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Internal Dynamics and Elasticity of Fractal Colloidal Gels
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The dynamic structure factor of fractal colloidal gels is shown to exhibit a stretched expone
decay to a finite plateau with an exponent of about 0.7. The value of the plateau depends on both
particle volume fractionf0 and scattering wave vector. We show that this behavior results from
contribution of internal elastic modes of many length scales, and present a model which accounts
data. From the observed plateau we determine that the very small elastic modulus scales asG , f

3.9
0 ,

in agreement with predictions, and with direct mechanical measurements. [S0031-9007(97)0516

PACS numbers: 82.70.Dd, 61.43.Hv, 63.50.+x, 82.70.Gg
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Colloidal aggregates form fascinating structures; de
spite the apparent disorder of their shape, they posse
a remarkable degree of symmetry, and can be well d
scribed as fractals [1]. This scale invariance has facil
tated the description of their structure and its relationsh
to the kinetics of their formation [2]. One of the unique
features of a fractal structure is that its density decreas
as its size grows; as a result, colloidal aggregates ul
mately gel to form a very weak solid, comprised of a con
nected, disordered network that fills all space [3–5]. I
the aggregation is predominantly diffusion limited, the av
erage clusters that form the gel are surprisingly uniform i
size, resulting in a strong peak in the static light scatterin
intensity at low angles [3,5]. By contrast, if the aggre
gation is reaction limited, the large polydispersity in the
cluster size precludes the low angle scattering peak [4
Suspensions with exceedingly low initial particle volume
fraction f0 can gel, provided buoyancy matched particle
are used to avoid sedimentation. The resultant solid
a very interesting material; although it is a highly dis
ordered network, the scale invariant structure is neve
theless well determined. This makes colloidal gels ide
models for the study of the internal dynamics and relate
mechanical properties of disordered networks in genera
Unfortunately, however, such gels are so weak that it
very difficult to measure their properties with mechanica
techniques.

In this Letter, we overcome this experimental limitation
by using dynamic light scattering (DLS) to measure th
internal dynamics of fractal colloidal gels, and develop
model that allows us to determine their mechanical prop
erties. We show that colloidal gels exhibit unusual be
havior. At early times the dynamics appear as anomalo
or “stretched” diffusion with an exponent independent o
scattering wave vectorq or initial particle volume frac-
tion f0; this is in sharp contrast with polymer gels, where
stretched diffusive behavior is observed only after a
initial regime of simple exponential decay [6,7]. For
colloidal gels, it is still possible to define an effective dif-
fusion coefficient, which scales asq22; this is in sharp
contrast with DLS from internal motions of polymers,
0031-9007y98y80(4)y778(4)$15.00
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where aq23 behavior is expected [8]. For colloidal gel
formed from higherf0, the dynamics saturate at a platea
whose value depends onq. We develop a local-mode
analysis which sums all contributions to the motion an
correctly accounts for all the unusual behavior. Moreov
this model enables us to use light scattering to determ
the very weak elastic modulus of the gelG. The value so
determined is in excellent accord with that measured
traditional mechanical means for gels with highf0, while
the measured scalingG , f

3.9
0 is in excellent accord with

theoretical expectations.
Our gels are formed from polystyrene colloidal pa

ticles of radiusa ­ 9.5 nm, suspended in a buoyancy
matching mixture of H2O and D2O [3,5]. Aggregation is
initiated by the addition of MgCl2 to a final concentra-
tion of 6 mM, and is allowed to proceed for several da
to ensure complete gelation. We study very weak n
works, 1.0 3 1024 # f0 # 5.0 3 1023. The gels ap-
pear homogeneous; however, gentle shaking of the sam
is enough to destroy the gel, causing large cracks in
structure. Static light scattering confirms the cluster stru
ture has a fractal dimension ofdf ø 1.9, intermediate be-
tween diffusion- and reaction-limited cluster aggregatio
[9]. We use DLS to determine the dynamic structure fa
tor fsq, td, properly correcting the data with the averag
scattered intensity to determine the true ensemble aver
for more concentrated gels, where the dynamics are
ergodic [10]. Because the clusters are constrained by
network, the preponderance of the contribution of tran
lational and rotational diffusion is eliminated, and DLS
sensitive to internal dynamics of the clusters.

