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Ideal Brittle Fracture of Silicon Studied with Molecular Dynamics
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Center for Nonlinear Dynamics and Department of Physics, The University of Texas at Austin, Austin, Texas

(Received 2 September 1997)

Dynamic fracture experiments measurecrack velocityversusenergy flux to the tip. We report here
the first calculation of this quantity in a realistic setting, using molecular dynamics to study silicon.
The results require relating the short length and time scales of simulations to the long length and time
scales of experiments. [S0031-9007(97)05122-3]

PACS numbers: 62.20.Mk, 46.30.Nz, 71.15.Pd
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Silicon is very brittle and a wafer dropped on the floo
easily shatters. A clue to explaining why comes fro
static cracks. Even at room temperature, static cracks
silicon can have tips that are atomically sharp [1], an
there is every reason to believe that crystals can be seve
very efficiently by the propagation of such sharp crack
Relations between crack speed and energy consump
have been measured, mainly in brittle plastics [2], but ha
never realistically been calculated.

The only full characterization of how things break at th
atomic level has been obtained in anideal brittle crystal,
which is a lattice of atoms in which forces betwee
nearest neighbors rise linearly with separation up to
critical distance, after which they fall immediately to zero
That is, nearby atoms attract each other according
Hooke’s law, until they separate too far, at which poi
the bond between them instantly snaps. Slepyan [3,4] fi
showed that cracks in crystals of this type can complet
be described analytically. A summary of some of th
most important results [5,6] is as follows: (i) Moving
cracks can naturally evolve to steady states in whi
patterns of atomic motion repeat indefinitely, and th
crack leaves behind atomically flat surfaces. (ii) Crac
in steady state emit surface phonons whose phase velo
equals the crack velocity [3]. (iii) When energy flux to th
crack tip falls below a lower critical value, crack motio
becomes impossible. This lower critical value is larg
than the value one would deduce from considering ene
conservation [7], and the minimum allowed crack spe
is on the order of 20% of the transverse sound spe
rather than zero. (iv) If energy flux to the crack passes
upper critical value, the tip goes unstable, is no long
atomically sharp, and the system’s dynamical behav
rapidly becomes very complex.

These qualitative findings have been limited to the ve
special models that could be solved by hand. The
was no persuasive argument that cracks in real mater
should behave similarly, no determination whether ide
brittle fracture is a pathological feature of an artificia
model, or whether it is a broad universality class. W
therefore decided to check how much of the scenario wo
be preserved in three-dimensional molecular dynam
simulations of silicon, employing realistic two- and three
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body potentials. All the features of the idealized lattice
models carry over to the realistic case, although cracks
silicon act in a hysteretic way we had not anticipated from
the analytical work.

Why silicon?—We concentrate on simulations of sili-
con because it is very brittle, and its physical propertie
are well known. In equilibrium it adopts the diamond
crystal structure, and the elastic moduli, phonon dispe
sion relations, and even fracture energies across vario
crystal planes have all accurately been measured. W
learned not to take such information for granted during
an earlier round of simulations of silicon oxide in the
b-cristobalite structure. After discouraging experience
in which well-respected atomic potentials [8] caused th
well-known equilibrium crystal to explode, we learned
that the crystal structure ensconced in the literature fo
seventy years was incorrect, and that its replacement r
mains controversial [9]. Studies of silicon do not involve
such difficulties. Classical interatomic potentials have
carefully been constructed to reproduce correctly a var
ety of equilibrium properties [10]. The only drawback of
these potentials is that since the bonding between silico
atoms is strongly covalent, computationally demandin
three-body interactions are necessary just to keep the cry
tal stable. The contribution to the total energy of thes
three-body terms is generally less than 0.1%, and the
serve mainly to ensure that the energies of face-center
and body-centered cubic structures are raised far abo
the energy of diamond.

Microscopic and macroscopic scales.—The study of
fracture is difficult because crack tips always involve phe
nomena on atomic scales, while the crack grows to macr
scopic lengths. The connection between microscopic an
macroscopic scales is made as simple as possible by co
sidering a strip geometry.

The predictions of fracture mechanics—the long wave
length elastic theory of crack motion—are complicated
for short cracks moving in large plates [11]. However,
for a long crack moving at steady velocity in a strip whose
upper and lower boundaries are held rigid one can dedu
the energy consumed by the fracture in a trivial way. I
elastic energyG is stored per unit area far ahead of the
crack tip, then the crack consumes energyG per unit area
© 1998 The American Physical Society
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during steadymotion, since far behind the crack tip al
the elastic potential energy has been relieved. This co
clusion rests upon symmetry, and does not even dema
strains ahead of the crack tip to be so small that line
mechanics be applicable. Steady velocity$y and a cor-
responding energy fluxG are achieved in the long time
limit, the natural scale in experiments as well as in an
lytical calculations, where the crack tip reaches dynam
equilibrium with waves reflecting from top and bottom
boundaries. According to fracture mechanics, the rel
tionship between energy flowing to a crack tip and crac
velocity is, for a given lattice direction, universal. Having
obtained the relation in a strip, we know it for any of th
vast range of geometries to which fracture mechanics
applicable, such as a long crack in a large plate [2].

