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In dynamical systems, as a parameter is varied past a critical value, a chaotic attractor may be de-
stroyed by a crisis. This attractor is replaced by a chaotic transient, which eventually leads to a different
attractor. We present a method for maintaining chaotic dynamics after the crisis. The model, formu-
lated for arbitrary dimensions, directs the phase space trajectory toward a target region near the periodic
saddle orbit that mediates the crisis. It is used to maintain chaos numerically in the Ikeda map and
experimentally in a magnetoelastic ribbon. [S0031-9007(97)05100-4]

PACS numbers: 05.45.+b, 75.80.+q

Chaos possesses many desirable properties. It can en-In this paper we develop a systematic method for main-
hance the mixing of fluids [1]. In biology, the absence oftaining chaos that is applicable to high-dimensional sys-
chaos has been implicated in disease [2]. In an industridkms and can be easily implemented experimentally. It
application, the thermal pulse combustor operates chaotisses a discrete time series generated by a Poincaré section
cally when running with a lean fughir mixture [3]. But of the original continuous-time phase space. By varying a
attempts to improve fuel efficiency (by making the mix- single system parameter, our method maintains chaos us-
ture even leaner than some critical ratio) can destroy thang the dynamics of a mediating saddle having any num-
chaos and cause the combustor to flameout [4]. ber of stable or unstable manifolds. We demonstrate it

Techniques to preserve and maintain chaos have rdoth computationally on an Ikeda map and experimentally
cently received considerable attention. Experiments to inin a magnetoelastic ribbon experiment with a mediating
crease the disorder found in the electrical firings of ratsaddle containing one unstable direction and two complex
hippocampal neurons used ad hocmethod of maintain- stable directions.
ing chaos (therein callednticontrol) to drive the system Basic concept and mathematical formulation of the
state off of the chaotic attractor whenever it approached amethod—For illustration, consider a 2D map. We as-
given periodic saddle point [5]. Later Yamg al. [6] pro-  sume that a period one saddle point mediates the crisis
posed a method that used analytical knowledge of the [10]. The dynamics around this saddle is such that one
system dynamics to map preiterates of an escape regidomanch of the unstable manifold leads to a different at-
and to determine a minimal perturbation. It is applied agdractor, while the other leads back into the remnant of the
the system enters one of the preiterate regions to preventéhaotic attractor. Immediately after the crisis, a trajectory
from eventually entering the escape region. This methodan bounce around on the chaotic remnant for some time
was successful in a number of analytical models but habefore it escapes to the other attractor via the neighbor-
not been experimentally realized due to the difficulty ofhood of the mediating saddle [10]. This suggests that,
extracting accurate models for experimental systems. Awhen the orbit comes near the mediating saddle, we use
experimentally effective refinement [7] uses only infor- properties of the saddle and small perturbations to steer
mation derived from experimental data. The shortcomithe orbit to a predetermined target point along the un-
ing of this method lies in its semiempirical nature. A stable branch leading toward the chaotic remnant. Then,
different method [8] for maintaining chaos uses feedbaclafter the control is turned off, the natural dynamics will
control of Lyapunov exponents so that they are all madéake the orbit back to the chaotic remnant. Our choice of
positive. the target point is the first iterate of the point that is a dis-

None of these make explicit use of the insight that theances away from the period-1 saddle along the unstable
destruction of chaotic attractors often occurs dudriges  manifold. Heree is the maximum noise amplitude. In
After a crisis, the system behaves chaotically for arthis fashion we guard against the trajectory being knocked
extended period of time until it nears the periodic saddlento the other attractor’'s basin by noise. Next we im-
point thatmediateghe crisis. The system is ejected from plement these considerations mathematically for arbitrary
the basin of attraction of the former chaotic attractor.dimensions.

Schwartz and Triandaf [9] used local knowledge of the Suppose that the system is described by a Poincaré
mediating orbit to put the system back into the transienmap,X,+; = F(X,, p), whereX, € R* andp is a sys-
region before the orbit escaped to the other attractor. Buem parameter chosen for maintaining chagsneed not

their method is restricted to crises where the mediatingpe the parameter whose change causes the crisis. Assume
saddle has one stable and one unstable manifold. that the dynamical equations describing the system are
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not known, but that a time seri¢s,} of some scalar ob- is the nominal value of the control parameter. Paralleling

servablex, = h(X,) can be measured via a measuremenRef. [13], we introduce the followingn X m Jacob-

function A. Using delay coordinate embedding [11], we ian matrix, A, = D, G(z,, Pr—m+1 Pn—m+2s---> Pn), O

reconstruct the dynamics as = (z\",z?,...,z")T =  describe the linearized dynamics near the saddle point,

