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Analysis of Random Cascades Using Space-Scale Correlation Functions
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We introduce a formalism that allows us to study space-scale correlations in multiscale processes.
This method, based on the wavelet transform, is particularly well suited to study multiplicative random
cascade processes for which the correlation functions take a very simple expression. This two-point
space-scale statistical analysis is illustrated on some pedagogical examples and then applied to fully
developed turbulence data. [S0031-9007(97)05105-3]

PACS numbers: 47.27.Eq, 02.50.-r, 47.27.Jv, 47.53.+n

Since the pioneering works of Mandelbrot [1], fractal the f(«) spectrum provides rather poor information about
concepts have become a standard tool to describe multihe nature of the underlying process, Eq. (1) is a necessary
scale phenomena. The multifractal formalism introducedut not sufficient condition for the existence of a cascade
in the context of high Reynolds number turbulence [2]like Eqg. (2). In this Letter, our goal is to show that one
has been used extensively in many areas ranging from thean go deeper in fractal analysis by studying correlation
study of strange attractors arising in chaotic situations [3,4lunctions in both space and scales using the wavelet trans-
to nonequilibrium growth processes [5]. From a statisti-form (WT). This “two-point” statistical analysis proves
cal point a view, this description amounts to characterizingo be particularly well adapted for studying cascade pro-
an irregular field (e.g., a probability measure or a fractatesses. We illustrate our method on different well known
signal) by the relative contribution of singularities of dif- stochastic models before applying it to turbulence data.
ferent strengths. More precisely, the so-calfgd) sin- Correlations in multifractals have already been experi-
gularity spectrum [2,3] provides, at each scale, an estimatenced in the literature [14]. However, all of these stud-
of the (log) number of points where the (log) amplitude ofies rely upon the computation of the scaling behavior of
the field isa. The notion ofcascadeis widely used in  some partition functions involving different points; they
the fractal literature and is often considered the paradignthus mainly concentrate on spatial correlations of the lo-
of multifractal objects [3,4,6,7]. It refers to a self-similar cal singularity exponents. Our approach is different since
process whose properties are defined multiplicatively fromt does not focus on (nor suppose) any scaling property,
coarse to fine scales. Several solvable cascade moddist rather consists in studying the correlations ofltya-
have been proposed to fit experimental observations. Irithms of the amplitude of a space-scale decomposition of
the context of turbulence, the energy transfer from large signal. For that purpose we use a natural tool to perform
eddies to smaller ones has been pictured by Richardson [8pace-scale analysis, namely the wavelet transform. The
and further developed by Kolmogorov and Obukhov [9],WT has already proven to be a powerful tool for multifrac-
as a cascade process [4,6,10—12]. More recently, Castaimg analysis of functions [15]. Let us recall that the WT of
et al. [13] proposed to account for the probability distribu- a functionf is defined as [16]:
tion function (pdf) of the velocity increments at a given
scalea, dv, = v(x + a) — v(x), as a weighted sum of
dilated versions of the pdf at a coarser sdale

+oo
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P, (8v) = [+x Gar(w)e “Prle “Sv)du. (1) Wherex is the space positiory (>0) the scale, and)
—o the analyzing wavelet. Note that fgr(x) = 6(x — 1) —

This equation suggests that, for any decreasing sequencej‘}?‘)’ Tyl f1(x, a) is nothing butd f,(x), the increment of

scales(ay, ..., a,), the kernelG satisfies the composition over adistance. If 4 is oscillating aﬂd regulgr(_enoug'h,
lawG. . =G e ®-.-® G,, (®denotes the convo- 2N can show that the transformation (3) is invertible
apa; Anlp—1 ara

lution product). It is then tempting to write an incrementf'jmd conserves energy [16]. More specifically, itx)

ov, at a fine scale: as resulting from a random Cascadelsza bump f‘iQC“O” such thatyll, =1, tzhen by taking
initiated at the large scale: o?(x,a) = a=* [ x((x = y)/a) Ty (y, @)’ dy, one has

500 = [[Warra6vr  Waorw >0, (2) IfI2 = [[ o?(x,a) dx da,, )
i=1

where IW,,., ,.) are independent random variables of lawand thuso?(x, @) can be interpreted as the local space-
G.,.,a.- However, let us note that, in the same way thatscale energy density gf[17]. Sinceo?(x, a) is a positive
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guantity, we can define thmagnitudeof the fieldf at point ~ and it can be established that, for éupa,) = Ax < L,
x and scalez as

C(Ax,ay,a2) = /\z[logz<é> -2+ 2%} C)]

