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Analysis of Random Cascades Using Space-Scale Correlation Functions

A. Arneodo,1 E. Bacry,2 S. Manneville,1 and J. F. Muzy1
1Centre de Recherche Paul Pascal, CNRS UPR 8641, Université de Bordeaux I, Avenue Schweitzer, 33600 Pessac

2Centre de Mathématiques Appliquées, Ecole Polytechnique, 91128 Palaiseau, France
(Received 26 June 1997)

We introduce a formalism that allows us to study space-scale correlations in multiscale processes.
This method, based on the wavelet transform, is particularly well suited to study multiplicative random
cascade processes for which the correlation functions take a very simple expression. This two-point
space-scale statistical analysis is illustrated on some pedagogical examples and then applied to fully
developed turbulence data. [S0031-9007(97)05105-3]
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Since the pioneering works of Mandelbrot [1], fracta
concepts have become a standard tool to describe mu
scale phenomena. The multifractal formalism introduce
in the context of high Reynolds number turbulence [2
has been used extensively in many areas ranging from
study of strange attractors arising in chaotic situations [3,
to nonequilibrium growth processes [5]. From a statist
cal point a view, this description amounts to characterizin
an irregular field (e.g., a probability measure or a fract
signal) by the relative contribution of singularities of dif-
ferent strengths. More precisely, the so-calledfsad sin-
gularity spectrum [2,3] provides, at each scale, an estim
of the (log) number of points where the (log) amplitude o
the field isa. The notion ofcascadeis widely used in
the fractal literature and is often considered the paradig
of multifractal objects [3,4,6,7]. It refers to a self-simila
process whose properties are defined multiplicatively fro
coarse to fine scales. Several solvable cascade mod
have been proposed to fit experimental observations.
the context of turbulence, the energy transfer from larg
eddies to smaller ones has been pictured by Richardson
and further developed by Kolmogorov and Obukhov [9
as a cascade process [4,6,10–12]. More recently, Casta
et al. [13] proposed to account for the probability distribu
tion function (pdf) of the velocity increments at a given
scalea, dya ­ ysx 1 ad 2 ysxd, as a weighted sum of
dilated versions of the pdf at a coarser scaleL:

Pasdyd ­
Z 1`

2`

GaLsude2uPLse2udyd du . (1)

This equation suggests that, for any decreasing sequenc
scalessa1, . . . , and, the kernelG satisfies the composition
law Gana1 ­ Ganan21 ≠ · · · ≠ Ga2a1 (≠ denotes the convo-
lution product). It is then tempting to write an incremen
dya at a fine scalea as resulting from a random cascad
initiated at the large scaleL:

dya ;
nY

i­1

Wai11,ai
dyL sWai11,ai

. 0d , (2)

where lnsWai11,ai d are independent random variables of law
Gai11,ai

. However, let us note that, in the same way th
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thefsad spectrum provides rather poor information abo
the nature of the underlying process, Eq. (1) is a necess
but not sufficient condition for the existence of a casca
like Eq. (2). In this Letter, our goal is to show that on
can go deeper in fractal analysis by studying correlati
functions in both space and scales using the wavelet tra
form (WT). This “two-point” statistical analysis proves
to be particularly well adapted for studying cascade pr
cesses. We illustrate our method on different well know
stochastic models before applying it to turbulence data.

Correlations in multifractals have already been expe
enced in the literature [14]. However, all of these stu
ies rely upon the computation of the scaling behavior
some partition functions involving different points; the
thus mainly concentrate on spatial correlations of the l
cal singularity exponents. Our approach is different sin
it does not focus on (nor suppose) any scaling proper
but rather consists in studying the correlations of theloga-
rithmsof the amplitude of a space-scale decomposition
a signal. For that purpose we use a natural tool to perfo
space-scale analysis, namely the wavelet transform. T
WT has already proven to be a powerful tool for multifrac
tal analysis of functions [15]. Let us recall that the WT o
a functionf is defined as [16]:

