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Maintaining Chaos in High Dimensions
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In dynamical systems, as a parameter is varied past a critical value, a chaotic attractor may be de-
stroyed by a crisis. This attractor is replaced by a chaotic transient, which eventually leads to a different
attractor. We present a method for maintaining chaotic dynamics after the crisis. The model, formu-
lated for arbitrary dimensions, directs the phase space trajectory toward a target region near the periodic
saddle orbit that mediates the crisis. It is used to maintain chaos numerically in the Ikeda map and
experimentally in a magnetoelastic ribbon. [S0031-9007(97)05100-4]

PACS numbers: 05.45.+b, 75.80.+q
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Chaos possesses many desirable properties. It can
hance the mixing of fluids [1]. In biology, the absence o
chaos has been implicated in disease [2]. In an indust
application, the thermal pulse combustor operates cha
cally when running with a lean fuelyair mixture [3]. But
attempts to improve fuel efficiency (by making the mix
ture even leaner than some critical ratio) can destroy t
chaos and cause the combustor to flameout [4].

Techniques to preserve and maintain chaos have
cently received considerable attention. Experiments to
crease the disorder found in the electrical firings of r
hippocampal neurons used anad hocmethod of maintain-
ing chaos (therein calledanticontrol) to drive the system
state off of the chaotic attractor whenever it approached
given periodic saddle point [5]. Later Yanget al. [6] pro-
posed a method that used ananalytical knowledge of the
system dynamics to map preiterates of an escape reg
and to determine a minimal perturbation. It is applied
the system enters one of the preiterate regions to preve
from eventually entering the escape region. This meth
was successful in a number of analytical models but h
not been experimentally realized due to the difficulty o
extracting accurate models for experimental systems.
experimentally effective refinement [7] uses only infor
mation derived from experimental data. The shortcom
ing of this method lies in its semiempirical nature. A
different method [8] for maintaining chaos uses feedba
control of Lyapunov exponents so that they are all ma
positive.

None of these make explicit use of the insight that th
destruction of chaotic attractors often occurs duringcrises.
After a crisis, the system behaves chaotically for a
extended period of time until it nears the periodic sadd
point thatmediatesthe crisis. The system is ejected from
the basin of attraction of the former chaotic attracto
Schwartz and Triandaf [9] used local knowledge of th
mediating orbit to put the system back into the transie
region before the orbit escaped to the other attractor. B
their method is restricted to crises where the mediati
saddle has one stable and one unstable manifold.
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In this paper we develop a systematic method for main
taining chaos that is applicable to high-dimensional sy
tems and can be easily implemented experimentally.
uses a discrete time series generated by a Poincaré sec
of the original continuous-time phase space. By varying
single system parameter, our method maintains chaos
ing the dynamics of a mediating saddle having any num
ber of stable or unstable manifolds. We demonstrate
both computationally on an Ikeda map and experimental
in a magnetoelastic ribbon experiment with a mediatin
saddle containing one unstable direction and two comple
stable directions.

Basic concept and mathematical formulation of th
method.—For illustration, consider a 2D map. We as-
sume that a period one saddle point mediates the cri
[10]. The dynamics around this saddle is such that on
branch of the unstable manifold leads to a different a
tractor, while the other leads back into the remnant of th
chaotic attractor. Immediately after the crisis, a trajector
can bounce around on the chaotic remnant for some tim
before it escapes to the other attractor via the neighbo
hood of the mediating saddle [10]. This suggests tha
when the orbit comes near the mediating saddle, we u
properties of the saddle and small perturbations to ste
the orbit to a predetermined target point along the un
stable branch leading toward the chaotic remnant. The
after the control is turned off, the natural dynamics wil
take the orbit back to the chaotic remnant. Our choice
the target point is the first iterate of the point that is a dis
tance´ away from the period-1 saddle along the unstab
manifold. Here´ is the maximum noise amplitude. In
this fashion we guard against the trajectory being knocke
into the other attractor’s basin by noise. Next we im
plement these considerations mathematically for arbitra
dimensions.