Typical results are shown in Fig. 1, where we plo
fsq, td for three gels of varyingf0 and for three values
of q. In all cases, the smallestq is still larger than that
of the peak observed with static scattering, ensuring t
we measure the dynamics within the fractal clusters th
make up the gel. For largerf0, the dynamics are highly
arrested, withfsq, td decaying to a plateau. As shown
in Fig. 1(a), for the stiffest gel, withf0 ­ 5.0 3 1023,
the height of this plateau exceeds 0.85 even at correlat
times beyond 100 s. Moreover, as shown in the ins
© 1998 The American Physical Society
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FIG. 1. Dynamic structure factorsfsq, td of fractal colloidal
gels for differentf0 andq; (a) f0 ­ 5.0 3 1023, andq ­ 4.1,
8.7, and16.7 mm21 from top to bottom; smooth curves are
theoretical fits yieldingd2 ­ 1.9 3 1023 mm2 andt ­ 3.9 3
1023 s; (b) f0 ­ 1.5 3 1023; q ­ 4.1, 8.7, and16.7 mm21;
d2 ­ 3.5 3 1022 mm2, t ­ 0.36 s; and (c)f0 ­ 1.7 3 1024;
q ­ 4.1, 12.1, and22.3 mm21; d2 ­ 13 mm2, t ­ 1850 s.

the plateau height decreases markedly with increasingq.
Similar behavior is observed with decreasingf0, except
the plateau height decreases, as shown in Fig. 1(b),
f0 ­ 1.5 3 1023. By contrast, for gels with the lowest
f0, fsq, td decays completely at allq, as shown in
Fig. 1(c) forf0 ­ 1.7 3 1024.

The characteristic time scales of the decay offsq, td
also vary dramatically withf0. At the higher f0,
when the decay is arrested, the decay time is essentia
independent ofq. By contrast, at the lowestf0, the
characteristic decay time is a strong function ofq,
decreasing by two decades asq increases from 4.1
to 22.3 mm21. Furthermore, in all cases, the deca
of fsq, td is not exponential, but instead extends ove
several decades in time. This behavior is most evide
when the data are plotted semilogarithmically; the initia
logarithmic slope, or first cumulant, diverges even a
the very earliest time scales. Instead, the data are w
described by a stretched exponential. Furthermore,
for
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lower f0 the data exhibit a striking scaling behavior, a
shown in Fig. 2, where we plotfsq, td logarithmically
as a function of the dimensionless parameterDpq2tp .
The data for all q scale onto a straight line. The
exponent, chosen to give the best linear behavior for
the data, isp ­ 0.66. This behavior contrasts sharpl
with DLS from fractal aggregates before they gel, whe
translational and rotational diffusion combine to produ
correlation functions with well-defined first cumulant
[11]. Theq2 dependence allows us to define an effecti
diffusion coefficientDp, provided we use the stretche
time tp . This highly unusual behavior is in sharp contra
with that observed with DLS from internal motion o
polymers, where the decay time typically exhibits
q23 behavior; a factor ofq22 arising from diffusive
relaxation, and an additional factor ofq21 arising because
the scattering vector sets the length scale of relaxati
probed [8]. Thus, the dynamics of colloidal gels a
significantly different than any previous observations.

To understand this highly unusual behavior, we co
sider a simple physical picture of the scattering fro
colloidal gels. Because of the disordered structure, D
probes the dynamics of segments of the gel with a len
scale ofj , q21, measuring their mean square displac
ment kDr2

jstdl through fsq, td ­ exph2q2kDr2
jstdly6j.

However, the excursion of each segment is constrain
because it is attached to the rest of the gel. For g
with high f0, the maximum excursion will be less tha
q21 and the scattering will not be ergodic leading to th
arrested decay observed in the correlation function.

FIG. 2. Scaling of the dynamic structure factors of dilute fra
tal gels showing stretched-exponential dynamics occur do
to the earliest delay times. The smooth curves are co
puted from Eq. (4);Dp is defined byd2y6tp with p ­ 0.66.
Upper data and curves:f0 ­ 1.0 3 1024; q ­ 8.2 mm21

(circles) andq ­ 15.8 mm21 (squares);d2 ­ 55 mm2, t ­
1.4 3 104 s. Lower data (offset for clarity):f0 ­ 7.0 3 1024;
q ­ 10.8 mm21 (circles) andq ­ 22.3 mm21 (squares);d2 ­
0.30 mm2, t ­ 6.1 s.
779
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contrast, for gels with lowerf0, the maximum excursion
will be greater thanq21 and the scattering will appear
ergodic, leading to a complete decay of the correlatio
function. Because of these constraints, their full excursio
must reflect the elasticity of the gel.

