VOLUME 80, NUMBER 4 PHYSICAL REVIEW LETTERS 26 ANUARY 1998

Ideal Brittle Fracture of Silicon Studied with Molecular Dynamics
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Dynamic fracture experiments measurack velocityversusenergy flux to the tip We report here
the first calculation of this quantity in a realistic setting, using molecular dynamics to study silicon.
The results require relating the short length and time scales of simulations to the long length and time
scales of experiments. [S0031-9007(97)05122-3]

PACS numbers: 62.20.Mk, 46.30.Nz, 71.15.Pd

Silicon is very brittle and a wafer dropped on the floorbody potentials. All the features of the idealized lattice
easily shatters. A clue to explaining why comes frommodels carry over to the realistic case, although cracks in
static cracks. Even at room temperature, static cracks isilicon act in a hysteretic way we had not anticipated from
silicon can have tips that are atomically sharp [1], andhe analytical work.
there is every reason to believe that crystals can be severedWhy silicon?—We concentrate on simulations of sili-
very efficiently by the propagation of such sharp crackscon because it is very brittle, and its physical properties
Relations between crack speed and energy consumpti@re well known. In equilibrium it adopts the diamond
have been measured, mainly in brittle plastics [2], but haverystal structure, and the elastic moduli, phonon disper-
never realistically been calculated. sion relations, and even fracture energies across various

The only full characterization of how things break at thecrystal planes have all accurately been measured. We
atomic level has been obtained in mleal brittle crystal, learned not to take such information for granted during
which is a lattice of atoms in which forces betweenan earlier round of simulations of silicon oxide in the
nearest neighbors rise linearly with separation up to g-cristobalite structure. After discouraging experiences
critical distance, after which they fall immediately to zero.in which well-respected atomic potentials [8] caused the
That is, nearby atoms attract each other according taell-known equilibrium crystal to explode, we learned
Hooke’s law, until they separate too far, at which pointthat the crystal structure ensconced in the literature for
the bond between them instantly snaps. Slepyan [3,4] firgeventy years was incorrect, and that its replacement re-
showed that cracks in crystals of this type can completelynains controversial [9]. Studies of silicon do not involve
be described analytically. A summary of some of thesuch difficulties. Classical interatomic potentials have
most important results [5,6] is as follows: (i) Moving carefully been constructed to reproduce correctly a vari-
cracks can naturally evolve to steady states in whiclety of equilibrium properties [10]. The only drawback of
patterns of atomic motion repeat indefinitely, and thethese potentials is that since the bonding between silicon
crack leaves behind atomically flat surfaces. (ii) Cracksatoms is strongly covalent, computationally demanding
in steady state emit surface phonons whose phase velocitigree-body interactions are necessary just to keep the crys-
equals the crack velocity [3]. (iii) When energy flux to the tal stable. The contribution to the total energy of these
crack tip falls below a lower critical value, crack motion three-body terms is generally less than 0.1%, and they
becomes impossible. This lower critical value is largerserve mainly to ensure that the energies of face-centered
than the value one would deduce from considering energgind body-centered cubic structures are raised far above
conservation [7], and the minimum allowed crack speedhe energy of diamond.
is on the order of 20% of the transverse sound speed, Microscopic and macroscopic scalesThe study of
rather than zero. (iv) If energy flux to the crack passes affracture is difficult because crack tips always involve phe-
upper critical value, the tip goes unstable, is no longenomena on atomic scales, while the crack grows to macro-
atomically sharp, and the system’s dynamical behavioscopic lengths. The connection between microscopic and
rapidly becomes very complex. macroscopic scales is made as simple as possible by con-

These qualitative findings have been limited to the verysidering a strip geometry.
special models that could be solved by hand. There The predictions of fracture mechanics—the long wave-
was no persuasive argument that cracks in real materialength elastic theory of crack motion—are complicated
should behave similarly, no determination whether ideafor short cracks moving in large plates [11]. However,
brittle fracture is a pathological feature of an artificial for a long crack moving at steady velocity in a strip whose
model, or whether it is a broad universality class. Weupper and lower boundaries are held rigid one can deduce
therefore decided to check how much of the scenario woulthe energy consumed by the fracture in a trivial way. If
be preserved in three-dimensional molecular dynamicslastic energyG is stored per unit area far ahead of the
simulations of silicon, employing realistic two- and three-crack tip, then the crack consumes ene€gper unit area
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during steadymotion, since far behind the crack tip all
the elastic potential energy has been relieved. This con-
clusion rests upon symmetry, and does not even demand
strains ahead of the crack tip to be so small that linear
mechanics be applicable. Steady velodityand a cor-
responding energy flux; are achieved in the long time
limit, the natural scale in experiments as well as in ana-
Iytical calculations, where the crack tip reaches dynamic
equilibrium with waves reflecting from top and bottom
boundaries. According to fracture mechanics, the rela-
tionship between energy flowing to a crack tip and crack
velocity is, for a given lattice direction, universal. Having
obtained the relation in a strip, we know it for any of the
vast range of geometries to which fracture mechanics is
applicable, such as a long crack in a large plate [2].