Suppose that the system is described by a Poinca
map,Xn11 ­ FsXn , pd, whereXn [ Rk andp is a sys-
tem parameter chosen for maintaining chaos.p need not
be the parameter whose change causes the crisis. Assu
that the dynamical equations describing the system a
© 1998 The American Physical Society
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not known, but that a time serieshxnj of some scalar ob-
servablexn ­ hsXnd can be measured via a measureme
function h. Using delay coordinate embedding [11], we
reconstruct the dynamics aszn ­ szs1d

n , zs2d
n , . . . , zsmd

n dT ­
sxn2m11, xn2m12, . . . , xndT , wherem is the dimension of
the reconstructed phase space. For large enoughm, zn is
a global one-to-one representation ofXn [11]. In addi-
tion, since one must change the parameterp according to
a control law at every iteration of the map in the vicinity
of the mediating saddle, the reconstructed discrete map
zn has the formzn11 ­ Gszn, pn2m11, pn2m12, . . . , pnd.
Here G necessarily depends on all the parameter var
tions effective during the time intervaln 2 m 1 1 #

t # n spanned by the delay vectorzn [12]. For simplicity
we derive the control law used to maintain chaos for th
case where the mediating saddle is a fixed point.

The saddle point in the delay coordinate space
denoted byzpsppd ­ Gfzpsppd, pp, pp, . . . , ppg. Herepp
nt

for

ia-

e

is

is the nominal value of the control parameter. Parallelin
Ref. [13], we introduce the followingm 3 m Jacob-
ian matrix, An ­ Dzn Gszn, pn2m11, pn2m12, . . . , pnd, to
describe the linearized dynamics near the saddle poin
and a set ofm-dimensional column vectors to describe
the effect of the control parameter variations on the
dynamics,Bs1d

n ­ Dpn2i11 Gszn, pn2m11, pn2m12, . . . , pnd,
i ­ 1, 2, . . . , m. Evaluating all the partial derivatives at
the saddle point,zn ­ zpsppd and settingpn2m11 ­
pn2m12 ­ · · · ­ pn ­ pp, we obtain the linearization:

dzn11 ­ A ? dzn 1 Bsmddpn2m11

1 Bsm21ddpn2m12 1 · · · 1 Bs1ddpn , (1)

where dzn ; zn 2 zpsppd, dpn ; pn 2 pp and we
drop the reference ton for A and theB’s. Because of
the nature of the time series and delay coordinates use
A and theB’s are sparse:
nd Ott

int in the
A ­

0BBBBBB@
0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

...
...

0 0 0 · · · 1
asmd asm21d asm22d · · · as1d

1CCCCCCA
m3m

and Bsid ­

0BBBBBB@
0
0
...
0

bsid

1CCCCCCA
m31

, i ­ 1, 2, . . . , m . (2)

Without loss of generality, assume thatA has u unstable directions ands stable directions; i.e.,u 1 s ­ m with
eigenvaluesli satisfyingjl1j . jl2j . · · · . jluj . 1 . jlu11j . jlu12j . · · · . jlmj. Let ei be the corresponding
normalized eigenvectors. It is undesirable to derive control laws directly based on Eq. (1) [12]. Following So a
[14] consider an expandeds2m 2 1d-dimensional phase space,Yn ­ szT

n , pn2m11, pn2m12, . . . , pn1dT , to accommodate
both the dynamical measurements and the parameter changes. The linearized dynamics of the saddle po
expanded phase space isYn11 2 Yp ­ ÃsYn 2 Ypd 1 B̃spn 2 ppd, where

Ã ­

0BBBBBB@
A Bsmd Bsm21d · · · Bs2d

0 0 1 · · · 0
...

...
...

...
...

0 0 0 · · · 1
0 0 0 · · · 0

1CCCCCCA
s2m21d3s2m21d

and B̃ ­

0BBBBBB@
Bs1d

0
...
0
1

1CCCCCCA
s2m21d31

. (3)
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0 indicates anm-dimensional row vector of 0’s. Note tha
eigenvalues ofA are eigenvalues of̃A with correspond-
ing eigenvectorski ­ seT

i , 0, . . . , 0, 0dT , i ­ 1, 2, . . . , m.
Clearly thesem vectors are not enough to span th
s2m 2 1d-dimensional expanded phase space. As
Ref. [13], additional vectors can be found in the null spa
of the matrixÃm21.

