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Quasicontinuum Models of Interfacial Structure and Deformation
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Microscopic models of the interaction between grain boundaries (GBs) and both dislocations
cracks are of importance in understanding the role of microstructure in altering the mechanical prope
of a material. A recently developed mixed atomistic and continuum method is reformulated to allow
the examination of the interactions between GBs, dislocations, and cracks. These calculations eluc
plausible microscopic mechanisms for these defect interactions and allow for the quantitative evalu
of critical parameters such as the force needed to induce GB migration. [S0031-9007(97)05134-X
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With the continuing development of more accurate, le
expensive models for atomistic interactions and expansi
of computational resources, there is growing interest in t
modeling of materials from fundamental principles rathe
than phenomenological approaches. An outstanding pro
lem in this regard is the role of microstructure in determin
ing material properties. The influence of microstructur
(e.g., grain size and shape) on the mechanical proper
of materials is clearly revealed, for example, in the yiel
strength and the fracture toughness [1]. A first step in t
microscopic determination of the role of microstructure i
governing such properties is the elucidation of plausib
mechanisms whereby dislocations and cracks, the prim
agents of permanent deformation, interact with the bound
ries that make up that microstructure. One of the ke
challenges posed by such calculations is the simultaneo
operation of multiple scales in the problem requiring alte
native simulation schemes.

In this Letter, we present a reformulation of one suc
method for treating multiple scales and demonstrate its a
plication to two examples: The interaction of lattice dis
locations with grain boundaries (GBs) and the interactio
of cracks with GBs.

The quasicontinuum method [2], a mixed atomistic
continuum formulation, is based on a finite element di
cretization of a continuum mechanics variational principl
The finite element method serves as the numerical eng
for determining the energy minimizing displacement field
while atomistic analysis is used to determine the energy
a given configuration. This is in contrast to standard fini
element approaches, where the constitutive input is ma
via phenomenological models. The method is success
in capturing the structure and energetics of dislocations

In this paper we consider a reformulation of the metho
that allows for the treatment of interfaces, and show ho
it allows for the simultaneous treatment of dislocation
material interfaces, and cracks. The key new idea in t
formulation is that rather than considering an atomist
scheme for providing constitutive input to a continuum
model, which requires the definition of an energy densi
0031-9007y98y80(4)y742(4)$15.00
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near the grain boundary, we begin with the recognitio
that from the microscopic perspective the body may
regarded as a collection ofN atoms. The total potential
energy of such a collection is given by

P ­
NX

i­1

Eisr1, . . . , rNd 2

NX
i­1

fi ? ri , (1)

where ri is the position of the atomi, fi is the exter-
nal force on that atom, andEi is its energy as would
be computed from an atomistic model such as the e
bedded atom method (EAM) [3] used here. One of t
primary objectives in the formulation of the method is t
eliminate the redundant atomistic degrees of freedom
sociated with the regions of the body far from extend
defects and hence subject to displacement fields wh
are slowly varying on the atomic scale. To achieve t
requisite degree of freedom reduction, we selectM rep-
resentative atomsfrom theN atomssM ø Nd, chosen to
best represent the energetics of the body, the positionsra

sa ­ 1, . . . , Md of which serve as the reduced set of d
grees of freedom. The body is now divided into disjoin
cells such that each cell contains exactly one represe
tive atom. The key energetic approximation is that th
energy of all of the atoms in a given cell is the sam
as that of the cell’s representative atom. The positio
of the atoms that are not treated explicitly are obtain
by interpolating the nodal values of the displacements
ing a finite element mesh which is constructed with th
representative atoms as the nodal points. (One poss
implementation of this strategy in two dimensions is
use the Voronoi polygons [4] surround the representat
atoms as the cells and the geometric dual of the Voro
tiling, the Delaunay triangulation [5], as the finite eleme
mesh.)

