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Statistical Evolution of Chaotic Fluid Mixing
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We describe a new constitutive theory for two-phase flow models of chaotic mixing layers, which
form as two incompressible fluids interpenetrate. This theory is compatible with arbitrary velocities
of the edges of a mixing layer, and it gives analytic solutions for the distribution of fluid variables
across the layer in terms of these velocities. Our results are in agreement with all available data from
planar Rayleigh-Taylor instability experiments. The model that we discuss can be embedded in a larger
system of two-phase flow equations in order to predict other important physical quantities, such as the
fluid pressures and internal energies in compressible mixing. [S0031-9007(97)04668-1]

PACS numbers: 47.52.+j, 05.45.+b, 83.10.Lk, 83.20.—-d

Mixing layers form in the late evolution stage of unsta-fore all ensemble-averaged quantities depend only on
ble fluid interfaces [1], for example, in the acceleration-and . This assumption allows fluid motion in a direc-
driven Rayleigh-Taylor (RT) and Richtmeyer-Meshkov tion tangential to the mixing layer, as occurs in the KH
(RM) instabilities and in the shear-driven Kelvin- problem, but note that the shearing motion must be trans-
Helmholtz (KH) instability. They are of fundamental lationally invariant in thex and y directions. Instabili-
importance in natural phenomena such as supernov#és driven by forces oblique to the fluid interface are
explosions [2], and in technological applications such asot included in this framework, except perhaps in a local
inertial confinement fusion [3]. approximation.

In this Letter we describe a new constitutive theory A hyperbolic PDE for the volume fraction follows
for the average interface velocity in a chaotic mixingfrom the steps of ensemble averaging the kinematic
layer formed from interpenetrating incompressible fluids.constraint at material interfaces in the preaveraged flow
The fundamental quantity is the propagation speéd (as described by Drew [4]) and imposing translational
which appears in a hyperbolic partial differential equa-symmetry [5],
tion (PDE) for the fluid volume fraction. Our main 9By 9B
results are: (a) A theory relating® to a convex lin- — 4+ v ——— =0, 1)
ear combination of the individual mean fluid velocities ot 9z
vy and v,. (b) A procedure for inferring the distribu- where 8, (z, t) is the volume fraction of fluik. We now
tions of vy, vy, andv* from measured volume fraction consider incompressible mixing, for which the setup and
profiles, which thus provides a means to directly meanotation are shown in Fig. 1. The ensemble average of
surev™ and determine its dependence onand v, us-  the continuity conditiorV - v = 0 within each fluid, with
ing currently available experimental techniques. (c) A
fractional linear model for the coefficients in the linear
combination. For an expanding mixing layer in the self- _ = _ i¢
similar regime of RT instability, this model predicts a
linear volume fraction profile at small to moderate At-
wood number, in agreement with all available experimen: .
tal data. (d) A prediction for the expansion ratig/a;
of RT mixing layers at all Atwood numbers, which
provides the closest agreement with experimental dat
to date. p = p2 (heavy)

Consider an infinite ensemble of chaotic mixing lay- g, =1,v, =0
ers that form from the unstable growth of initially small
perturbations at an interface between two fluids. We ) o
assume that the statistics of the ensemble are translatiofjlC- 1. Incompressible two-phase mixing in ther) plane.

v i iant in th dv directi d that he two curves are the trajectories of the mixing zone edges.
ally invariant In thex and y directions, an at any Tne Jower (upper) edge is the limit of vanishimgy (3,), and

external acceleration or impulse, as occurs in the Rt corresponds to the tip of the frontier portion of light (heavy)
and RM problems, is directed along theaxis. There- fluid in the preaveragediow.

0<p1 <L Bo=1-p
v1 <0, v2>0 _ 7.

/V
- p = Bip1 + P2p2

~
'U*=’U2=V2

p = p1 (light)
fi=1v1=0

zf.
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translational symmetry imposed, is [6] The data forv™ as a function of3; directly determines
the velocity profiles. Integrating Eq. (2) fdr= 1 over
@ =" 88—’8". (2) Bi, we have
b4 b4

Bi
There are now three independent equations, namely, Bivi zfo v dpy. ®3)

