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Poloidal Flow Driven by lon-Temperature-Gradient Turbulence in Tokamaks
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We show that linear collisionless processes do not damp poloidal flows driven by ion-temperature-
gradient (ITG) turbulence. Since these flows play an important role in saturating the level of the

turbulence, this level, as well as the transport caused by ITG modes, may be overestimated by gyrofluid
simulations, which employ linear collisionless rotation damping. [S0031-9007(97)05109-0]

PACS numbers: 52.55.Fa, 52.25.Fi, 52.35.Ra, 52.65.Tt

Recent advances in gyrofluid simulation of ion- We consider only an axisymmetric source (ire= 0),
temperature-gradient (ITG) modes in tokamaks haveince the response to nonaxisymmetric sources would
shown that the predominant saturation mechanism for thelearly be Landau damped. Then the eikonal is a function
instability is the production of axisymmetric, primarily of ¢ only: § = S(¢), where ¢ is the poloidal flux
poloidal flows [1-3] which vary with radius and serve function. The gyrokinetic equation in this case is
to shear stabilize the instability. The damping of such , . A e
poloidal flows is, thus, critically important in determining —— + vb - Vgr + iwpgk = ?FOJO— + SiFy,
the turbulence level to be expected. Less damping will (1)
result in smaller thermal transport rates. The adequacy
of gyrofluid models for calculating the damping is anwhereJy = Jo(k.p) is a Bessel function. The drift fre-
important issue, especially in view of “first principles” quency is defined bywp = kl - vq, Where vq is the
claims that such ITG turbulence would severely limit con-guiding center drift velocity: 74 = —vjb X V(v/Q),
finement in reactor-sized tokamaks [4,5]. In this Letterwhere v = [2(e — wB)]"/2. For axisymmetric pertur-
we solve kinetically for the linear collisionless damping bations,
of poloidal flows, treating the ITG turbulence drive as a _ Iy -
known source, and also as an initial value problem. op = (Ba - V§)S'(@) = Kvyb - V(wi/B),  (2)

Our result, in contrast to gyrofluid predictions, is whereK = (mcl/e)S'(), with I = RB4. The potential
that these flows, even if driven by a rapidly fluctuatingis determined by the quasineutrality condition

source, are not damped by collisionless processes (Landau , e 5
damping). The gyrofluid equations were derived from —:—no¢x + fd vJogix = 7n0¢k + fd U gek -
the gyrokinetic equation by taking moments and closing ! ¢ 3)

the moment hierarchy by approximations which model
kinetic effects. These include linear damping terms whichl'he source causes charge to build up on magnetic surfaces
are correct for the nonaxisymmetric ITG modes, but ardecause of finite ion gyroradius and banana orbit width.
incorrect for the axisymmetric poloidal flows. The sourcesS;. represents thé X B nonlinearity in the

We use the gyrokinetic description of the plasma [6]gyrokinetic equation [6], which is due to the nonzero
to determine its response to a source. The distribumodes of the ITG turbulence. It does not depend on the
tion functions for electrons and ions are given py= n = 0 modes for which we solve. Although some low
Fo + 8f, whereF, is the equilibrium, which we choose n modes may be weakly damped and may have effects
to be Maxwellian at temperaturg and which is as- on the highn modes similar to the = 0 modes, we have
sumed to vary slowly perpendicular to a magnetic surconsidered only the = 0 modes because they are strictly
face. The perturbed part of the distribution function isundamped.
written asdf = —(e¢p/T)Fy + g, where ¢ is the po- We consider the long-time evolution of the rotation
tential and, to lowest order in the gyrokinetic expansiondriven by a fixed steady source. Then, with the appro-
g = g(R e, u,t). The guiding center position iR = priate expanS|on the zeroth order (in the bounce time)
% — p,wherep = b X #/Q is the gyroradius, anfl =  equation is
eB/(mc) is the gyrofrequency. Thze independent velocity vib - Vgo + iwpgo =0, 4
variables used are the energy= v*/2 and the magnetic )
momentu = v /(2B). The rapid spatial variation per- Whose solution has the forngy = i exp(—iKv)/B),
pendicular to the magnetic field is assumed to be conwhereb - Vi = 0. The first order equation is

tained in an eikonal function: ¢ (x) = ¢y exdiS(x.)], ) dgo ddy
and similarly for g(R). The wave vector is defined vib - V1 + iwpgr = — or FF JO_ + SiFo,
by k, = VS. (5)
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which yields the solubility condition determinirig for a thermal ion. We will later justify this assumption:
oh e . dbr _ See Egs. (16)—(18). Although resonances and collision-
T Fo<e’QJo 7) + (e!CSi)Fy, (6)  less damping do occur on a shorter time scale, the axisym-

