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Wave Function for Beryllium from X-Ray Diffraction Data
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We describe a procedure to extract a single determinant wave function from x-ray charge de
structure factors. The orbitals obtained can be seen as Hartree-Fock orbitals constrained to give t
perimental density to a prescribed accuracy. The method is applied to beryllium metal. From our w
function we extract the binding energy and work function for the crystal. Both are in qualitative agr
ment with independent experiments. There is no evidence for non-nuclear maxima in the charge de
[S0031-9007(97)04985-5]

PACS numbers: 71.15.Mb, 71.15.Nc
l

rr
se

tate

-

e

al-
ve

ity

ure
ed
.
ge

y

t

In some interesting recent work, Zhao, Morrison, an
Parr [1] have obtained the Kohn-Sham wave functio
of density functional theory from atheoretical electron
density distribution. They observed that for the Be atom
the Kohn-Sham orbitals were nearly indistinguishable fro
the Hartree-Fock orbitals. On this evidence, they clai
that the problem of finding a physically meaningful mode
wave function from an electron density is “solved.”

In this Letter, we derive a model wave function from
real charge densities measured using x-ray diffraction e
periments on the beryllium system. Although there i
a long history associated with this problem [2–6], th
use of model wave functions in physics (as distinct from
model Hamiltonians) is surprisingly undeveloped, give
their promise for understanding and enhancing the qual
of first principles calculations. The idea used here is co
ceptually simple and general: we extract the determina
which yields the observed electron density and minimize
the Hartree-Fock energy. (The Kohn-Sham determina
on the other hand, yields the electron density and min
mizes the kinetic energy [1].) Our particular interest in be
ryllium is motivated by recent claims [7,8] that there ar
regions in the electron density, not at a nucleus, which a
local maxima. Such maxima have never been observ
previously in nature.

There are a number of nice features for the model wa
function proposed here. First, it is unique [6,9]. Secon
the problem of having sufficient data does not aris
unlike other methods [2,5]. Also, the model maintain
all the elements of a first principles quantum mechanic
calculation; comparisons between theory and experime
are greatly facilitated since nearly the same methods a
used in both. Further, the Hartree-Fock model is known
give very reliable results for electron densities. Howeve
two new issues need to be considered when using r
data. First, because of experimental errors, we shou
not constrain our wave function to exactly produce th
experimental charge density. Second, because we use d
for a periodic system, the orbitals must be constrained
be orthogonal throughout the crystal if we want to get
reasonable wave function for the system. The resolutio
of the orthogonality problem is not critical for the purpose
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of charge density modeling, but will allow useful forma
theoretical results to be used.

We begin by reviewing the method of Zhao and Pa
[1]. Consider a single determinant wave function who
orbitalsfi are obtained from a model Hamiltonianh,

hfi ­

µ
2

1
2

=2 1 y

∂
fi ­ eifi . (1)

The density is given by

rsrd ­ 2
Ney2X

i

jfisrdj2. (2)

If r is constrained to be the same as the exact ground s
densityr0, then the orbitals will satisfy the equation

hefffi ­ sh 1 lycdfi ­ eifi , (3)

where l is the Lagrange multiplier attached to the con
straint. The form ofyc depends on the specific choice
of the constraint (or penalty) function [1]. Provided th
potentialy is local in r, in the limit thatl ! ` we will
haver ! r0 independent of the choice ofy. In this limit,
then, Eq. (3) gives the Kohn-Sham orbitals and eigenv
ues. The determinant formed from these orbitals is a wa
function obtained from the densityr0.

The constraint function used here to force charge dens
to be the same as experiment is thex2 statistic,

x2 ­ s1yMd
X
h

sFh 2 Fc
hd2ys2

h , (4)

often used in crystallography as a measure of error.Fh and
Fc

h are, respectively, the observed and calculated struct
factors, sh is the error associated with each measur
structure factorFh, andM is the number of observations
The structure factors are related to the unit cell char
density by a Fourier transform,

Fh ­
Z

rcellsrd exps2pir ? Bhd dr , (5)

where B is the reciprocal lattice matrix dependent onl
on the crystal morphology, andh is an integer vector (the
Miller indices) labeling the reflection. An important poin
© 1998 The American Physical Society
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to note is thatx2 is not forced to be zero: it does no
make sense to exactly reproduce an experimental den
which contains errors. Instead,x2 is constrained to be
equal to a certain valuejp. One obvious choice forjp

is 1, so that calculated structure factors are (on avera
within one standard deviation of experiment. A mor
rigorous choice could be as follows. First, assume th
the distribution of squared residuals is normal, as is oft
done in crystallography. Then tables are available [1
which give the probabilityp that a particular experiment
will give a x2 less thanjp . The value ofjp can be chosen
according to the desired confidence levelp. Of course,
other ways to choosejp are possible, as are other choice
for the agreement statistic.