Tc f fg sx, ad ­
1
a

Z 1`

2`
fs ydc

µ
x 2 y

a

∂
dy , (3)

where x is the space position,a (.0) the scale, andc
the analyzing wavelet. Note that forcsxd ­ dsx 2 1d 2

dsxd, Tcf fg sx, ad is nothing butdfasxd, the increment of
f over a distancea. If c is oscillating and regular enough
one can show that the transformation (3) is invertib
and conserves energy [16]. More specifically, ifxsxd
is a bump function such thatkxk1 ­ 1, then by taking
s2sx, ad ­ a22

R
xssssx 2 ydyaddd jTc s y, adj2 dy, one has

k fk2
2 ­

Z Z
s2sx, ad dx da , (4)

and thuss2sx, ad can be interpreted as the local spac
scale energy density off [17]. Sinces2sx, ad is a positive
© 1998 The American Physical Society



VOLUME 80, NUMBER 4 P H Y S I C A L R E V I E W L E T T E R S 26 JANUARY 1998

,

ies

le

e
or
es
ts

nt
e
e

n

es

y

ale
lly
or
e

s
”

quantity, we can define themagnitudeof the fieldf at point
x and scalea as

vsx, ad ­
1
2

ln s2sx, ad . (5)

Our aim is to show that a cascade process can be stud
through the correlations of its space-scale magnitudes:

Csx1, x2, a1, a2d ­ ṽsx1, a1dṽsx2, a2d , (6)

where the overline stands for ensemble average, andṽ

stands for the centered processv 2 v.
Cascade processes can be defined in various wa

Periodic wavelet orthogonal bases [16] provide a gene
framework in which they can be constructed easily [18,19
Let us consider the following wavelet series:

fsxd ­
1X̀
j­0

2j21X
k­0

cj,kcj,ksxd , (7)

where the sethcj,ksxd ­ 2jy2cs2jx 2 kdj is an orthonor-
mal basis ofL2sf0, Lgd and the coefficientscj,k correspond
to the WT off at scalea ­ L22j [L is the “integral” scale
that corresponds to the size of the support ofcsxd] and
positionx ­ ka. The above sampling of the space-sca
plane defines a dyadic tree [16]. If one indexes by a dyad
sequencehe1, . . . , ejj (ek ­ 0 or 1) each of the2j nodes at
depthj of this tree, the cascade is defined by the multiplic
tive rule: cj,k ­ ce1,...,ej

­ c0
Qj

i­1 Wei
. The law chosen

for the weightsW (accounting for their possible correla-
tions) determines the nature of the cascade and the mu
fractal (regularity) properties off [18]. From the above
multiplicative structure, if one assumes that there is no co
relation between the weights at a given cascade step [2
then it is easy to show that forap ­ L22jp andxp ­ kpap

(p ­ 1 or 2), the correlation coefficient is nothing but the
varianceV s jd of ln cj,k ­

P
ln Wei

, where s j, kd is the
deepest common ancestor to the nodess j1, k1d ands j2, k2d
on the dyadic tree. This “ultrametric” structure of the cor
relation function shows that such a process is not stationa
(nor ergodic) [14(c)]. However, we will generally conside
uncorrelated consecutive realizations of lengthL of the
same cascade process, so that, in good approximationC
depends only on the space lagDx ­ x2 2 x1, and one can
replace ensemble average by space average. In that c
CsDk, j1, j2d ­ kCsk1, k1 1 Dk, j1, j2dl can be expressed
as

CsDk, j1, j2d ­ 22s j2nd
j2nX
p­1

2j2n2pV s j 2 n 2 pd ,

(8)

wherej ­ sups j1, j2d andn ­ log2 Dk.
Let us illustrate these features on some simple cas

For example, if one chooses, as in classical cascades,
dependent identically distributed (i.i.d.) random variable
ln Wei of variancel2 (e.g., log normal), thenV s jd ­ l2j
ied
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and it can be established that, for supsa1, a2d # Dx , L,

CsDx, a1, a2d ­ l2

∑
log2

µ
L

Dx

∂
2 2 1 2

Dx
L

∏
. (9)