The motion of each segment of lengthj results not
only from thermal fluctuations of the segment itself, bu
also from the thermal motion from any larger segment
which it is attached within the cluster. The fluctuation
can, in principle, be calculated through analysis of th
normal modes of the fractal. However, normal mode
extend across the whole cluster whereas, because of
fluid, all fluctuations are overdamped, and hence localiz
to a lengths; thus, we must sum over the localized mode
of all lengths greater thanj to determinekDr2

jstdl. To do
so, we take the contribution of a mode of lengths as

kDr2
jstdls ­

2kBT
nssdkssd

h1 2 e2tytssdj . (1)

Here the fluctuation is constrained to a maximum amp
tude, and relaxes exponentially with a size-dependent tim
scaletssd. The amplitude of this localized mode depend
on its spring constantkssd, which is size dependent for
a fractal object, reflecting the fact that a stretching m
tion of an aggregate causes the chainlike structure to u
bend, rather than stretch [12,13]. The spring constant
given by kssd ­ k0saysdb, wherek0 is the spring con-
stant of a bond between two particles within the cluste
As s increases,kssd decreases, reflecting the greater flop
piness at larger length scales. The elasticity exponent
b ­ 2 1 dB, wheredB is the bond dimension [14]. The
value of b reflects the propensity for loops within the
aggregate; as the number of loops increases, the clu
will be less floppy [13]. For diffusion-limited clusters,
computer simulations suggestdB ø 1.1 [14] and we use
this value here. The amplitude of the localized fluctua
tion is determined by equipartition; each normal mod
has kBT of energy. However, a normal mode extend
over the whole cluster, whilekDr2

jstdls reflects the motion
due to a localized mode; thus the fraction of the mod
energy localized within the region of sizes is reduced
by the number of regions of this size,nssd ­ Ncsaysddf ,
whereNc is the number of particles in the average clus
ter. Finally, the time constant is determined by viscou
relaxation tssd ­ 6phsykssd, where h is the viscos-
ity of the fluid; the scaling istssd ­ t0ssyadb11, where
t0 ­ 6phayk0 is the relaxation time for the motion of a
single particle. The longest relaxation time is that of th
clustertc ­ t0sRcyadb11. Integrating over fluctuations
of all lengths using the density of modes2dnssdyds, we
have

kDr2
jstdl ­ 2dfkBT

Z Rc

j

ds
skssd

h1 2 e2tytssdj . (2)

The lower limit of the integral isj ­ q21; this can be
extended to zero since motion on shorter length sca
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has an exceedingly small amplitude, thus contributing
negligible amount to the integral.

Equation (2) can be evaluated analytically, yieldin
an expression with a sum of complete and incomple
gamma functions; in the limit of short times,kDr2

jstdl ,
stytdp , with p ­ bysb 1 1d ø 0.76, consistent with the
stretched-exponential behavior observed. However,
compare to our data, which extend over the full range
decay, it is more convenient to evaluate it numerically an
note that the result is well approximated by

kDr2
jstdl ­ d2f1 2 e2stytdp

g , (3)

whered2 ­ 2dfkBT sRcyadbybk0. We adjustt ­ btc

and p for the best accuracy and findb ­ 0.35 and
p ­ 0.70. This form exhibits the expected behavior
increasing liketp at short times and attaining a plateau
at long times. The hierarchy of fluctuations on al
length scales leads to the stretched exponential dec
Both the characteristic relaxation time and the maximu
mean square displacement are determined by the aver
clusters of sizeRc; thus the floppiest and slowest mode
dominate the behavior and characterize the dynamics
the gel. By contrast, the slow modes make only a sma
contribution to the motion at short times, resulting in
the apparentq2 dependence of the initial decay of the
correlation function. Finally, asf0 increases, the gels
become more rigid andd2 decreases, leading to the
arrested decay.