To determine the target point, let´ be the noise level in
the system. A target point is chosen asdYT ; YT 2

Yp ­ Ã´
Pu

i­1 ki , which is one iterate away from the
noise circle along the unstable directions. Here we ma
the assumption that the target is not too far away fro
the periodic saddle so that the same linearized dynam
applies near the target point. Subtracting this from t
expression describing the linear dynamics in the expand
phase space, we obtain

Yn11 2 YT ­ ÃsYn 2 Ypd 1 B̃s pn 2 ppd

2 Ã´

uX
i­1

ki .
t

e
in

ce
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m
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ed

We wait until the system trajectory reaches the neig
borhood ofYp and applyu small parametric perturbations
dpn, dpn11, dpn12, . . . , dpn1su21d so that the subsequen
deviationdY0

n1u ­ Yn1u 2 YT lies entirely in the stable
subspace of the target point, which has the same prop
ties as that of the saddle point in the linear approxim
tion. We then set the parameter to its nominal valuepp

and the orbit marches toward the chaotic saddle under
system’s natural dynamics. Thus we determine the p
turbationdpn needed at timen to be

dpn ­ 2

uX
k­1

slkduvT
k ? dYn 2 lk´vT

k ? kk

svT
k ? B̃d

uQ
i­1

ifik

slk 2 lid
, (4)

where the unstable contravariant eigenvectorvk is defined
by ÃTvk ­ lkvk. The first term is identical to the contro
law derived in Ref. [13], whereas the second term reflec
the targeting of the point that is one mapping away fro
the noise circle along the unstable directions. Althoug
future perturbationsdpn11, . . . , dpn1su21d can also be
701
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found at the same time asdpn, system noise makes it
preferable to recalculate the perturbation using Eq. (4)
each iteraten.

For simplicity, let y
smd
k ­ 1. Then the other com-

ponents ofvk are y
sid
k ­

Pi
j­1 asm2j11dyslkdi2j11, i ­

1, 2, . . . , m 2 1 and y
sid
k ­

Pi2m
j­1 bsm2j11dyslkdi2m2j11,

i ­ m 1 1, m 1 2, . . . , 2m 2 1. With these relations we
emphasize that Eq. (4) depends only on the experime
tally determinedasid, bsid, and the unstable eigenvaluesli

si ­ 1, 2, . . . , ud of A.
Example 1: The Ikeda map.—The method is first

demonstrated on the Ikeda mapzn11 ­ a 1 bzn 3

expfik 2 ihys1 1 jznj2dg, wherez ­ x 1 iy is complex
making the map 2D. Fora ­ 1.0027, b ­ 0.9, k ­ 0.4,
and h ­ 6.0, the map exhibits a boundary crisis [15]
with the boundary saddle atz ­ zp ­ 1.112 451 2

i2.283 082. (Cf. Fig. 1.) a is the control parame-
ter. Being an actual map, there is no dependence
the past history of the perturbations during contro
Therefore the perturbations are described bydpn ­
2lusf

s1d
u dx 1 f

s2d
u dy 2 ´dysf

s1d
u b

s1d
1 1 f

s2d
u b

s1d
2 d. lu is

the unstable eigenvalue of the2 3 2 Jacobian matrixA
evaluated at the saddle point.́ is chosen to be 0.005
so that the target point can be distinguished in Fig.
although a much smaller value foŕ can be used. To
determineb

s1d
1 andb

s1d
2 , a perturbationdpn ­ 0.1000 was

applied when a point entered the linear region of radiu
0.035 829 of the saddle.b

s1d
1 andb

s1d
2 were 1.00 156 and

0.001 134, respectively.
Figure 1(a) shows the orbit as it traverses the remna

chaotic attractor. After a time, the orbit approaches th
boundary saddle along the right side of its stable manifo
and that path carries it out toward a distant attracto
Figure 1(b) expands the square in Fig. 1(a). Points10 50

mark the escape toward the distant attractor. Restarti
e fixed
ntered

iverted
FIG. 1. (a) The Ikeda map at boundary crisis. The system resides on the chaotic transient (lower left) before exiting to th
point attractor (upper right). (b) Expands the square area in (a) to show details near the saddle point (large circle with ce
dot). 10 50 indicate the escape to the fixed point attractor. The circles (1–8) denote the perturbed orbits as they were d
toward the chaos. The large square with centered dot is the target.
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the simulation with the same initial conditions, we appl
the maintenance technique. When the orbit starts
approach the boundary saddle, a perturbation is giv
to prevent point 2 from mapping to point30, causing
it instead to map to point 3. Note that only a single
perturbation was given because the stable point has o
one unstable direction and noise was not a consideratio
After this the parameter is set to its nominal value and th
natural dynamics of the saddle carries the orbit back on
the chaotic remnant (points 4–8).