Thus, the correlation function decreases very slowly
independently ofa1 and a2, as a logarithm function of
Dx. This behavior is illustrated in Fig. 1 where a log-
normal cascade has been constructed using Daubech
compactly supported wavelet basis (D-5) [16]. The
correlation functions of the magnitudes offsxd have been
computed as described above [Eq. (6)] using a simp
box function for xsxd. Let us note that all the results
reported in this Letter concern the increments of th
considered signal. We have reproduced this analysis f
wavelets of various shapes (e.g., successive derivativ
of the Gaussian function) and checked that our resul
are actually independent of the specific choice ofc.
In Fig. 1(a) are plotted the “one-scale” (a1 ­ a2 ­ a)
correlation functions for three different scalesa ­ 4, 16,
and 64. One can see that, forDx . a, all the curves
collapse to a single one, which is in perfect agreeme
with the expression (9): in semilog coordinates, th
correlation functions decrease almost linearly (with slop
l2) up to the integral scaleL that is of order216 points. In
Fig. 1(b) are displayed these correlation functions whe
the two scalesa1 and a2 are different. One can check
that, as expected, they still do not depend on the scal
providedDx $ supsa1, a2d; moreover, they are again very
well fitted by the above theoretical curve (except at ver
large Dx where finite size effects show up). The linear
behavior ofCsDx, a1, a2d vs lnsDxd is characteristic for
“classical” scale invariant cascades for which the random
weights are uncorrelated. One can also consider not sc
invariant cascades where these weights are not identica
distributed and have an explicit scale dependence. F
example, we can construct a log-normal model whos

FIG. 1. Numerical computation of magnitude correlation
functions for a scale invariant log-normal cascade proces
built on an orthonormal wavelet basis. (a) “One-scale
correlation functionsCsDx, a, ad for a ­ 4 (h), 16 (d), and
64 (n). (b) “Two-scale” correlation functionsCsDx, a, a0d
for a ­ a0 ­ 16 (d), a ­ 4, a0 ­ 16 (h), and a ­ 16,
a0 ­ 64 (n). The solid lines represent fits of the data with the
log-normal prediction [Eq. (9)] using the parametersl2 ­ 0.03
and log2 L ­ 16.
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coefficients lncj,k have a variance that depends onj as
V s jd ­ l2s2jb 2 1dyb ln 2. This model is inspired from
the ideas of Castainget al. [13] in their statistical study of
velocity fluctuations in turbulence and reduces to a sca
invariant model in the limitb ! 0 [19]. In this case, for
supsa1, a2d # Dx , L, the correlation function becomes

CsDx, a1, a2d ­
l2

b ln 2

∑
s L

Dx db 2
Dx
L

2b11 2 1
2 1 1

Dx
L

∏
.

(10)

As for the first example, we have tested our formalis
on this model constructed using the same Daubech
wavelet basis and considering, for the sake of simplicit
i.i.d. log-normal weightsWei . Figures 2(a) and 2(b) are
the analogs of Figs. 1(a) and 1(b). One can see th
when scale invariance is broken, our estimates of t
magnitude correlation functions are in perfect agreeme
with Eq. (10) that predicts a power-law decrease of th
correlation functions vsDx.

The two previous examples illustrate the fact that ma
nitudes in random cascades are correlated over very lo
distances. Moreover, the slow decay of the correlatio
functions is independent of scales for large enough spa
lags (Dx . a). This is reminiscent of the multiplicative
structure along a space-scale tree. These features are
observed in “additive” models like fractional Brownian
motions whose long-range correlations originate from th
sign of their variations rather than from the amplitude
In Fig. 3 are plotted the correlation functions of an un
correlated log-normal model constructed using the sam
parameters as in the first example, but without any mul
plicative structure (the coefficientscj,k have, at each scale
j, the same log-normal law as before but are independe
and for a fractional Brownian motion withH ­ 1y3. Let
us note that from the point of view of both the multi-
fractal formalism and the increment pdf scale propertie
the “uncorrelated” and “multiplicative” log-normal mod-
els are undistinguishable since their one-point statistics
a given scale are identical. As far as the magnitude spa

FIG. 2. Numerical computation of the magnitude correlatio
functions for a not scale invariant log-normal cascade proce
(see text). (a) “One-scale” correlation functions. (b) “Two
scale” correlation functions. Symbols have the same mean
as in Fig. 1. The solid lines correspond to Eq. (10) wit
b ­ 0.3, l2 ­ 0.2, and log2 L ­ 16.
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scale correlations are concerned, the difference betw
the cascade and the other models is striking: forDx . a,
the magnitudes of the fractional Brownian motion an
of the log-normal “white noise” model are found to b
uncorrelated.