We fit all the data for each concentration using Eq. (3
to obtain the optimum values ofp, d2, and t; the fits
are shown by the solid lines in Figs. 1 and 2. Whil
not in perfect agreement, the fits do capture the behav
remarkably well given that the same fitting paramete
are used for allq for each value off0. We find that a
single exponent describes all the data, withp ­ 0.66, in
good agreement with the expected value of 0.70. In Fig.
we plot thef0 dependence ofd2 (open symbols) andt
(solid symbols). Values represented by circles apply
more concentrated gels where the arrested decay offsq, td
is observable and bothd2 and t can be obtained from
the fit. For the more dilute gels, the exponentially sma
plateau cannot be resolved; we therefore assignd2 from
an extrapolation of its values at higherf0, and fit for t;
the values so obtained are shown as solid squares in Fig
yielding an excellent continuation of the trend set by th
concentrated gels. The open squares show those val
assigned tod2 by extrapolation of the high-f0 trend. A
power-law behavior is observed for bothd2 and t; the
solid lines in Fig. 3 are fits to the data, given byd2 ­
c1f

22.7
0 and t ­ c2f

23.9
0 with c1 ­ 1.1 3 1029 mm2

and c2 ­ 3.5 3 10212 s. The ratio of these quantities
provides a consistency check; it provides an estimate of t
average cluster size, yieldingRc ­ 0.3af

21.2
0 . This result

is in good accord with the predictionRc ­ af0
21ys32df d ­

af0
21.1 obtained by assuming gelation occurs when th

average cluster size grows to uniformly fill space; it is als



VOLUME 80, NUMBER 4 P H Y S I C A L R E V I E W L E T T E R S 26 JANUARY 1998

-
of
-

r

a
i-
s

d

s,

d

,

)

FIG. 3. The parametersd2 (open symbols) andt (closed
symbols) as functions off0. Circles: both parameters are
adjusted in fits of Eq. (4) to measuredfsq, td. Squares: only
t is adjusted whiled2 is assigned by extrapolation of the fit to
the data.

in good agreement with the value determined from the pe
in the small angle scattering [3,5].

This model also provides an estimate of the ela
tic modulus G of the gel; it is determined by the
spring constant of the largest clustersG ­ ksRcdyRc ­
k0abR

212b
c . Therefore, the scaling of the modulus wit

f0 has the same exponent ast21 and is given byG ­
c3f

3.9
0 , wherec3 ­ 1.6 3 1010 dynycm2. The predicted

[3,5] scaling of the modulus isG , f
2s11bdysdf 23d
0 , yield-

ing an exponent of 3.7, in excellent accord with th
measured value of 3.9. Moreover, the magnitude
the modulus measured by light scattering is also in e
cellent accord with that measured mechanically with
rheometer for gels with sufficiently highf0; we mea-
sureG ­ 100 dynycm2 for a gel withf0 ­ 9.0 3 1023,
which compares well with the value of160 dynycm2 de-
termined from the light scattering. By comparison, co
loidal gels at much higher volume fractions have she
moduli that scale asG , f

n
0 , with n ­ 3.5 6 0.2 for

diffusion-limited cluster aggregation andn ­ 4.5 6 0.5
for reaction-limited cluster aggregation [15]; these exp
nents are consistent with ours.

Finally we note that the data for the lowerf0 gels ap-
pear ergodic when the system itself should be nonergo
if the motion of the segment is constrained by the g
However, we cannot unambiguously determine wheth
these systems are truly gels solely by light scattering m
surements, since the hallmark of a solid is nonergod
motion, while the scattering appears ergodic. Unambig
ous confirmation of a solid gel would require collectin
scattering data at even lowerq to observe nonergodic
behavior.

While all the measurements presented here apply
rectly to colloidal gels, we expect similar behavior to pe
tain for other random networks. In particular, the ela
ak
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tic modulus of networks of semiflexible actin are anoma
lously large; moreover the mean square displacement
probe particles within them exhibits a stretched exponen
tial behavior, with an exponent of 0.75 [16], which is
exactly what we would predict at short times for linear
chains withdB ­ 1. We note that the exponent measured
in our experiments is smaller because we fit the data ove
the full range of its decay. Thus, it is likely that the ori-
gin of the dynamics is the same for colloidal gels and
actin networks. More generally, our results represent
method for using light scattering to measure the rheolog
cal properties of a complex material. Previous example
relied on a uniform distribution of probe particles [17];
the results here generalize this to the strongly correlate
colloidal particles in a gel. However, the basic physics is
the same; by probing the response to thermal fluctuation
the elastic modulus is determined.
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