In order to relate samples of different size to one
another, letG. be the Griffith energy density [7,11],
that is, twice the crack surface energy density, a lower
bound on the energy per unit area required for a perfectly
efficient crack to propagate along a certain plane. In
our numerical silicon,G. = 3.3 J/m? for cracks along
(110), andG,. = 2.7 J/m? for cracks alond111). Define
a dimensionless measure of loading

A =4G/G, 1) Q/‘
where G is the energy stored per unit area ahead of the z

crack. According to analytical solutions for the ideal FIG. 1. Visualizati . . .

. ) . . . 1. isualizations of the simulations, showing a stable
brittle solid, the relationship betweenand crack velocity  gteady-state crack at 6.24% strain, top, and an unstable crack at
becomes independent of the height of the strip (numbeg.97% strain, bottom, along (111). Animations can be seen at
of planes alongz) for surprisingly small strips; a strip http://chaos.ph.utexas.eduander/Crack/.

80 atoms high has for all practical purposes reached

the infinite limit. This very rapid convergence of the

main quantity of physical interest allows us to obtainlives in a strip of finite extent, we create energy absorbing
physically meaningful results from simulations that by regions 20 A thick at both the left and right ends—though
today's standards [12-15] involve small numbers ofthis is not important for the region ahead of the crack tip,
atoms. Because of the long time scales required for steadyhich remains practically undisturbed until the crack goes
states, we therefore need to make the system as small asstable.

possible along, Fig. 1, and to carry out very long runs. x-z planes—Across these boundaries, we employ

Design of simulations—In the simulations indicated periodic boundary conditions. This choice enables us
in Fig. 1, the crack runs along, exposing eithef111)  correctly to describe the flux of energy to the crack
or (110) planes. Three separate boundary conditions arép in a macroscopic sample. Nakamura and Parks [16]
employed. have shown that in a plate of thicknegs at distances

x-y planes—Two layers of atoms at the top and from the crack tip much smaller thah, the appropriate
bottom of the strip are held rigid during the simulation. elastic solutions are found to be those with such periodic
By pulling them apart, elastic energy of any desiredboundary conditions.
amount can be stored ahead of the crack tip. Sometimes We start with an equilibrium sampl&14 X 19 X
the distance between top and bottom layers is held fixed53 A3. The number of atoms involved at any stage of
during the whole simulation, while other times it is the simulation is approximately 94 000, although after nu-
increased or decreased adiabatically. merous cuts and pastes at left- and right-hand boundaries

y-z planes—We want to model a crack in an infinitely tens of millions of atoms are cumulatively involved. This
long strip. To accomplish this aim with a finite number of number is small enough to enable us to follow crack mo-
atoms, we use two techniques at these boundaries. Firsion for the times {10 ns) needed for the cracks to pro-
whenever the crack tip approaches within 150 A of theceed through a succession of steady states between arrest
right-hand boundary, we paste new crystal onto the rightand instability. To initiate the simulation, we pull the two
hand side, and cut broken crystal from the left. Second, ta-y boundaries apart so thAtas defined in Eq. (1) is 1.6,
prevent elastic waves from informing the crack tip that itinsert a narrow seed crack running half the sample length,