(Xn—ma1sXn—ma2s--., %), wherem is the dimension of and a set ofm-dimensional column vectors to describe

the reconstructed phase space. For large enoygh is  the effect of the control parameter variations on the

a global one-to-one representation Xf, [11]. In addi- dynamics,B{) = D, . G(Zu, Py—m+1. Pu-m+2s---» P,

tion, since one must change the parameterxccordingto i = 1,2,...,m. Evaluating all the partial derivatives at

a control law at every iteration of the map in the vicinity the saddle pointz, = z*(p*) and settingp,—m+1 =

of the mediating saddle, the reconstructed discrete map fqr,—n+2 = --- = p, = p*, we obtain the linearization:

z, has the formz, . = G(z,, Pn—m+1>Pn—m+2>--+> pn)- (m)

Here G necessarily depends on all the parameter varia- 9Zn+1 = A+ 82, + B8 py—pn+

tions effective during the time intervat — m+ 1= +B" Vsp, min+ -+ BDSp,, (D)

t = n spanned by the delay vectay [12]. For simplicity

we derive the control law used to maintain chaos for thevhere 6z, =z, — z*(p*), ép, = p, — p* and we

case where the mediating saddle is a fixed point. drop the reference ta for A and theB’s. Because of
The saddle point in the delay coordinate space ishe nature of the time series and delay coordinates used,

denoted by"(p*) = G[z*(p”), p*, p*,...,p"]. Herep® | A and theB’s are sparse:

0 1 0 - 0 0
0 0 1 - 0 0

A= : : Do and BV =| ., i=12...,m. 2)
0 0 0 - 1 0
a(’") a(”’*l) (l(m72) a(l) mXm b(i) mX1

Without loss of generality, assume thAt has u unstable directions ansl stable directions; i.e.x + s = m with
eigenvalues\; satisfying|A;| > [As] > -+« > [A,l > 1 > A1) > |Au42l > -+ > |A,,]. Lete; be the corresponding
normalized eigenvectors. It is undesirable to derive control laws directly based on Eq. (1) [12]. Following So and Ott
[14] consider an expandddm — 1)-dimensional phase spacg, = (z!, pp—m+1, Pu—m+2----» Pn1)’, 10 accOmMmodate

both the dynamical measurements and the parameter changes. The linearized dynamics of the saddle point in the
expanded phase spaceXis;; — Y* = A(Y, — Y*) + B(p, — p*), where

A Bm™ pgm-b .. B® B
0 0 1 .o 0 0
A=]: and B=| : : ©)
0 0 0 P | 0
0 0 0 0 /@em-1)x2m-1) 1 2m—1)x1

0 indicates ann-dimensional row vector of 0’'s. Note that ~ We wait until the system trajectory reaches the neigh-
eigenvalues ofA are eigenvalues ok with correspond- borhood ofY* and applyx small parametric perturbations
ing eigenvectork, = (e/,0,...,0,0)7, i = 1,2,...,m. OPnsOPn+1,6Pn+2,....0purw—1) SO that the subsequent
Clearly thesem vectors are not enough to span thedeviationdY,,, = Y.+, — Yr lies entirely in the stable
(2m — 1)-dimensional expanded phase space. As irsubspace of the target point, which has the same proper-
Ref. [13], additional vectors can be found in the null spacdies as that of the saddle point in the linear approxima-

of the matrixA” !, tion. We then set the parameter to its nominal vatie

To determine the target point, letbe the noise level in and the orbit marches toward the chaotic saddle under the
the system. A target point is chosen 8¥r = Yr —  system’s natural dynamics. Thus we determine the per-
Y* = AeY ! | k;, which is one iterate away from the turbations p, needed at time to be
noise circle along the unstable directions. Here we make _ LAV - 8Y, — Akevi - Ky
the assumption that the target is not too far away from 6pn = — o . 4
the periodic saddle so that the same linearized dynamics k=1 (vi - B) [T = A)
applies near the target point. Subtracting this from the i
expression describing the linear dynamics in the expandegthere the unstable contravariant eigenvestois defined
phase space, we obtain by ATv; = Ayvi. The first term is identical to the control

- . _ N law derived in Ref. [13], whereas the second term reflects
Yurr = Yr = A(Y, B YY) + B(py = p7) the targeting of the point that is one mapping away from
— As Z K. the noise circle along the unstable directions. Although