Given the scheme described above, the approxim
potential energy depends only on the positions of t
representative atomsra and can be written as

Preduced ­
MX

a­1

naĒasr1, . . . , rMd 2

MX
a­1

na f̄a ? ra ,

(2)
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wherena is the number of atoms represented by atoma,
Ēa is the energy of that representative atom, andf̄a is the
effective force acting on theath representative atom. In
practice,Ēa is computed in two different ways. When
the representative atom is located in a region undergoi
strongly nonuniform deformation,̄Ea is computed using
the usual atomistic rule in which a given atom is su
rounded by its complement of neighbors and the resu
ing energy per atom is computed. On the other hand,
the representative atom experiences a slowly varying d
formation the energy is still computed atomistically, bu
with the assumption that its environment is distorted a
cording to the local gradients of deformation. The full
atomistic scheme is used in regions undergoing inhom
geneous deformation on the scales comparable to tha
the lattice spacing, such as at dislocation cores and
active regions of the grain boundaries (such as those pa
that are in the proximity of dislocations). The formulation
based on the deformation gradients is used in regions
dergoing near-homogeneous deformation. It is also us
in the regions of the grain boundaries that are not activ
This ensures that the elastic mismatch between the gra
is captured correctly in those regions where the atomis
details of the boundary are unimportant.

Another crucial ingredient of the methodology is adap
tive remeshing which allows the mesh to be refined/coa
ened to capture the essence of the evolving deformati
If, for example, a dislocation approaches a part of a gra
boundary in a coarse mesh region, the adaptive mesh
strategy will automatically remesh the region around th
pertinent part of the boundary to include every atom in th
region as a node of the finite element mesh, reducing t
calculation to a fully atomistic one. The details of method
ology will be described elsewhere. The key outcom
gained in the implementation of the strategy describe
above is the incorporation of the relevant atomistic no
linearity and nonlocality that allows for the emergence o
defects, such as dislocations and cracks, without the att
dant singularities that plague linear elastic analyses, or
burden of many redundant atomistic degrees of freedom

For the purposes of the present paper, the method m
successfully reproduce the known static geometric stru
tures of GBs, since it is the incorporation of boundarie
that represents a significant departure from earlier stu
ies [2]. As a test of the method, we have examine
the structure of a range of GBs in several fcc meta
For the moment, we have confined our attention to sym
metric tilt boundaries, using embedded-atom-type pote
tials. The key quantitative tests of the outcome of the
calculations are an appropriate reckoning of (i) the interf
cial energy and (ii) the interfacial structure. An indicatio
of the typical energy differences between the quasicont
uum result and the associated direct atomistic calculati
is demonstrated by aS5s210d GB in Au, where the energy
as obtained by conventional atomisticss676 mJym2d [6]
and the method described heres670 mJym2d are in close
agreement. Similarly, in all of the cases we have consi
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ered [i.e.,S5s210d in Al and Cu,S3s111d in Al, S99s557d
in Al, and S21s2̄41d in Al, Au, and Ni], the atomic level
geometry at the interface obtained using the quasicon
uum method advocated here was, for practical purpos
identical to that obtained using direct atomistic simulatio
The success of these calculations suggests the viability
using these methods in the context of interactions betwe
dislocations, cracks, and GBs.

Despite the existence of useful continuum models
dislocation-GB interactions, it remains a crucial challen
to uncover the microscopic processes that transpire o
the dislocation core is in the proximity of a GB. Ou
earlier work on simulating nanoindentation [7] suggests t
possibility of using nanoindentation-induced dislocatio
to probe the interaction between dislocations and a G
As a model system, we consider a block oriented su
that (111) planes are positioned to allow for the emergen
of dislocations which then travel to theS21s2̄41d GB
which waits approximately 200 Å beneath the surfa
[cf. Fig. 1(a)].