In order to relate samples of different size to on
another, letGc be the Griffith energy density [7,11],
that is, twice the crack surface energy density, a low
bound on the energy per unit area required for a perfec
efficient crack to propagate along a certain plane.
our numerical silicon,Gc ­ 3.3 Jym2 for cracks along
s110d, andGc ­ 2.7 Jym2 for cracks alongs111d. Define
a dimensionless measure of loading

D ­
q

GyGc , (1)

whereG is the energy stored per unit area ahead of th
crack. According to analytical solutions for the idea
brittle solid, the relationship betweenD and crack velocity
becomes independent of the height of the strip (numb
of planes alongz) for surprisingly small strips; a strip
80 atoms high has for all practical purposes reach
the infinite limit. This very rapid convergence of the
main quantity of physical interest allows us to obtai
physically meaningful results from simulations that b
today’s standards [12–15] involve small numbers o
atoms. Because of the long time scales required for stea
states, we therefore need to make the system as sma
possible alongz, Fig. 1, and to carry out very long runs.

Design of simulations.—In the simulations indicated
in Fig. 1, the crack runs alongx, exposing eithers111d
or s110d planes. Three separate boundary conditions a
employed.

x-y planes.—Two layers of atoms at the top and
bottom of the strip are held rigid during the simulation
By pulling them apart, elastic energy of any desire
amount can be stored ahead of the crack tip. Sometim
the distance between top and bottom layers is held fix
during the whole simulation, while other times it is
increased or decreased adiabatically.

y-z planes.—We want to model a crack in an infinitely
long strip. To accomplish this aim with a finite number o
atoms, we use two techniques at these boundaries. F
whenever the crack tip approaches within 150 Å of th
right-hand boundary, we paste new crystal onto the righ
hand side, and cut broken crystal from the left. Second,
prevent elastic waves from informing the crack tip that
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FIG. 1. Visualizations of the simulations, showing a stab
steady-state crack at 6.24% strain, top, and an unstable crac
8.97% strain, bottom, along (111). Animations can be seen
http://chaos.ph.utexas.edu/ m˜ arder/Crack/.

lives in a strip of finite extent, we create energy absorbi
regions 20 Å thick at both the left and right ends—thoug
this is not important for the region ahead of the crack ti
which remains practically undisturbed until the crack go
unstable.

x-z planes.—Across these boundaries, we emplo
periodic boundary conditions. This choice enables
correctly to describe the flux of energy to the crac
tip in a macroscopic sample. Nakamura and Parks [1
have shown that in a plate of thicknessd, at distances
from the crack tip much smaller thand, the appropriate
elastic solutions are found to be those with such perio
boundary conditions.

We start with an equilibrium sample614 3 19 3

153 Å3. The number of atoms involved at any stage
the simulation is approximately 94 000, although after n
merous cuts and pastes at left- and right-hand bounda
tens of millions of atoms are cumulatively involved. Thi
number is small enough to enable us to follow crack m
tion for the times (,10 ns) needed for the cracks to pro
ceed through a succession of steady states between a
and instability. To initiate the simulation, we pull the tw
x-y boundaries apart so thatD as defined in Eq. (1) is 1.6,
insert a narrow seed crack running half the sample leng
747
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give an initial velocity to a few atoms near the crack tip
and let Newtonian mechanics take over. The time st
used is 4 fs. There are about 30 time steps in the smal
period of vibration in the system, giving very good en
ergy conservation. Decreasing the time step by a fac
of 4 shows no change in the dynamics.

Results of calculations in silicon.—We want the cal-
culations to answer the following questions: (i) Ar
there loadsD where cracks are attracted to steady state
(ii) Do cracks emit phonons at the predicted frequencie
(iii) Do cracks refuse to travel below a minimum veloc
ity y1 . 0? (iv) Do they go unstable above an upper loa
Dc? The answer to all the questions is yes.

Figure 2 shows the time history of two different atom
just above a (111) fracture surface forD ­ 1.6 and for
times greater than 0.24 ns. As anticipated by the theo
of ideal brittle fracture, the crack has reached stea
state with velocityy ­ 3460 mys, which means that the
vertical displacementz $R of an atom originally at crystal
location $R is related to the vertical displacementz $R1n $a of
an atomn lattice spacings$a ; ax̂ to the right by

z $R1n $ast 1 nayyd ­ z $Rstd . (2)

For a range of loadsD, Eq. (2) applies for any pair of
atoms, whatever their separation along the crack surfa
In order to obtain the perfect periodicity shown in Fig. 2
the crack was allowed to run first for 60 000 time step
so as to come into equilibrium with the waves it send
towards top and bottom boundaries.