Example 2: The magnetoelastic ribbon experiment.—
The experimental system is a gravitationally buckled
amorphous magnetoelastic ribbon whose Young’s mod
lus can be varied by a factor of 10 using an extern
magnetic field. (For details, see Ref. [16].) The ribbo
is clamped at its base and a fotonic sensor mount
a short distance above the base measures its positi
A vertical field Happliedstd ­ Hdc 1 Hac sins2pftd is
applied to vary the ribbon’s stiffness.Hac is the control
parameter as well as the bifurcation parameter. We s
f ­ 0.90 Hz, Hdc ­ 0.2980 Oe, andHac ­ 1.1124 Oe
to put the system slightly past the critical paramete
Hcritical

ac > 1.1036 Oe for a boundary crisis.
False nearest-neighbor tests show that the embedd

dimension for this experiment ism ­ 3. The boundary
saddle was determined to be an unstable period-1
bit located at (2.6505, 2.6505, 2.6505). Nine close a
proaches to the boundary saddle were used to determ
the elements ofA. Using singular value decomposition,
as1d, as2d, and as3d were 2.5016, 0.6727, and 0.1939, re
spectively. Thus, fromA, the saddle has one unstable
and two complex stable eigenvalues,lu ­ 2.7697 and
l1,2

s ­ 20.1341 7 i0.2281, respectively.
The elementsbs1d, bs2d, andbs3d were determined by ap-

plying a perturbationdpn ­ 0.0155 Oe at a timen when
the point closely approached the saddle. The perturbati
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escape

n in the
FIG. 2. (a) 2D projection of the transiently chaotic ribbon attractor. (b) Expands the square area in (a). Two nearby
sequences are marked to illustrate the perturbed sequence (small squares 1–8) and the unperturbed one (small circles10 80). The
filled circle on the diagonal marks the saddle point and the filled square marks the target. Perturbations were always give
cluster around the saddle point.
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lasts for the full duration of one drive (map) period. W
use the measurements at timesn 1 1, n 1 2, andn 1 3
to calculate thebs1d, bs2d, and bs3d as bsid ­ sdxn1i 2

as1ddxn1i21 2 as2ddxn1i22 2 as3ddxn1i23dydpn. Typi-
cal values ofbs1d, bs2d, andbs3d are 0.0024, 0.0046, and
0.0074 VyOe, respectively. For typical runs in this ex
periment́ was 0.0100 V.

Using these values, we have maintained chaos in t
ribbon experiment. Figure 2(a) plots in 2D the ribbo
attractor for 51 712 iterates. For the first 51 123 iterat
the ribbon made 51 approaches to the saddle and
were diverted toward the target and eventually mad
their way back to the chaotic attractor. After iterat
51 200, maintenance was turned off. At iterate 51 52
the system made a transition to the periodic attracto
Figure 2(b) expands a section of this attractor along wi
two nearby sequences. The unprimed sequence indica
the perturbed orbit. Starting at orbit 2, several success
perturbations were applied to push this sequence of orb
toward the target region. When the system approach
the targetin 3D, the perturbation was turned off to allow
the natural dynamics to carry the system back into cha
Primed points indicate the unperturbed orbit that made
way toward the period-1 attractor.

In conclusion, we have developed a general theo
for the maintenance of chaos. This method uses sm
time-dependent perturbations of a single system parame
to perturb the system while it is in the vicinity of
a mediating saddle point that possesses an arbitr
number of stable and unstable manifolds. The meth
was demonstrated computationally on the Ikeda map a
experimentally on the magnetoelastic ribbon experime
Even though the method was developed and tested
crisis bifurcations, it is well-suited for maintaining chao
against intermittencies as well.
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