In preparation for this simulation, we must first find th
energy minimizing configuration of theS21 boundary it-
self. In anticipation of the possibility of slip transmission
this geometry involves two sets of (111) planes belongi
to the two grains and terminating at the boundary. On
the equilibrium grain boundary structure is determined
mesh is constructed such as that shown in Fig. 1(a). T
region that is expected to participate in the dislocation-G
interaction is meshed with full atomistic resolution, whil
in the far fields the mesh is coarser. The model is th
loaded using displacement boundary conditions at the
dentation surface and, after a critical load level is reach
dislocations are nucleated at the surface.

Because we used a relatively high stacking fault ener
associated with the EAM potentials for Al [8], the dislo
cations nucleated at the free surface are produced as ra
closely spaced (15 Å) Shockley partials. As seen at t
left in Fig. 1(b), the Shockley partials have been absorb
at the GB with the creation of a step at the GB and
evidence of slip transmission into the adjacent grain. Th
geometry can be rationalized on the basis of the underly
displacement shift complete (DSC) lattice [9] associat
with this symmetric GB. We find that the lattice disloca
tion a0

2 f1̄10g can be split into two DSC lattice vectors,

a0

2
f1̄10g ­

a0

14
f3̄1̄2̄g| {z }

GB-dislocation

1
a0

7
f2̄41g| {z }

step

, (3)

where a0

14 f3̄1̄2̄g is the Burgers vector of a GB dislocation
parallel to the GB anda0

7 f2̄41g is the vector associated with
the step. The dislocation with thea0

14 f3̄1̄2̄g Burgers vector
is accompanied by a sliding motion of the grain bounda

As the load is increased, a second pair of Shockley p
tials is nucleated, and they are not immediately absorb
into the GB and, consequently, form a pileup (cf. Fig. 1
These dislocations are not absorbed until a much hig
743
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FIG. 1. (a) Finite element mesh used to model dislocation-G
interaction. The surface markedAB is rigidly indented in order
to generate dislocations atA (distance in Å). (b) Snapshots of
atomic positions at different stages in the deformation histor
Absorption of the first pair of dislocations at the GB results i
a step, while the second pair form a pileup.

load level is attained. Even after the second set of dis
cations is absorbed at the boundary, there is no eviden
of slip transmission into the adjacent grain, although th
boundary structure itself becomes much less ordered.
though this simulation illustrates the mechanisms involve
in the dislocation-GB interaction for this particular bound
ary, it also raises questions about the general rules g
erning either absorption or transmission of dislocation
at GBs.

As a second example of the synthetic view of extende
defects afforded by this method, we consider the intera
tion between a brittle crack and a GB. The interaction
cracks and interfaces poses a variety of challenging a
important problems. One issue that can be consider
within the confines of the method presented here is th
744
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of the interaction of a crack propagating by cleavage
it impinges upon a GB in its path. The issues that atte
the use of the method for considering fracture in gene
will be presented elsewhere, while here we will note th
key elements in carrying out such simulations.

In order to investigate the interaction between a
advancing crack and a GB, we consider theS21s2̄41d GB
in fcc nickel. A crack is initiated in one of the grains by
removing a single (111) plane, such that the crack tip
located about 2 nm from the GB. The crack is then load
by applying the isotropic linear elastic displacement field
for a sharp crack at the mesh boundaries. The load
incrementally increased by scaling the boundary no
displacements and allowing the interior nodes to relax
their minimum configuration.

Two snapshots of the solution are shown in Fig. 2. W
show the atoms associated with that part of our fini
element mesh that is fully refined to the atomic scale in t
immediate vicinity of the crack tip. The surrounding mes
which extends about 300 nm in each direction, has be
removed for clarity. The dots are atomic positions, whi
the contours reveal displacement jumps across active
planes, indicating the presence of dislocations. Figure 2
shows the configuration after four load steps. The ato
labeled “ct” indicates the initial location of the crack tip
and one can see that the crack has begun to propag
towards the GB by cleavage. Light grey slip trace
emanating from the GB, such as those labeled “d1” a
“d2” show where the stressed GB has emitted dislocatio
The dashed line running diagonally through the figu
indicates the initial location of the GB which moves a
a result of the high stresses in the crack tip region. Th
motion is accommodated by the structural rearrangem
of atoms in the left-hand grain to lattice sites in the righ
hand grain due to shearing along atomic planes. The so
line through the figure indicates the location of the GB aft
migration.