metric potentials survive for longer times, being modified
- - ) only by plasma polarization. It is true that there is a class
by A = §(dl/v)A/§(dl/v)), wheredl = Bdly/By; for ;of very low energy particles with small bounce frequen-
trapped particles, the integral goes over a closed orbit,. ; .
) ) ; ¢ies, which could provide a resonance, but these are few
while for untrapped particles, it goes once around the

poloidal circumference. Thus, for times longer than a few" number and their effect is neglected. - Including fhe

bounce timesg;, is given to lowest order by ;g;r?gtl)ounr I:ec;nJItEq' (5) would give only a small correc-

g = e—iQ[i(eiQJO¢k) + (eiQRk):|F0, 7) In order to obtain more specific results, we must be

T more specific about the source. We assume that the

whereR; = [dt S;. The finite banana width effects are electrons are adiabatic and do not contribute to the source
contained in thee’@ factors. The electron distribution because they cannot move across magnetic surfaces.

where Q0 = Kv|/B. The bounce average is defined

function is given by settind, = 1 andQ = 0. The ion sourceS;, must be of orderkip? for small
Quasineutrality then yields the integral equationdqr ~ gyroradius. We expand in powers of the ion gyroradius

1 1 and the ion banana width, usieé?Jo = 1 + iKv /B —

noe(F + 7>¢k - (Kv)/B)?/2 — (k. p)*/4. To lowest order, we have

e [P - 1 [di _
T fd3v Foie " Jo(e’Clocpi) — (6. Lod) = e T j{B_pf d*v Fojldr — ¢l
l it p

Ti ] v Foi = sk, (8) =0, (12)

where the source terms are combined in the expression Which implies that¢, must be uniform on a magnetic
surface: b - V¢, = 0. Its value is determined by the

Sp = f d*v Foie CJo(e'CRy) — f d*v Fo.Re. (9)  nextorder equation{¢y, L1¢ir) = (b, sk), Of

l_\lote thgt, for a time-independent sourggand ¢, grow £ b = 1 j{% fdstol-
linearly in time. T; D J By

The_ mtegrgl equation can be solved with the use of a X {Reven + iK[v)/B — (/B)IRoaa}, (13)
variational principle. Writing Eq. (8) aL ¢, = s, and ) .
defining an inner product as the integral over a magneti¥hére we have written the source in terms of even and
surface(u, v) = §(dl,/B,)uv, the variational expression 0dd parts (inv): [ dr Sit = Reven + Roaa- Here,

can be written as dl, 3
* D = f—fd v
V= (d)ks-[: d)k) 10 Bp
a (i, s> (10) 2 T N
’ N 2 2
Using d*v = 2wdeBdu/lvyl, the numerator can be X ForlK(wy/B)* = (v/B)'] + (k1p?)/2}
written as (14)
. 1 represents the shielding effects of a collisionless neoclas-
L) = — f 2 dedu Fy, =P > (NE 9 ; .
(i, L di) e; T, mdedp Foj sical polarization current, as well as the classical polariza-

i tion current.
X [fﬂ | el — | _‘ﬁ(dl/vn)e 2Jopuil? i|
v

As a specific example, we consider a source which is

$(di/vy) independent of poloidal angle, i.e., the= 0 part; taking
S« to be independent of velocity, and using large aspect
It is straightforward to show thaV is minimized for ratio circular geometry, these integrals can be expressed
the exact solution of the integral equation, and thatas elliptic integrals and evaluated explicitly [7], with the
the minimum value isV = 1/(¢;,s:) = 1/(d5, L di).  result
Equation (11) can be shown to be positive definite, using &
the Schwartz inequality and — J§ = 0. Because a Pk _ (1 + 1.6q2/61/2)_1fdt Siu/(k2a?), (15)
positive minimum ofV exists, it follows that a nontrivial i
solution of the integral equation exists. Therefore, thevherea? = (T:/m;)/Q?, € = r/R is the inverse aspect
linear potential response to the axisymmetric part of theatio, andg = €B/B,, is the tokamak safety factor. For
source increases with time without saturating, i.e., it issmalle andg > 1, the shielding is dominated by the neo-
not damped by collisionless processes, but only by muchlassical polarization. We have assumed that the plasma
weaker collisional effects, not included here. is deep in the banana regime, so that the ion-ion collision