A=16
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give an initial velocity to a few atoms near the crack tip,so that crack velocityy equals phonon phase velocity.
and let Newtonian mechanics take over. The time stefhus, the Cherenkov condition is equivalent to demanding
used is 4 fs. There are about 30 time steps in the smalleitat a propagating wave obey Eq. (2), so Fig. 2 also
period of vibration in the system, giving very good en-shows that Eq. (4) is satisfied.
ergy conservation. Decreasing the time step by a factor In order to find fracture speed as a function of
of 4 shows no change in the dynamics. the loading parameteA, we adiabatically decrease the
Results of calculations in silicor-We want the cal- separation between the-y boundaries while allowing
culations to answer the following questions: (i) Are the simulation to run. The crack tip is precisely located
there loadsA where cracks are attracted to steady states@very second time step, showing clearly every single
(ii) Do cracks emit phonons at the predicted frequenciesBond-breaking event. In order to estimate just how slow
(iii) Do cracks refuse to travel below a minimum veloc- the strain rate must be to achieve the adiabatic limit,
ity v; > 07? (iv) Do they go unstable above an upper loadwe carried out numerical simulations of the analytically
A.? The answer to all the questions is yes. solvable models. We compared numerical and analytical
Figure 2 shows the time history of two different atomsresults, arriving at the criterion that the dimensionless
just above a (111) fracture surface far= 1.6 and for  strain rateek,/c should be much less than one, where
times greater than 0.24 ns. As anticipated by the theory is the strain ratec = 5500 m/s is a sound speed,
of ideal brittle fracture, the crack has reached steadynd . = 153 A is the height of the sample along
state with velocityy = 3460 m/s, which means that the We employ low rateg < 100 us !, or éh./c < 107*.
vertical displacement; of an atom originally at crystal Prior molecular dynamics simulations of fracture have
locationR is related to the vertical displacemen, ,; of ~ been carried out with strain rates of orded* times
an atomn lattice spacings = ai to the right by greater, for which steady states are unattainable and
the crack very rapidly goes unstable. In laboratory
Ziena(t + nafv) = z3(0). (2) experiments [17]¢h./c ~ 1078,
For a range of load\, Eq. (2) applies for any pair of  Along (110)—The relation between velocity and
atoms, whatever their separation along the crack surfacékoad A for cracks exposing110) and traveling along
In order to obtain the perfect periodicity shown in Fig. 2,[110] appears in Fig. 3(a). The crack velocity smoothly
the crack was allowed to run first for 60 000 time stepsdecreases ad decreases, until ai; = 2256 m/s and
so as to come into equilibrium with the waves it sendsA = 1.258, the crack abruptly comes to a halt. Rais-

towards top and bottom boundaries. ing A again, the crack does not begin to move until

Under steady-state conditions as described by Eq. (2 = 1.366, a value that is sensitive to residual vibra-

the radiation far from the crack tip must obey tions in the crystal, but the rising curve then perfectly
iR 4nd) =) (t+na/v)] — lik-R-io@)] 3) overlaps the descending one. Crack speed continues to

rise smoothly untilv = 3586 m/s, A = 2.2, at which
Sincea andv are parallel, it follows that the crack should

excite all surface phonons whose frequermyfc) and

wave numbek obey the Cherenkov condition 4
N N convergence check .
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time (ps) FIG. 3. (a) Relation between crack spaeednd loadingA for

crack along(110). As A descends, velocity drops abruptly to
FIG. 2. Heightz of two atoms lying on the crack line as zero at lower critical value, and as ascends resumption of
a function of time, showing passage of a crack orflal) crack motion is hysteretic. For convergence check, system size
plane. The second atom lies4 A along x relative to the was doubled along andz, andv(A) measured. (b) Same for
first, and is displaced backwards by 5.32 ps in time. That therack along(111). For A < 1.44 the crack is able to expose
two overlapped curves are almost completely indistinguishablenany different states lying along many hysteresis loops; see
shows the crack has reached steady state, according to Eq. (Big. 15 of Ref. [6]. Gray lines show where ideal steady states
and is emitting phonons in accord with Eq. (4). are unstable.
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point steady-state motion becomes unstable. We have not Special thanks to Robert Harkness and Robert van
yet investigated the instability in detail, but observe suctde Geijn for their very generous help with parallel
complicated phenomena as formation of small branchegomputing. All computations were performed at the
emission of dislocations, and changes in the plane ofligh Performance Computing Facility of the University
propagation. of Texas. Many thanks also to Florian Mertens and
Along (111)—The relation between velocity and Leonard Kleinman for useful discussions, and to Don
load A for cracks along(111) and traveling alond011]  Hamann for explaining to us why cristobalite wanted to
appears in Fig. 3(b). For.44 < A < 2, the crack has explode. This research was supported by the National
stable steady states, and fdr> 2 it goes unstable in Science Foundation (DMR-9531187), the Texas High
a similar manner to cracks alorld10). However, for Performance Computing Facility, the Texas Advanced
1.175 < A < 1.44 the dynamics of the crack exhibits a Research Program, and the Exxon Education Foundation.
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given plateau, the phonon frequencies appear fixed anqg) F. Liy et al., Phys. Rev. Lett70, 2750 (1993).
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Resolving all the fine structure visible in Fig. 3 required University Press, Cambridge, 1990).
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