= ' future perturbationsép,+1,...,6pn+w—-1) Can also be
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found at the same time a8p,, system noise makes it the simulation with the same initial conditions, we apply
preferable to recalculate the perturbation using Eq. (4) ahe maintenance technique. When the orbit starts to

each iterate. - approach the boundary saddle, a perturbation is given
For simplicity, let v, = 1. Then the other com- to prevent point 2 from mapping to poir¥, causing
ponents ofv, are v\ = Sl am it /()i7itl, i = it instead to map to point 3. Note that only a single

B () _ i—m g (m—jt+1) i—mejt1 perturbation was given because the stable point has only
li ' +m1 1+ar21d Yk ’ %Tl \};Vith theéEaAIF;Iations we One unstable direction and noise was not a consideration.
= LT, S '~ _After this the parameter is set to its nominal value and the
emphasize that Eq. (4) depends only on the experimen- : . )

, O ) . natural dynamics of the saddle carries the orbit back onto
tally determined:'”, b\, and the unstable eigenvalugs

(i=1,2 u) of A the chaotic remnant (points 4-8).

) L Example 2: The magnetoelastic ribbon experiment.
deﬁwxc?nns]{)rﬁ[e%j. o-r:h?htlekeﬁ(?a dr‘:aﬁThe rlethof bls fI;St The experimental system is a gravitationally buckled,
exdik — in/(1 + |z,1?)], where jp”jr i cils cor;n lex amorphous magnetoelastic ribbon whose Young’s modu-
makin thg ma 25" F(;v _ 10%27);) _ (y)9 L — 84 lus can be varied by a factor of 10 using an external
i gt 50 trl?e map exhibits & boundary crisis. [15] MAgNetic field.  (For details, see Ref. [16]) The ribbon
with nthe béundar gaddle at — 2 = 1 1%2 45] — is clamped at its base and a fotonic sensor mounted
. y ; ¢ ) a short distance above the base measures its position.
i2.283 082. (Cf. Fig. 1.) a is the control parame- A vertical field Hyyiea(t) = Hae + Hye SIN27f1) IS
ter. Being an actual map, there is no dependence on_ . applied - de ac SRS

: . ! ) ' applied to vary the ribbon’s stiffnesst,. is the control
the past history of the_ perturbations _durlng COerI'parameter as well as the bifurcation parameter. We set
Therefore the perturbatlons(l;arﬁ) deS((er)Ibﬁ()j By, = 7 = 0.90 Hz, Hy. = 0.2980 Oe, andH,. = 1.1124 Oe

(1) (2) .
—A(fu"bx + fu'dy — &)/(fu'bi” + fu'by’). A iS g put the system slightly past the critical parameter
the unstable eigenvalue of tex 2 Jacobian matrixA  pgeritical ~

1.1036 Oe for a boundary crisis.
. . ac
evaluated at the saddle poin is chosen to be 0.005 = "Fgise nearest-neighbor tests show that the embedding

so that the target point can be distinguished in Fig. 14imension for this experiment i@ = 3. The boundary
although a(lr)nuch ?lr)naller value fer can be used. To gaqdie was determined to be an unstable period-1 or-
determineb, ~ andb, ’, a perturbatiorsp, = 0.1000 was  bit located at (2.6505, 2.6505, 2.6505). Nine close ap-
applied when a point entered the linear region of radiugroaches to the boundary saddle were used to determine
0.035 829 of the saddlebﬁl) andbél) were 1.00156 and the elements oA. Using singular value decomposition,
0.001 134, respectively. a®, a®, anda® were 2.5016, 0.6727, and 0.1939, re-
Figure 1(a) shows the orbit as it traverses the remnargpectively. Thus, fromA, the saddle has one unstable
chaotic attractor. After a time, the orbit approaches theand two complex stable eigenvalues, = 2.7697 and
boundary saddle along the right side of its stable manifold!*> = —0.1341 ¥ i0.2281, respectively.
and that path carries it out toward a distant attractor. The element$), »?® andb® were determined by ap-
Figure 1(b) expands the square in Fig. 1(a). Poiit$’  plying a perturbatiord p, = 0.0155 Oe at a timen when
mark the escape toward the distant attractor. Restartintpe point closely approached the saddle. The perturbation
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FIG. 1. (a) The lkeda map at boundary crisis. The system resides on the chaotic transient (lower left) before exiting to the fixed
point attractor (upper right). (b) Expands the square area in (a) to show details near the saddle point (large circle with centered
dot). 1'=5' indicate the escape to the fixed point attractor. The circles (1-8) denote the perturbed orbits as they were diverted
toward the chaos. The large square with centered dot is the target.
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FIG. 2. (a) 2D projection of the transiently chaotic ribbon attractor. (b) Expands the square area in (a). Two nearby escape
sequences are marked to illustrate the perturbed sequence (small squares 1-8) and the unperturbed one (sihaB'irclde

filled circle on the diagonal marks the saddle point and the filled square marks the target. Perturbations were always given in the
cluster around the saddle point.