Under steady-state conditions as described by Eq. (
the radiation far from the crack tip must obey

efi $k?s $R1n $ad2ivs$kd st1nayydg ­ efi $k? $R2ivs$kdtg. (3)

Since $a and $y are parallel, it follows that the crack should
excite all surface phonons whose frequencyvs$kd and
wave number$k obey the Cherenkov condition

vs $kd ­ $y ? $k , (4)

FIG. 2. Height z of two atoms lying on the crack line as
a function of time, showing passage of a crack on as111d
plane. The second atom lies184 Å along x relative to the
first, and is displaced backwards by 5.32 ps in time. That t
two overlapped curves are almost completely indistinguisha
shows the crack has reached steady state, according to Eq.
and is emitting phonons in accord with Eq. (4).
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so that crack velocity$y equals phonon phase velocity.
Thus, the Cherenkov condition is equivalent to demandin
that a propagating wave obey Eq. (2), so Fig. 2 als
shows that Eq. (4) is satisfied.

In order to find fracture speedy as a function of
the loading parameterD, we adiabatically decrease the
separation between thex-y boundaries while allowing
the simulation to run. The crack tip is precisely locate
every second time step, showing clearly every sing
bond-breaking event. In order to estimate just how slo
the strain rate must be to achieve the adiabatic limi
we carried out numerical simulations of the analytically
solvable models. We compared numerical and analytic
results, arriving at the criterion that the dimensionles
strain rate Ùehzyc should be much less than one, where
Ùe is the strain rate,c ­ 5500 mys is a sound speed,
and hz ­ 153 Å is the height of the sample alongz.
We employ low ratesÙe , 100 ms21 , or Ùehzyc , 1024.
Prior molecular dynamics simulations of fracture hav
been carried out with strain rates of order104 times
greater, for which steady states are unattainable a
the crack very rapidly goes unstable. In laborator
experiments [17],Ùehzyc , 1028.

Along (110).—The relation between velocityy and
load D for cracks exposings110d and traveling along
f11̄0g appears in Fig. 3(a). The crack velocity smoothly
decreases asD decreases, until aty1 ­ 2256 mys and
D ­ 1.258, the crack abruptly comes to a halt. Rais
ing D again, the crack does not begin to move unt
D ­ 1.366, a value that is sensitive to residual vibra-
tions in the crystal, but the rising curve then perfectl
overlaps the descending one. Crack speed continues
rise smoothly untily ­ 3586 mys, D ø 2.2, at which

FIG. 3. (a) Relation between crack speedy and loadingD for
crack alongs110d. As D descends, velocity drops abruptly to
zero at lower critical value, and asD ascends resumption of
crack motion is hysteretic. For convergence check, system s
was doubled alongx andz, andysDd measured. (b) Same for
crack alongs111d. For D , 1.44 the crack is able to expose
many different states lying along many hysteresis loops; s
Fig. 15 of Ref. [6]. Gray lines show where ideal steady state
are unstable.
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point steady-state motion becomes unstable. We have
yet investigated the instability in detail, but observe suc
complicated phenomena as formation of small branch
emission of dislocations, and changes in the plane
propagation.

Along (111).—The relation between velocityy and
load D for cracks alongs111d and traveling alongf011̄g
appears in Fig. 3(b). For1.44 , D , 2, the crack has
stable steady states, and forD . 2 it goes unstable in
a similar manner to cracks alongs110d. However, for
1.175 , D , 1.44 the dynamics of the crack exhibits a
number of interesting features we have not seen pre
ously, and for which we do not now have a complet
theoretical description. There is a variety of different dy
namical states available for each value ofD, where the
crack travels at different speeds. Each of these states c
responds to a plateau inysDd; D can change by as much
as one fifth of the amount needed to go from arrest
instability and the crack velocity does not alter within nu
merical resolution. When the crack finally decides to a
celerate out of the plateau, it may jump by over 1 kmys
and reach an upper plateau to within a few mys. On cycli-
cal loading the same plateaus are always reached. All
these transitions are hysteretic, as depicted in Fig. 3. T
different states emit noticeably different phonons; on
given plateau, the phonon frequencies appear fixed a
their amplitude changes, while between plateaus the f
quencies change, in accord with Eq. (4). All these ph
nomena are easily disguised if strain rates are too hig
Resolving all the fine structure visible in Fig. 3 require
Ùe , 8 ms21 , or Ùehzyc , 1025.

Naturally, it would be very interesting to know how
much of the dynamical scenario we present here actua
occurs in nature. Experiments aimed at answering th
question are underway. In the current incarnation, th
are being performed at room temperature, and we a
also carrying out new computer simulations at elevate
temperatures. However, new experiments at low tempe
tures will be required if a detailed comparison betwee
theory and experiment is to be completed.
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