1
w(x,a) = > Ino?(x,a). (5)
Our aim is to show that a cascade process can be studiddus, the correlation function decreases very slowly,

through the correlations of its space-scale magnitudes: independently ofz; and a,, as a logarithm function of
Ax. This behavior is illustrated in Fig. 1 where a log-

C(xy,x2,ay1,a) = @(x1,a;)d(x2, az), (6) normal cascade has been constructed using Daubechies
compactly supported wavelet basis (D-5) [16]. The
where the overline stands for ensemble average,@nd correlation functions of the magnitudes 6fx) have been
stands for the centered process— o. computed as described above [Eq. (6)] using a simple
Cascade processes can be defined in various waysox function for y(x). Let us note that all the results
Periodic wavelet orthogonal bases [16] provide a generakported in this Letter concern the increments of the
framework in which they can be constructed easily [18,19]considered signal. We have reproduced this analysis for

Let us consider the following wavelet series: wavelets of various shapes (e.g., successive derivatives
oo 21 of the Gaussian function) and checked that our results

¥) = cinthin(x), 7 are actually independent of the specific choice yof

f @) ,ZO,ZO (%) ¢ In Fig. 1(a) are plotted the “one-scalel (= a» = a)

correlation functions for three different scales= 4, 16,

and 64. One can see that, farx > q, all the curves
At > collapse to a single one, which is in perfect agreement
to the WT off at scalen = L27/ [L is the “integral” scale it the expression (9): in semilog coordinates, the
that corresponds to the size of the support/@k)] and  qrrelation functions decrease almost linearly (with slope
positionx = ka. Thg above sampling _of the space—scalg)lz) up to the integral scale that is of ordeR'® points. In
plane defines a dyadic tree [16]. If one indexes by a dyadigig 1(b) are displayed these correlation functions when
sequencge;..... €;} (e, = Oorl)eachofthe’/ nodesat iha two scales:; and a, are different. One can check
depthj of this tree, the cascade is defined by the multlpllcas[hat, as expected, they still do not depend on the scales
tive rule:c;; = ce,..c; = colIi=1 We,. The law chosen providedAx = supa;, a»); moreover, they are again very
for the weightsW (accounting for their possible correla- well fitted by the above theoretical curve (except at very
tions) determines the nature of the cascade and the mulfarge Ax where finite size effects show up). The linear
fractal (regularity) properties of [18]. From the above pehavior of C(Ax, ay,as) vs In(Ax) is characteristic for
multiplicative structure, if one assumes that there is no corsclassical” scale invariant cascades for which the random
relation between the weights at a given cascade step [2Qleights are uncorrelated. One can also consider not scale
thenitis easy to show thatfaf, = L27/» andx, = k,a, invariant cascades where these weights are not identically
(p = 1or2), the correlation coefficient is nothing but the distributed and have an explicit scale dependence. For

varianceV () of Inc;, = > InW,,, where(j,k) is the  example, we can construct a log-normal model whose
deepest common ancestor to the nadgsk;) and( j», k»)

on the dyadic tree. This “ultrametric” structure of the cor-

where the sefy; ;(x) = 2//2¢(2/x — k)} is an orthonor-
mal basis of.%([0, L]) and the coefficients; ; correspond

relation function shows that such a process is not stationary — ,, 283~ © | (ay] oz, T T (]

(nor ergodic) [14(c)]. However, we will generally consider 3 1

uncorrelated consecutive realizations of lengttof the ~ | 3 e

same cascade process, so that, in good approximation, E"ovl N ! 1 %4,0 ]

depends only on the space |Ag = x, — x;, and one can 3 a

replace ensemble average by space average. In that case, ©

C(Ak, j1, j2) = (C(ki, k1 + Ak, j1, j2)) can be expressed 0 ol

as 0 ZIL E; 1I2 16 [V JL ;3 1‘2 16
logp(Ax) logy(Ax)