Eq. (1) for eitherk and (2) fork = 1,2, for the four ) )
unknownsg;, vi, v, andv*; B, is trivially eliminated ~Summing Eq. (2) ovek and using8; + B; = 1, we get
using the identity3; + 8> = 1. As a closure hypothesis, 9(Bi1v1 + B2v2)/dz = 0. The solution to this ordinary
we propose to replace* by a function ofv; and v, differential equation (ODE) which satisfies the boundary
and additional variables of the problem that are spatially¢ondition thatv, = 0 (v, = 0) at the upper (lower) wall
dimensionless, e.gs, and 8. This idea is the unique ©f afinite but large domain is
aspect of our approach. Below, we show that this _
general assumption constraim$ to be a convex linear Bivi + Bova = 0. (4)

combination ofv; andwvs. To summarize, volume fraction profiles measured over
Mathematically, the requirement on closure is that theshort time intervals determine the convective speeaf

number of independent equations equal the number of uRhe volume fraction mode. The solutions for and v,

knowns. The proof of independence is the unique solvfollow from Egs. (3) and (4). By this procedure, one has

ability of the resulting equations. All solution steps usedthe means to test any constitutive law relatirigto 7, 81,

here are unique, and hence arfy= v*(z, 81, vi,v2) clo- 4, anduv,.

sure is correct on a mathematical basis. Rewriting Eq. (2) We now show that our general assumption regarding

to yield v* = dBivi/dBx, it is clear that the closure the dependence of* constrains this quantity to be a
model forv™ imposes a single functional relation betweenconvex linear combination af; andwv,, i.e.,

the otherwise unconstrained variabjgsandvy.

The absence of the single-phase pressyresn the v' = piv + ulvs, (5)
v* closure and in the boundary conditions for the mix-
ing zone edges decouples tg and v, equations from . "
the momentum equations and renders them soluble in o@U€Nce of the following proposition.
model. Because equilibrated pressure closures are of- Proposition—Let U(vy,v2) be a smooth real-valued

ten used in multiphase flow analyses [7—11], we emphak_)unction which is both scale and translation invariant,

size that any closureph = py Vs v* = v*(t, B1, v1, v2)] y which we mean thaU(avy,av;) = aU(vy,v,) for
represents a restriction of generality, and as in all ther¢ =0andU(v + b,va2 + b.) ~ U(Ul’vz). +b for all
modynamic modeling, its validity can only be assessedt@l b Assume alsq thal/ is non-negative 'f. bof[h“
through comparison to specific flow regimes. See [5] forand v are. ThenU is a convex linear combination of
a quantitative validation of a particular* closure for Y1 andv,. . , L .
two-dimensional compressible RT mixing. In RT mixing Propf.—AppIylng first transla‘uon invariance and then
under a constant acceleration, the pressures do not equiﬁgale invariance, we obtain
b_rate(pz # p1), accordin_g_ to s_imple physical arguments Uy, vy) = vy + Uvy — v2,0)
given in [6,12]. Nonequilibration of pressure in RT in-
stability is especially easy to understand in the case of an = vy + v — v|U(sgn(v; — v3),0).
infinite density ratio, for them, is identically zero every-
where (since phase 1 is a vacuum) whyjle cannot pos-
sibly satisfy this constraint throughout the mixing region.&
Our purpose here is not to emphasize the deficiencies .
single-pressure two-phase flow models (which have bee .(.]/8”1 = —U(~1,0). By smoothness ol, both iden-
discussed previously [5,6,13—15]), but rather to provideme.S must hold on the common boundary of these two
an alternative approach which is compatible with a two- €910NS, wheres; = vp. From this fact, we conclude that
pressure formulation [5,12]. —U(-1,0) = U(1,0) and that

Consid_erthe probl_em of inferr@ng* f_rqm experimgntal Uvi,va) = va + (v — v2)U(L,0).
data for incompressible two-fluid mixing. Equation (1)
describes the propagation of surfaces of constant volumifollows thatU is a linear combination of; andv,, and
fraction. Current experimental techniques are adequatdne respective coefficient&(1,0) and 1 — U(1,0) sum
for determining the distribution of volume fraction acrossto unity. From the non-negativity assumption, we see that
the mixing layer at various times. It is clear how to U(1,0) and 1 — U(1,0) are each non-negative, so that
determinev* as a function of volume fraction in this the linear combination is convex. d
context: measure twg@; (or B,) profiles separated by a  In the application of this proposition to the closure
short time intervalp™ at any B, is then the change of the for v*, we obtain scale invariance from dimensional rea-
height whereB, occurs divided by the time interval. soning and translation invariance from Galilean frame
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with u; = 0 and ui + w5 = 1. This fact is a conse-

Thus U is uniquely determined by the two numbers
U(=*1,0). Differentiating this formula in the two regions
1 > vy andv; < v, we obtainoU/dv, = U(1,0) and
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invariance of the original equations. The positivity and
smoothness assumptions are additional requirements of a

Vival (Vi1 BT = V2l B3)
(IVil1B1 + V2l B2)?

v*(t,,Bk) = (14)

very reasonable nature. The additional spatially dimen-

sionless arguments we consider faf are B, and t.