As a consequence of the nonzero value demanded for
x2 statistic, the solution to (3) (if possible at all) will occu
at afinitevalue ofl. Because of this, the choice ofy is no
longer arbitrary. Clearly,y must be chosen using the bes
possible model, so that one does not have to constrain
orbitals very much to obtain the observed charge dens
The Hartree-Fock (HF) model is chosen for this work,y ­
yHF , because studies have already indicated that very g
results are obtained at this level [11], and, as already not
the HF orbitals appear to be very similar to the Kohn-Sha
orbitals for the case examined here, beryllium. It shou
be noted, however, that the Hartree-Fock potential is t
it is not a local potential. In the case of perfect data (i.
zero experimental error), the fitted orbitals obtained are
longer Kohn-Sham orbitals, as they would have been i
local potential had been used [1].

To calculate the crystal structure factors we restrict o
attention to systems which are centrosymmetric (so
structure factors are real) and composed of one symme
unique molecule in each unit cell. Then the cell char
density can be decomposed into a sum ofNm molecular
charge densitiesrj , each related by unit cell symmetry
operationshSj , rjj to a reference charge density for th
moleculer0,

rcellsrd ­
NmX
j­1

rjsrd ,

rjsrd ­ r0fS21
j sr 2 rjdg .

(6)

It is usually a good approximation to taker0 to be the
isolated molecule charge density, but within the abo
restrictions, no approximation has yet been made. F
practical calculationsr0 is usually obtained in a basis se
If we write

fi ­
X
m

cmigm , (7)

then, using (2), the reference molecule charge density b
set expansion is

r0srd ­
X
m,n

Dmigmsrdgnsrd , (8)

whereDmn ­ 2
PNey2

i cmicni is the (closed shell) density
matrix. Using this in (6) and substituting in (5), we hav
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the desired result for the calculated structure factors,

Fc
h ­ TrsDIhd . (9)

Ih are the Fourier transforms of the basis function pa
summed over all the equivalent unit cell sites,

Imn,h ­
NmX
j

exps2pirjdtmnssssBd21ST
j Bhddd

3
Z

gmsrdgnsrd exps2pir ? BfsBd21ST
j Bhgd dr .

(10)

Fast methods for evaluating these integrals for the c
of Gaussian basis functions are known [12]. Als
Hall has described how to get the symmetry operat
hsBd21ST

j B, rjj for any crystal space group [13]. Th
parameterstmn account empirically for thermal smearin
of the charge density. We use the form recommended
Stewart [14],

tmnshd ­ expf22p2gsBhd ? sUm 1 UndBhg , (11)

which are expressed in terms of the thermal vibrati
parametersUm (also obtained from the x-ray experimen
for the atom on which basis functiongm is centered.
The factor g is 1

2 if the motions of atomsm and n

are “correlated,” or1
4 if “uncorrelated.” In this work,

atoms were deemed correlated if they were less th
2.5 bohr apart. Different thermal smearing models ha
been proposed [15], but in practice the differences
small. Additionalh dependent factors which account fo
extinction may also be incorporated in (10), but were n
used here. However, an overall (h independent) scale
factor was used, since the absolute scale is not alw
well defined in the x-ray experiment.

To construct a determinant for the entire crystal, t
orbitals we extract for one molecule in the crystal must
orthogonal to all other orbitals on all other molecules in t
crystal. To ensure the required orthogonality, a project
operator is used

k

neighborsX
k

jfk
i l kfk

i j . (12)

It is assumed that the orbitals on the reference systemfi

are fairly localized. All the other orbitals in the crys
tal f

k
i are related to the reference orbitals by translatio

and crystal symmetry operations as in (6). The assum
tion of locality means that only a finite number of neigh
bors near to the reference molecule need be included
the above summation. Adding the above projector to a
equation for the reference system orbitals and choosing
Lagrange multiplierk large enough will ensure orthogo
nality; the parts of the orbitals which are not orthogon
become energetically unfavorable, and are thus remov

The matrix form for (3) expressed in a finite bas
set with the various constraints described above is ea
shown to be

f̃c ; sf 2 lvc 1 kpdc ­ Sce , (13)
799
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FIG. 1. x2 agreement statistic for the x-ray structure facto
vs Lagrange fitting parameterl.

where S is the overlap matrix,Smn ­ kgmjgnl and f is
taken to be the Fock matrix in this work,fmn ­ kgmj 2
1
2 =2 1 yHF jgnl. The matrix of thex2 constraint termvc

is given by

vc ­ s2yMd
MX
h

sFh 2 Fc
hdIhys2

h . (14)

The matrix of the projection termp which ensures orthogo-
nality to neighboring molecules is

p ­
neighborsX

k

sSckd sSckdT . (15)

These equation are solved in the usual self-consistent w
the Lagrange multipliersl and k being chosen large
enough to give, respectively, the desired agreement w
experiment, or the desired orthogonality to near neighbo
As for normal HF equations, there will beNey2 “occupied”
orbitals co and a number of “virtual” orbitalscu, with
c ­ scocud.