In deriving this result, we have assumed that the timdrequency is small enough that collisional corrections to
scales of interest are much longer than a bounce tim#he neoclassical polarization are not important.
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Although the source may be rapidly varying in time, the For comparison with linear gyrofluid and gyrokinetic
long time response which we have determined is what isode results, we consider the related problem of the
needed to show that the mean square potential increasesllisionless relaxation of an initially poloidally rotating
with time in a way which is inconsistent with long-term plasma. The solution of this problem can be obtained by
linear collisionless damping. The linear response to thaising the sourceS;, = 6f:(0)5(z), where 5 fx(0) is the

source can be written generally as initial perturbed distribution function. The delta function
ro , , in time is to be interpreted as a function whose width is
bi(t) = /;) de Kt — 1)8(r). (16)  much larger than a gyroperiod but much smaller than a

bounce time. As a simple example, we choose the initial
conditions to correspond to ion density and parallel flow

perturbations:
[ on(0)
ng

The ensemble average |af|> (related to the shear decor-
relation of the ITG turbulence) is

2y ' / ' I acsce _ 4 _
(lel™ fodtfodtIK(t XKt — ") 5£,(0) =

*o "
, X A8 _)S"(t ) o (1_7) Then, identifying Reven = 8nx(0)/no, Roaa = miv| X
Assuming the source is random and statistically statlonaryu”k(o)/Ti the long time potential is given by Eq. (13).
(Si(1")Sx(:")) is a function of|¢" — 1"| only; we assume  Thg jnitial ion density perturbation is accompanied by a

Wk s ) . . : !
it is nonzero for|s' — 1"| = 7. only, wherer. is the  ,otential perturbation because of quasineutrality and the
autocorrelation time of the source. We are interested Onl)flassical polarization current: p,o1(0) + e8nx(0) = 0

+ ’;—: v||u||k(0)}F,-0 ) (20)

In timesz > 7, S0 , where ppo1(0) = —(noe/ )k (c/B)¢y(0). This initial
(Il = 270<|Sk|2>f | K (1) shielding occurs before the neoclassical polarization is
0 established. We take the initial parallel flow to be of

= 27 (ISP | K P (18) the formu;(0) = aB(1 + Acosf), wherea and A are

constants and is the poloidal angle. The integrals in

using our resultk = const for times longer than a few Fq (13) can be carried out with the result

bounce times. The mean square potential fluctuatio

increases linearly with time, neglecting collisions and epr 2 11

nonlinear turbulent viscosity. This is inconsistent with o (I + 1.6¢°/€/)

linear collisionless damping, contained in the gyrofluid 62(0)

models. This may partly explain the discrepancy between X [L + (1.663/2 + 0.8)¢)

the transport predictions of gyrofluid [1] and gyrokinetic i

[8] codes, but that is a complicated issue which is still being ik, aB/Q;p

investigated, and we do not attempt a full explanation. X < 12 a? )} (21)

A model equation for the evolution of poloidal rotation

would be whereQ;, = eB,/(mjc).
P The initial E X B and parallel velocities combine
Eld’klz = AlSI? — Bildl? to give initial poloidal and toroidal velocities, which

are related byik, ¢ = (upBy — uyBp)/c and uj =
— Crlil*ISI* — Dyvirldil®,  (19)  (upB, + ugBg)/B. The contribution to the perpendicu-
where|S|? represents the turbulent nonaxisymmetric fluc-lar flow from the pressure gradient perturbation is smaller
tuations, and the coefficient$; through D, depend, in by a factor ofkia; than that from the potential pertur-
detail, on the wavelength spectrum and the nature of thation, and is neglected. This flow can be directly com-
ITG turbulence. We have calculate} and shown that pared with the fluid flows determined from solving the
By should vanish (although it apparently does not in gy-gyrofluid equations. Using toroidal momentum conserva-
rofluid models). tion uy = u4(0), and specializing to the case= 0, the
A rough criterion for saturating the turbulence is thatfinal poloidal velocity can be expressed in terms of the
the flow velocity shear determined Hy,|> exceeds the initial poloidal and toroidal velocities:
linear growth rate of the modes. This saturation level, of _ 2/ _1/2y—1
course, determines the thermal diffusivity. Thus, a key up = (1 + 1.6¢7/€ 1) up 0), (22)
issue, as yet unresolved, is whether the turbulent viscosityndependent of:,(0). This result has been verified by a
C\ is so strong as to make our linear damping calculatiorgyrokinetic simulation [10], while attempts to study linear
irrelevant (and also whether gyrofluid calculations of therotation damping with gyrofluid codes [9] show strong
viscosity are correct). Ultimately, this can probably beanomalous linear damping. We further note that, due to
decided only by comparisons, now underway, betweethe bounce averages occurring in Eq. (13) (the trapped
gyrofluid [9] and gyrokinetic [10,11] codes. If th€;,  particle effects), coupling ofn # 0 sources tom = 0
term is small, as near marginal stability, thés;|> modes is generally stronger than in fluid theories.
will be inversely proportional to/;;, indicating improved In conclusion, we have shown that the= 0 poloidal
confinement in larger, hotter tokamaks. flows driven by ITG turbulence, although modified by
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