-Sham determinantzfrar']n ' € form ofv. elpenf s on iSpEC' 'C.dc dour:]e
on the other hand, yields the electron density and mini- the constraint (qr pena ) unction [1]. Provi ed the
mizes the kinetic energy [1].) Our particular interest in be_potentlalv is local inr, in the limit thatA — e we will

ryllium is motivated by recent claims [7,8] that there arehavep — poindependent of the choice of In this limit,

. : . . Ehen, Eq. (3) gives the Kohn-Sham orbitals and eigenval-
regions in the electron density, not at a nucleus, which ar s. The determinant formed from these orbitals is a wave
local maxima. Such maxima have never been observed ™"

previously in nature unction obtained from the densipyg.
There are a number of nice features for the model wave. The constraint function used here to force charge density

function proposed here. First, it is unique [6,9]. Second, be the same as experiment is fhestatistic,

the problem of having sufficient data does not arise,

unlike other methods [2,5]. Also, the model maintains x* = 1/m) Z(Fh - F)*/o, (4)

all the elements of a first principles quantum mechanical _ h

calculation; comparisons between theory and experimeriften used in crystallography as a measure of erfgrand

are greatly facilitated since nearly the same methods arkh are, respectively, the observed and calculated structure
used in both. Further, the Hartree-Fock model is known tdactors, oy is the error associated with each measured
give very reliable results for electron densities. HoweverStructure factoF,, andM is the number of observations.
two new issues need to be considered when using redine structure factors are related to the unit cell charge
data. First, because of experimental errors, we shoulf€nsity by a Fourier transform,

not constrain our wave function to exactly produce the

experimental charge density. Second, because we use data Fy = f p!'(r) exp2mir - Bh)dr, (5)

for a periodic system, the orbitals must be constrained to

be orthogonal throughout the crystal if we want to get awhere B is the reciprocal lattice matrix dependent only
reasonable wave function for the system. The resolutiolmn the crystal morphology, arldis an integer vector (the

of the orthogonality problem is not critical for the purposesMiller indices) labeling the reflection. An important point

(2)
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to note is thaty? is not forced to be zero: it does not the desired result for the calculated structure factors,
ma_ke sense to exactly reproduce an experimental density F¢ = Tr(DI). (9)
which contains errors. Insteag,’ is constrained to be ] ] ] ]
equal to a certain valug,. One obvious choice fog, I,, are the Fourier transf_orms of the baS|_s function pairs
is 1, so that calculated structure factors are (on averagdmmed over all the equivalent unit cell sites,

within one standard deviation of experiment. A more N

rigorous choice could be as follows. First, assume thatzr.h :ZexF(zWir.i)fw((B)flsjrBh)

the distribution of squared residuals is normal, as is often J

done in crystallography. Then tables are available [10] . —1aT

which give the probabilityy that a particular experiment X | gu(r)g,(r)exp2mir - B[(B)"'S; Bh])dr.
will give a 2 less tharg,,. The value of¢, can be chosen (10)

according to the desired confidence leyel Of course, ) )

other ways to choosé, are possible, as are other choicesFast meth_ods for .evaluatl_ng these integrals for the case

for the agreement statistic. of Gaussian pa5|s functions are known [12]. Also,
As a consequence of the nonzero value demanded for téd!l has described how to get the symmetry operators

2 statistic, the solution to (3) (if possible at all) will occur {(B)™'S; B,r;} for any crystal space group [13]. The

at afinite value ofA. Because of this, the choice ofisno ~ Parameters,,, account empirically for thermal smearing

longer arbitrary. Clearlyy must be chosen using the best of the charge density. We use the form recommended by

possible model, so that one does not have to constrain thefewart [14],

orbitals very much to obtain the observed charge density. tur(h) = exr{—zﬂ-zg(Bh) - (U* + U”)Bh], (11)

The Hartree-Fock (HF) model is chosen for this wark- which are expressed in terms of the thermal vibration

HE . S
v ’Itb ecausgtsf[ud:jestflﬁyel aIreIa(liilnm%ated tTat \:jery gftgjarameterﬂ # (also obtained from the x-ray experiment)
results are obtained at this level [11], and, as already noted, . yho a10m on which basis functiop,, is centered.

the HF orbitals appear to be very similar to the Kohn-Sha he factor e is L if th i f at q
orbitals for the case examined here, beryllium. It should "™, § 'S,,2 '1 e motions o ?oms,u. and v
be noted, however, that the Hartree-Fock potential is theft'® correlated,” org if uncorrela'ted. In this work,
it is not a local potential. In the case of perfect data (i.e.a‘tomS were dee”?ed correlated if they were less than
zero experimental error), the fitted orbitals obtained are ng'S bohr apart. - Different t'hermal smearing models have
longer Kohn-Sham orbitals, as they would have been if een propo_s_ed [15], but in practice the_ differences are
local potential had been used [1]. smgll. .Addltlonalh depgndent factor§ which account for
To calculate the crystal structure factors we restrict oufXtinction may also be incorporated in (10), but were not
attention to systems which are centrosymmetric (so th sed here. Howe\{er, an overal Qndependgnt) scale
structure factors are real) and composed of one symmet ctor was qsed, since the apsolute scale is not always
unique molecule in each unit cell. Then the cell charge ell defined in the x-ray experiment.

density can be decomposed into a sumVgf molecular J? Iconstruit at?etermlnanlt forl thetﬁntlre (iryl/stal, ttrge
charge densitieg’, each related by unit cell symmetry orbitals we extract for one molectlie In the crysta’ must be

operations{S;.r;} to a reference charge density for the orthogonal to all other orbitals on all other molecules in the

moleculep?, crystal. To ensure the required orthogonality, a projection
N, operator is used
cell _ j ighbors
pell) = D pl(r), neig o
j=i ©) K ; |65 (bf]. (12)
i(v) — AOTQ—l(y _ . _ _
p!(x) = plIS; " (r — ). It is assumed that the orbitals on the reference system