In practice, convergence problems are observed, beca
asl becomes larger,f becomes small compared withvc,
and the solution of (13) becomes like a least squares
which is a singular problem if there are less data th
parameters. Using real data with normal basis sets,vc

is unlikely to go to zero asl gets larger, so the equa
tions become increasingly ill-conditioned. The conve
gence acceleration technique of Pulay [16] improves t
situation. Alternatively, Eq. (13) can be recast as follow
The occupied-occupied and virtual-virtual block off̃ are
arbitrary and can be scaled byl. Now divide the scaled
f̃ in (13) byl and substituteeyl ! e andkyl ! k (we
can do this because they are Lagrange multipliers). W
then obtain

f̃lc ­ Sce , (16)
where f̃l has had its occupied-unoccupied blocks scal
by 1yl,

cT f̃lc ­ cT
o f̃co 1 cT

y f̃cy 1
1
l

scT
y f̃co 1 cT

o f̃cyd .

(17)
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FIG. 2. Relative errors in fitted structure factors as a functio
of scattering angle.

The theory described in the previous section is no
applied to beryllium metal. Accurate low temperature da
were taken from the paper of Larsen and Hansen [17]. [B
note that in (14) I used the structure factors multiplied b
1000, as given in their paper.] For the orthogonalizatio
the first shell of nearest neighbors was used. There we
12 atoms. A “triple-zeta” basis set from Ref. [18] was
used. There are 182 basis functions and 361 independ
parameters in the wave function, whereas there are
experimental measurements. Figure 1 shows a plot of t
x2 agreement statistic as a function of the parameterl, for
k ­ 0.2. Larger values ofk caused numerical instability.
For l ­ 10 the overlap with the near neighbors was 0.00
and 0.002 for k equal to 0.1 and 0.2, respectively. The
plot for k ­ 0.1 is indistinguishable on this scale. The
value of x2 at l ­ 10 was 1.44, with the overall scale
factor being 0.997. A straight atomic density gave ax2

of 2.37: the atomic model is already very good. It seem
clear that ax2 much lower than 1.44 is not practically
obtainable, either because the energy penalty is too high
the basis set is inadequate. To test the latter, calculatio
were performed with an additionald function (exponent
0.32 atomic units) on the beryllium atom, but to mak
the calculations practical, orthogonalizing the orbitals t
the near-neighbors was not performed. (This approa
corresponds to using up tol ­ 4 in a normal least squares
multipole moment approach.) The value ofx2 obtained
was 1.40, indicating the basis set is not the problem.
scatter plot in Fig. 2 as a function of scattering angle show
that the deviations of the fitted results are random. The
are no obvious systematic errors. Figure 3 is a plot of th
thermally smeared deformation densities, calculated fro
our structure factors. Interestingly, there is hardly an
buildup of electron density in the tetrahedral and octahed
hole positions of the hexagonal close packed structu
However, there are depletions of charge similar to tho
observed by Larsen and Hansen [17], in plots that they gi
which are derived from Fourier summation technique
There is no evidence in this model for non-nuclear maxim
in the charge density [7,8].
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FIG. 3. Thermally averaged electron deformation density for Be crystal. Section (a) atz ­ 0.75, the basal plane, (b) atz ­ 0.625,
containing the tetrahedral hole site, and (c) atz ­ 0.5, containing the octahedral hole site. Origin is at the top left corner;z is the
fractional coordinate along axisc; axesa andb increase across and down the page, respectively; contours interval is0.015 eybohr3;
dotted lines are negative, solid lines are positive.
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Now to more interesting properties that can be e
tracted in our approach which cannot be extracted in
standard x-ray charge analysis. For a system at equil
rium, the virial theorem gives the total energy asE ­ 2T .
The “noninteracting” kinetic energyTs from our deter-
minant is 14.7861 a.u. forl ­ 10, k ­ 0.2. From this
and the exact result for the Be atom ground state ene
of 214.6674 a.u. [19], a binding energy of 312 kJymol
is obtained. Atl ­ 5 and k ­ 0.2, the binding energy
is 390 kJymol. The observed value is 318 kJymol [20].
However, it should be noted that the errorTc ­ T 2 Ts

in the Kohn-Sham theory is known to be 194 kJymol for
the Be atom [1].

An approximate ionization energy or work function ca
also be extracted. In density function theory, the ioniz
tion energy is given by the highest eigenvalue [21], whic
is governed by the long range behavior of the density.
our fitted orbitals are a good approximation to the Kohn
Sham orbitals, they can be used to define the highest eig
value for anapproximateone-particle effective potential.
With three popular choices, the Hartree-Fock potential, t
local density approximation (comprising Dirac’s exchang
[22] plus local correlation energy functional of Ref. [23])
and the “BLYP” approximation (comprising the Becke ex
change functional [24] plus correlation functional from
[25]), the results are, respectively, 6.0, 3.7, and 4.9 e
These are to be compared with the experimental value
4.98 eV [20]. Even though there is a considerable spre
in the results, as expected for such a crude calculatio
they are all better than the free atom Hartree-Fock value
8.4 eV. From these results it would seem our fitted wav
function is not unreasonable.
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