j—n
C(AKk, j1,j2) =27 U™ > 207" Py(j — n — p),

o] FIG. 1. Numerical computation of magnitude correlation

®) functions for a scale invariant log-normal cascade process
built on an orthonormal wavelet basis. (a) “One-scale”
wherej = sud ji, j») andn = log, Ak. correlation furlctionsC(Ax",a,a) for a = 4 (0), 16 (@), ar)d
Let us illustrate these features on some simple case é‘r (aA): a(,bL IEWC(".S)C&'S :Cg"ilf‘“:oq 6”{‘5;'”5(?;* :“’fg
For examplg, if Qne ch(_)os_es, as m'classmal CascaQes, I0r — 64 (A). The solfd lines r'epresent fits o’f the data witﬁ the
dependent identically distributed (i.i.d.) random variablegog-normal prediction [Eq. (9)] using the parametafs= 0.03
In W, of varianceA? (e.g., log normal), theW (j) = A%>j  and log L = 16.
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coefficients Irc;, have a variance that depends pras  scale correlations are concerned, the difference between
V(j) = A%(278 — 1)/BIn2. This model is inspired from the cascade and the other models is striking:Xor> a,
the ideas of Castaingt al. [13] in their statistical study of the magnitudes of the fractional Brownian motion and
velocity fluctuations in turbulence and reduces to a scalef the log-normal “white noise” model are found to be
invariant model in the limit3 — 0 [19]. In this case, for uncorrelated.
sufai, a;) = Ax < L, the correlation function becomes  The cascade concept is at the heart of a lot of phe-
L Ax nomenological studies of turbulent flows. As a first ap-
A2 [(H)B LT &} plication of our method, it is thus interesting to study
BIn2[ 281 — 1 L I magnitude correlations in fully developed turbulence data.
(10)  Our experimental signals were recorded at the ONERA
wind tunnel in Modane by Gagne and collaborators and
As for the first example, we have tested our formalismrepresent the temporal fluctuations of the longitudinal ve-
on this model constructed using the same Daubechidscity component. The Taylor scale based Reynolds num-
wavelet basis and considering, for the sake of simplicityber is Ry = 2000 and we processed aboats x 108
i.i.d. log-normal weightsW,,. Figures 2(a) and 2(b) are points, i.e., abou25 X 10* integral scales, with a reso-
the analogs of Figs. 1(a) and 1(b). One can see thalition of about twice the dissipative scatg In all our
when scale invariance is broken, our estimates of theomputations, we use Taylor's hypothesis to identify tem-
magnitude correlation functions are in perfect agreemerporal and spatial fluctuations. In Figs. 4(a) and 4(b) are
with Eqg. (10) that predicts a power-law decrease of theplotted the “one-scale” and “two-scale” correlation func-
correlation functions vax. tions. Both figures clearly show that space-scale magni-
The two previous examples illustrate the fact that magtudes are strongly correlated. Very much like previous
nitudes in random cascades are correlated over very lorgy cascades, it seems that o > a, all the experimen-
distances. Moreover, the slow decay of the correlational pointsC(Ax, ay, a,) fall onto a single curve. We find
functions is independent of scales for large enough spadéat this curve is nicely fitted by Eq. (10) with = 0.3,
lags (A\x > a). This is reminiscent of the multiplicative A> = 0.27, andL = 2'* points. This latter length scale
structure along a space-scale tree. These features are motresponds to the integral scale of the experiment that
observed in “additive” models like fractional Brownian can be estimated from the power spectrum. It thus seems
motions whose long-range correlations originate from thehat the space-scale correlations in the magnitude of the
sign of their variations rather than from the amplitudes.velocity field are in very good agreement with a cascade
In Fig. 3 are plotted the correlation functions of an un-model that is not scale invariant. This has been already
correlated log-normal model constructed using the samebserved by Castaingt al.[13] and further confirmed
parameters as in the first example, but without any multiby other works [19] from “one-point” statistical studies.
plicative structure (the coefficients, have, at each scale However, we have observed several additional features that
J» the same log-normal law as before but are independentjo not appear in wavelet cascades. (i) Bor > L, the
and for a fractional Brownian motion with = 1/3. Let correlation coefficient is not in the noise levél & 0 as
us note that from the point of view of both the multi- expected for uncorrelated events) but remains negative up
fractal formalism and the increment pdf scale propertiesto a distance of about 3 integral scales. This observation
the “uncorrelated” and “multiplicative” log-normal mod- can be interpreted as an anticorrelation between successive
els are undistinguishable since their one-point statistics addies: very intense ones are followed by weaker ones, and
a given scale are identical. As far as the magnitude spaceonversely. (ii) FoAx = a, there is a crossover from the
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FIG. 2. Numerical computation of the magnitude correlationFIG. 3. “One-scale” ¢ = 4) magnitude correlation functions:
functions for a not scale invariant log-normal cascade proces®g-normal cascade proce®)( log-normal “white noise” [J),

(see text). (a) “One-scale” correlation functions. (b) “Two- and H = 1/3 fractional Brownian motion 4&). Magnitudes
scale” correlation functions. Symbols have the same meaningre correlated over very long distances for the cascade process
as in Fig. 1. The solid lines correspond to Eq. (10) withwhile they are uncorrelated whetx > a for the two other

B =03,A*=02,and log L = 16. processes.
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