In Fig. 2(b), the solution after another few load step
is depicted. Here, the crack has reached the GB and
been blunted when atoms above the plane of the cra
again undergo a shearing deformation. This time, ho

FIG. 2. Crack-GB interaction. Snapshots of crack tip regio
showing motion of crack tip, dislocations, and GB. d1 and d
are dislocations emitted from the boundary, and ct represe
the initial position of the crack tip.
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ever, the right-hand grain shears to match the structure
the left-hand grain. The two straight solid lines indica
the new location of the GB. The result of this crack blun
ing is a significant reduction in the stress levels above t
crack, and dislocations such as d1 and d2 in the first fra
have moved back to be reabsorbed by the GB. Furth
loading of the crack leads to a continued crack bluntin
due to shearing of atomic planes along the GB. We ha
studied other GBs [10], where the crack has deflected a
continued to propagate along the GB, in contrast to t
crack blunting mechanism described here. In particul
for the purposes of comparison, we note that, in the ca
of a S5s1̄20d boundary in the presence of a crack, the
is neither dislocation emission from the boundary nor m
tion of the boundary. Rather, the crack advances to t
boundary and ultimately cleaves along it (see [10]).

To understand these results, we turn to continuum m
chanics which provides the basis for evaluating the en
getic origins of GB migration. Such reasoning asserts th
the driving force on an interface is given by the jump i
the Eshelby tensor [11] across the interface, with this te
sor defined as

Pij ­ Wdij 2 uk,iskj . (4)

W is the strain energy density,ui,k is thekth component
of displacement, andskj is the stress tensor. Within
the confines of linear elasticity, we have computed t
driving force on the interface by using a convention
anisotropic linear elastic constitutive model in conjunctio
with the standard finite element method to obtain the fiel
associated with the crack-GB geometry described abo
Once these fields are obtained, the resulting driving for
may be obtained by computing the jump in the Eshelb
tensor across the interface. If we further assume th
the GB migration is proportional to the driving force, th
driving force profile may be compared directly with th
bowed-out geometry as shown in Fig. 3. The linear elas
calculation of the driving force provides a plausible firs
step in the attempt to understand the stress-induced mo
of grain boundaries. The success of the calculation giv
above makes it of greater interest to uncover the kinet

FIG. 3. (a) Driving force (normalized by the elastic constan
c11) as a function of positions along the GB (normalized by
the lattice constanta0). (b) The same force superimposed o
the GB for comparison.
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of such motion: In particular, what is the relation between
the driving force and the boundary velocity?

In this Letter, we have shown how our mixed atomistic
and continuum analyses have been adapted to the treatme
of interfacial deformation. Such calculations demanded
the generalization of the original quasicontinuum formu-
lation to allow for the existence of more than one grain
at the same time. As validation of the method, we have
computed the structure and energetics of a series of dif-
ferent GBs and found entirely satisfactory correspondence
between these calculations and those resulting from direc
atomistics. The method was then applied to two distinct
problems: the interaction between dislocations and a GB
and the propagation of a crack into a GB. The former re-
vealed the details of the “dislocation-GB chemistry,” while
calculations on the crack-GB interaction revealed stress-
induced GB motion which can be rationalized in terms of
the driving force on that interface as implied by the jump in
the Eshelby tensor. The advantage of the model presente
here over standard atomistic calculations is the significant
reduction in the computational effort through careful re-
duction of the degrees of freedom. For example, the num-
ber of degrees of freedom associated with the mesh o
Fig. 1(a) is about104, while the same atomistic calculation
would have required more than107 degrees of freedom.
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