It is usually a good approximation to take’ to be the are fairly localized. All the other orbitals in the crys-
isolated molecule charge density, but within the aboveg| ¢* are related to the reference orbitals by translations
restrictions, no approximation has yet been made. Fojng crystal symmetry operations as in (6). The assump-
practica! calculationg? is usually obtained in a basis set. tjon of locality means that only a finite number of neigh-
If we write bors near to the reference molecule need be included in
b — Z .. ) the above summation. Adding the above projector to any
! m pi8pu equation for th(_e r_eference system orbi.tals and choosing the
then, using (2), the reference molecule charge density basigdrange multiplier« large enough will ensure orthogo-
set expansion is nality; the parts 'of the orbitals which are not orthogonal
become energetically unfavorable, and are thus removed.

por) = megﬂ(r)gy(r), (8) The matrix form for (3) expressed in a finite basis
w set with the various constraints described above is easily
whereD,,, = 2 SN/ cuicyi is the (closed shell) density shown to b?
matrix. Using this in (6) and substituting in (5), we have fc = (f — Av. + kp)c = Sce, (13)
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FIG. 1. x? agreement statistic for the x-ray structure factorsFiG. 2. Relative errors in fitted structure factors as a function

vs Lagrange fitting parametar.

where§ is the overlap matrixS,, = (g.lg,) andf is
taken to be the Fock matrix in this work,,, = (g,| —
3V2 + vHF|g ). The matrix of they? constraint ternv,
is given by

M

ve = /M) Y (Fyn — F{)Iu/o}. (14)

h
The matrix of the projection term which ensures orthogo-
nality to neighboring molecules is

neighbors

p= D (Sch(sch. (15)
k

These equation are solved in the usual self-consistent wa

the Lagrange multipliers\ and « being chosen large

enough to give, respectively, the desired agreement wit
experiment, or the desired orthogonality to near neighbors.

As for normal HF equations, there will B&. /2 “occupied”
orbitals ¢, and a number of “virtual” orbitals,, with
c = (c,cy,).

In practice, convergence problems are observed, becau

as A becomes largef, becomes small compared with,

and the solution of (13) becomes like a least squares fi
which is a singular problem if there are less data tha

parameters. Using real data with normal basis sets,

is unlikely to go to zero as\ gets larger, so the equa-

tions become increasingly ill-conditioned. The conver-
gence acceleration technique of Pulay [16] improves th&"
situation. Alternatively, Eqg. (13) can be recast as follows:

The occupied-occupied and virtual-virtual block are
arbitrary and can be scaled Ry Now divide the scaled
f in (13) by A and substitute /A — € andk/A — k (we
can do this because they are Lagrange multipliers).
then obtain

f'c = Sce, (16)

wheref* has had its occupied-unoccupied blocks scale

by 1/,
e = elfe, + elfe, + 1 (clfe, + elfe,).
)
800

of scattering angle.

The theory described in the previous section is now
applied to beryllium metal. Accurate low temperature data
were taken from the paper of Larsen and Hansen [17]. [But
note that in (14) | used the structure factors multiplied by
1000, as given in their paper.] For the orthogonalization,
the first shell of nearest neighbors was used. There were
12 atoms. A “triple-zeta” basis set from Ref. [18] was
used. There are 182 basis functions and 361 independent
parameters in the wave function, whereas there are 58
experimental measurements. Figure 1 shows a plot of the
x> agreement statistic as a function of the paramatéor
x = 0.2. Larger values ok caused numerical instability.

or A = 10 the overlap with the near neighbors was 0.004
hd 0.002 for x equal to 0.1 and 0.2, respectively. The
Hlot for k = 0.1 is indistinguishable on this scale. The
alue of y2 at A = 10 was 1.44, with the overall scale
actor being 0.997. A straight atomic density gavg a
of 2.37: the atomic model is already very good. It seems
clear that ay? much lower than 1.44 is not practically
Btainable, either because the energy penalty is too high, or
the basis set is inadequate. To test the latter, calculations
ere performed with an additional function (exponent
.32 atomic units) on the beryllium atom, but to make
the calculations practical, orthogonalizing the orbitals to
the near-neighbors was not performed. (This approach
corresponds to using up fo= 4 in a normal least squares
ultipole moment approach.) The value pt obtained
was 1.40, indicating the basis set is not the problem. A
scatter plotin Fig. 2 as a function of scattering angle shows
that the deviations of the fitted results are random. There
are no obvious systematic errors. Figure 3 is a plot of the
Lpermally smeared deformation densities, calculated from
our structure factors. Interestingly, there is hardly any
buildup of electron density in the tetrahedral and octahedral
hole positions of the hexagonal close packed structure.

q—|owever, there are depletions of charge similar to those

observed by Larsen and Hansen [17], in plots that they give
which are derived from Fourier summation techniques.
There is no evidence in this model for non-nuclear maxima
in the charge density [7,8].
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FIG. 3. Thermally averaged electron deformation density for Be crystal. Sectionz&y @75, the basal plane, (b) at= 0.625,
containing the tetrahedral hole site, and (c} at 0.5, containing the octahedral hole site. Origin is at the top left cornés;the
fractional coordinate along axis axesa andb increase across and down the page, respectively; contours intefv@l 3se /bohr;
dotted lines are negative, solid lines are positive.
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