lasts for the full duration of one drive (map) period. We support from the NSWC ILIR Program and from the

use the measurements at times- 1, n + 2, andn + 3  Office of Naval Research (Physical Sciences Division).

to calculate theb), @, and »® as b = (5x,.; —

aVéx,iio1 — aPéx,4i0 — a®8x,41-3)/8p,. Typi-

cal values ofvV, b®  andb® are 0.0024, 0.0046, and

0.0074 V/Oe, respectively. For typical runs in this ex-

periments was 0.0100 V. [1] J.M. Cttino, G. Me_tcalfe, and S.C. Jana, FPrnoc_eedings
Using these values, we have maintained chaos in the ~©f the 2nd Experimental Chaos Confereneglited by

ribbon experiment. Figure 2(a) plots in 2D the ribbon \2’\(/) Ditio et al. (World Scientific, Singapore, 1995), p. 3-

attractor for 51712 iterates. For the first 51123 |terates[2] A.L. Goldberger, inProceedings of the 1st Experimental

the nbbpn made 51 approaches to the saddle and al Chaos Conferenceedited by S. Vohraet al. (World

were diverted toward the target and eventually made  ggientific, Singapore, 1991), pp. 195-202.

their way back to the chaotic attractor. After iterate [3] c.S. Daw, J.F. Thomas, G.A. Richards, and L.L.

51200, maintenance was turned off. At iterate 51520  Narayanaswami, Chads 662 (1995).

the system made a transition to the periodic attractor.[4] V. In, M.L. Spano, J.D. Neff, W.L. Ditto, C.S. Daw,

Figure 2(b) expands a section of this attractor along with  K.D. Edwards, and K. Nguyen, Cha@s605 (1997).

two nearby sequences. The unprimed sequence indicatel$] S.J. Schiff, K. Jerger, D.H. Duong, T. Chang, M.L.

the perturbed orbit. Starting at orbit 2, several successive _ Spano, and W. L. Ditto, Nature (LondoBy0, 615 (1994).

perturbations were applied to push this sequence of orbitd®] W- Yang, M. Ding, A. Mandell, and E. Ott, Phys. Rev. E

toward the target region. When the system approached[7] 51, 102 (1995).

. . V. In, S.E. Mahan, W.L. Ditto, and M.L. Spano, Phys.
the targetin 3D, the perturbation was turned off to allow Rev. Lett.74, 4420 (1995).

the natural dynamics to carry the system back into cha0Sg) G chen and D. Lai, Technology Report No. 95-90, 1995,
Primed points indicate the unperturbed orbit that made its[g] | B, Schwartz and I. Triandaf, Phys. Rev. Left, 4740
way toward the period-1 attractor. (1996).

In conclusion, we have developed a general theoryi0] E. Ott, Chaos in Dynamical Systen{€ambridge Univ.
for the maintenance of chaos. This method uses small Press, New York, 1993), p. 277.
time-dependent perturbations of a single system parametgrl] F. TakensDynamical Systems and Turbuleneglited by
to perturb the system while it is in the vicinity of D. Rand and L. S. Young (Springer-Verlag, Berlin, 1981),
a mediating saddle point that possesses an arbitrary P- 230; N.H. Packarcetal., Phys. Rev. Lett45, 712
number of stable and unstable manifolds. The method (517986(1)7? (Jl.géSI)Eckmann and D. Ruelle, Rev. Mod. Phys.
was demonstrated computationally on the lkeda map and, \;"placeler and G. Nitsche, Phys. Rev. L68, 1 (1992),
experimentally on the magnetoelastic ribbon experimen 13] M. Ding, W. Yang, V. In, W. L. Ditto, M. L. Spano, and
Even though the method was developed and tested for = g ) ckman, Phys. Rev. B3, 4334 (1996). ’
crisis bifurcations, it is well-suited for maintaining chaos14] p. so and E. Ott, Phys. Rev.®, 2955 (1995).
against intermittencies as well. [15] C. Grebogi, E. Ott, and J.A. Yorke, Phys. Rev. L&,

V. |. gratefully acknowledges support from the ASEE/ 1284 (1986).
ONR Fellowship Program and M.L.S. acknowledges[16] W. L. Ditto et al., Phys. Rev. Lett63, 923 (1989).

703