Consistency ofv* with the picture in Fig. 1 leads to the

boundary conditions
IL’L;{}(I9Bk = O) = O’

wie B =1)=1. (6)

Solving the interface equation (1) by the method of
characteristics, we get an implicit equation for the volume
fraction profile,

2(Bet) = 2(B,0) + ]0

t

v*(s, Br)ds, (15)

We now use the constitutive law (5) to solve for the where the integrand is provided by Eq. (14). To summa-
fluid velo'cn'les and volume fractlor!s_. Using Egs. (4) andrize, Egs. (8), (9), (13), (14), and (15) give the distribu-
(5) to eliminate one of the velocities from Eq. (2), we tions of volume fractions and velocities across the mixing

obtain
1 dvk IU’Z(tsBk) /"L;(J’(I’Bk’) 1
-— = - — |, @
v dBy [ By Be ﬁki’ (7)

where k¥’ = 3 — k. The solution to this ODE for the
boundary conditions shown in Fig. 1 is

v = ViBre TR, 8
where
B v v ,
Rty = [ M) - G 4, (9

In this integration the relatioh;, + ¢, = 1 holds. From
Egs. (2) and (7), we have

v* = [Brpb(t. Br) — Benl(t, B)] %. (10)

The RHS of this expression must give the saniefor
bothk = 1 andk = 2. It is easy to show [12] that this
condition is satisfied if and only if

V) _ R,
Vi(2)

(11)

As a specific choice of constitutive law, we propose the

linear fractional form

ay(t)Bx + di(t) B
ck(DBr + b)) B’
for k = 1,2, where theay, by, cx, and d;, are time-

dependent functions to be determined. The relatibns
0 and ¢, = a; follow from Egs. (6). Also, uy is in-

wi(t, Br) = (12)

variant under an arbitrary scaling of both numerator anc

denominator in Eq. (12), so we can set eitlagror b,
arbitrarily. We chooseu,(t) = |Vi(t)]. The remaining
unknownsb; and b, are determined from frame invari-
ance(u] + u5 = 1) and Eq. (11). The unique solution
is br(t) = |V (1)]; hence

|Vi| Bi
VilB1 + [ValBa

Equations (8), (9), (10), and (13) give as a function
of t and By,
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wi(t, Br) = (13)

layer in terms of the trajectories of the edges.

In the special case thak/V; is independent of, then
so isug. If, in addition, the mixing zone expands outward
[i.e., (=1)kV, > 0 for all ], then there is a scale-invariant
solution, where all lengths in the problem scale with the
given time dependence of the edge displacements. One
example is RT mixing under a constant acceleragor
0, for which Z(r) = (—1)*ayAgt?, where a; and a;
are positive constants which depend on the Atwood ratio
A = (py — p1)/(p2 + p1). The ratio|V,/Vi| = ay/a)
is constant in this problem, and Egs. (14) and (15) give
the scale-invariant solution for the volume fraction profile,

B3 )
(a1B1 + a22)?

The scale-invariant solution for the velocitieg follows
by evaluation of Eq. (8),

2
. am(Bia —

Agt?

(16)

aja B
a1 By + axBr

When the expansion rati@,/a; = 1, Eq. (16) implies
that the volume fraction varies linearly across the mixing
zone. As seen in Fig. 29,/ increases very slowly
with increasingA, i.e., ay/a; = 1 up to moderateA.
Thus Eg. (16) predicts nearly linear profiles for small

17
2Agt (17

to moderated, in agreement with all currently available
experimental data for planar RT instability [7,16,17]. The
correct shape of the volume fraction profiles at latgeas
not been adequately established.
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FIG. 2. The expansion ratia,/«; of the mixing zone as a
function of the Atwood raticA = (p>, — p1)/(p2 + p1).
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Equations (16) and (17) give a two-parameter familyto be whereB; = 0.05 and 0.95) when comparing their
of self-similar solutions for RT mixing. To obtain a theoretical expansion ratios to the same experimental data
prediction of @/« from this model therefore requires [10]. Increasing the cutoff criterion reduces the expansion
imposing an additional physical constraint on the problemratio; a 5% cutoff would lower the solid curve in Fig. 2
Here we discuss the possibility that the mixing layerenough to make it agree with the experimental data to
center of mass (c.m.) position is universally stationary inwithin the probable uncertainty in the measurements. For

RT mixing. any choice of cutoff, the model prediction clearly gives
The c.m. positiorZ(z) is given by the closest agreement with experimental data to date.
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