The cascade concept is at the heart of a lot of ph
nomenological studies of turbulent flows. As a first ap
plication of our method, it is thus interesting to stud
magnitude correlations in fully developed turbulence da
Our experimental signals were recorded at the ONER
wind tunnel in Modane by Gagne and collaborators a
represent the temporal fluctuations of the longitudinal v
locity component. The Taylor scale based Reynolds nu
ber is Rl . 2000 and we processed about2.5 3 108

points, i.e., about25 3 103 integral scales, with a reso-
lution of about twice the dissipative scaleh. In all our
computations, we use Taylor’s hypothesis to identify tem
poral and spatial fluctuations. In Figs. 4(a) and 4(b) a
plotted the “one-scale” and “two-scale” correlation func
tions. Both figures clearly show that space-scale mag
tudes are strongly correlated. Very much like previou
toy cascades, it seems that forDx . a, all the experimen-
tal pointsCsDx, a1, a2d fall onto a single curve. We find
that this curve is nicely fitted by Eq. (10) withb ­ 0.3,
l2 ­ 0.27, andL . 214 points. This latter length scale
corresponds to the integral scale of the experiment th
can be estimated from the power spectrum. It thus see
that the space-scale correlations in the magnitude of
velocity field are in very good agreement with a casca
model that is not scale invariant. This has been alrea
observed by Castainget al. [13] and further confirmed
by other works [19] from “one-point” statistical studies
However, we have observed several additional features t
do not appear in wavelet cascades. (i) ForDx . L, the
correlation coefficient is not in the noise level (C ­ 0 as
expected for uncorrelated events) but remains negative
to a distance of about 3 integral scales. This observat
can be interpreted as an anticorrelation between succes
eddies: very intense ones are followed by weaker ones,
conversely. (ii) ForDx . a, there is a crossover from the

FIG. 3. “One-scale” (a ­ 4) magnitude correlation functions:
log-normal cascade process (d), log-normal “white noise” (h),
and H ­ 1y3 fractional Brownian motion (m). Magnitudes
are correlated over very long distances for the cascade proc
while they are uncorrelated whenDx . a for the two other
processes.
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FIG. 4. Magnitude correlation functions of Modane fully de
veloped turbulence data. (a) “One-scale” correlation functio
at scalesa ­ 8 (,), 16 (d), 32 (h), and64 (n). (b) “Two-
scale” correlations functions at scalesa ­ 8, a0 ­ 16 (,),
a ­ 16, a0 ­ 16 (d), a ­ 16, a0 ­ 32 (h) and a ­ 16,
a0 ­ 64 (n). The solid lines correspond to a fit using Eq. (10
with b ­ 0.3, l2 ­ 0.27, and log2 L ­ 13.6. a, a0, and Dx
are expressed in experimental mesh size (.2h) units.

valueCsDx ­ 0, a, ad (which is nothing but the variance
of v at scalea) down to the fitted curve corresponding
to the cascade model. This was not the case in previo
cascade models (Fig. 2). This observation suggests t
simple self-similar (even not scale invariant) cascades a
not sufficient to account for the space-scale structure of t
velocity field. The interpretation of this feature in terms o
correlations between weights at a given cascade step o
terms of a more complex geometry of the tree underlyin
the energy cascade is in progress.

To summarize, we have introduced a method that allow
us to study the space-scale correlations in the magnitud
of random fractal functions. This method goes a ste
beyond classical one-point statistical analysis like p
studies or multifractal formalism. It has been successfu
tested on various toy cascade models. In turbulence
have been able to reveal that, if there is a cascade struc
(with no correlation between weights at a given casca
step) that extends over the inertial range, it is definite
not scale invariant. Moreover, this process turns out to
less trivial than the simple picture provided by a Markovia
multiplicative structure on a regular tree. Application o
this method to other experimental situations looks ve
promising [21].

We are very grateful to Y. Gagne and Y. Malecot fo
providing their experimental signals. We acknowledg
financial support from DRET under Contract No. 95y111.
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