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Optomechanical Cooling of a Macroscopic Oscillator by Homodyne Feedback
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We propose a simple optomechanical model in which a mechanical oscillator quadrature c
be “cooled” well below its equilibrium temperature by applying a suitable feedback to drive t
orthogonal quadrature by means of the homodyne current of the radiation field used to probe its pos
[S0031-9007(97)04942-9]

PACS numbers: 42.50.Vk, 03.65.–w, 42.50.Dv
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The problem of considering a macroscopic oscillator
terms of quantum mechanics is usually avoided becau
one can obtain the right results without using any quantu
mechanical hypotheses. When, however, one wishes
use it as a device to detect extremely small displaceme
due to very weak forces, as in the gravitational wave d
tectors, one has to be careful in considering it as a m
macroscopic object. Should one consider a macrosco
oscillator as a quantum oscillator, once all other possib
noise sources were eliminated by using filters, scree
insulators, etc., the ultimate criterion one has to satis
is the one associated with the thermal noise [1,2]. F
the harmonic oscillator it meanskBT , h̄vmy2, where
kB is the Boltzmann constant,vm the mechanical angu-
lar frequency, andT the temperature of the environmen
in which the oscillator lives. This prohibitive limit, for
macroscopic massive oscillators, is, however, only va
when the measurement timet is of the order of the
mechanical relaxation timetm. The actual limit can be
expressed as2kBTtyQm , h̄ [1]. In this case it is pos-
sible to consider a macroscopic mechanical oscillator
a quantum oscillator even at liquid He temperature [3
but very high mechanicalQm ­ vmtm factors and also
short observation times should be considered. To ha
better results and, for instance, to detect millisecond d
ration bursts of gravitational waves from supernovae, o
should measure out of resonance, as in VIRGO or LIG
proposals [4], or at lower temperatures, as in massive
detector schemes [5]. The thermal fluctuations are, ho
ever, the fundamental limitations, and, in order to redu
their effects, one usually should lower the environmen
temperature.

In this Letter we present an alternative way of coolin
the oscillator’s observed quadrature which could be e
perimentally accessible.

We consider an empty Fabry-Perot cavity with on
fixed mirror with transmittivityTr and one perfectly re-
flecting end mirror. The completely reflecting mirror ca
move, undergoing harmonic oscillations damped by t
coupling to a thermal bath in equilibrium at temperatu
T . The cavity resonances are calculated in the abse
of the impinging field, hence, ifL is the equilibrium cav-
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ity length, the resonant frequency of the cavity will be
nc ­ vcy2p ­ ncy2L, wheren is an arbitrary integer
number andc the speed of light. Furthermore, we as
sume that at the frequency of the impinging fieldn0, the
fixed mirror does not introduce any excess noise beyo
the input field noise. We also assume that retardation e
fects, due to the oscillating mirror in the intracavity field
are negligible. We shall use a field intensity such tha
the correction to the radiation pressure force, due to t
Doppler frequency shift of the photons [6] on the movin
mirror, is completely negligible. This means considerin
the damping coefficient of the oscillating mirror to be only
due to the coupling with the thermal bath. Thus, we ca
write the Hamiltonian as

H ­ h̄vc

µ
ByB 1

1
2

∂
1

p̂2

2m
1

1
2

mv2
mx̂2 1 Hint ,

(1)
whereB and By are the boson operators of the resona
cavity mode;p̂ and x̂ are the momentum and the dis-
placement operators, respectively, from the equilibriu
position of the oscillating mirror with massm and oscil-
lation frequencynm ­ vmy2p . The mechanical angular
frequencyvm will be many orders of magnitude smaller
thanvc to ensure that the number of photons generated
the Casimir effect [7] is completely negligible. We actu
ally are in the so-called adiabatic approximation; i.e., th
cavity round trip time of the photon is much shorter tha
the mirror’s period of oscillation.Hint accounts for the
interaction between the cavity mode and the oscillatin
mirror [8]. Since we have assumed no retardation effec
Hint simply represents the effect of the radiation pressu
force which causes the instantaneous displacementx̂ of
the mirror [9,10], and can be written as

Hint ­ 2h̄
vc

L
ByBx̂ ­ 2h̄GByBsA 1 Ayd , (2)

where we have introduced the dimensionless ladder ope
tors (A andAy) for the oscillating mirror, and the coupling
constant becomesG ­

p
h̄v2

cy2mvmL2. The intracavity
radiation field modeB is damped through the output fixed
mirror at a rategb ­ cTry2L, while gm is the mechanical
damping rate (gm ø gb).
© 1998 The American Physical Society
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The above interaction (2) gives rise to nonlinear sto
chastic equations whose linearization around the stea
state is equivalent, in a frame rotating at the impingin
frequencyn0, to replace Eq. (1) with [9]

H 0 ­ h̄Dbyb 1 h̄vmaya 1 H 0
int , (3)

where now all the operators represent small fluctu
tions around steady state values; i.e.,B ­ bs 1 b
and A ­ kAls 1 a. These are determined byxs ­p

h̄y2mvm skAls 1 kAlp
sd ­ h̄vcjbsj

2ymv2
mL; bs ­

kBls ­
p

gb binys gb

2 2 iDd, with bin the classical field
characterizing the input laser powerPin ­ h̄v0jbinj2.
The parameterD represents the radiation phase shift du
to the detuning and to the stationary displacement of t
mirror, D ­ vc 2 v0 2 vcxsyL; further we have

H 0
int ­ h̄xXYw , (4)

whereX ­ sa 1 aydy2 is the mirror position quadrature,
Yw ­ sbeiw 1 bye2iwdy2 is the radiation quadrature
with w ­ argsbsd, and x ­ 24Gjbsj. Equations (3)
and (4) represent the starting point for further analysis
our system.

The mirror displacement induces a phase shift on t
radiation field, hence the latter can be used as a “meter”
measure the mirror position quadratureX. For simplicity,
in Eq. (3) we assume we can setD ­ 0 by just varying
the cavity detuning. This setting allows us to write th
evolution equation for the whole density operatorD as

ÙD ­ L D 2
i
h̄

fH 0
int, Dg

1
gb

2
s2bDby 2 bybD 2 Dbybd , (5)

whereL describes the damped dynamics of the mecha
cal modea which is considered in thermal equilibrium
at temperatureT . We also assume that the number o
thermal photons is negligibly small at optical frequency
Following the treatment of Refs. [11,12], we assume th
the radiation modeb is heavily damped, so that due
to the large value ofgb ¿ jxj the b mode always
will be near to its vacuum state (we are considerin
fluctuations around the steady statebs). This allows us
to adiabatically eliminate theb mode and to perform a
perturbative calculation in the small parameterxygb [13].

The measurement of the quadratureX is obtained by
performing a homodyne measurement [14] of a gene
quadrature of the meter modeb; i.e., Y2d ­ sbe2id 1

byeiddy2 with d a phase connected to the local oscillato
[14]. Because of the interaction (4) between the tw
modes, one gets information onX by directly observing
the modeb. The continuous monitoring of theb mode
via homodyne detection modifies the time evolution o
the whole system.

We are now able to apply a phase-dependent feedb
loop to control the dynamics of the mechanical mod
of interesta. Other feedback schemes could be devise
-
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[15], but only the phase-dependent feedback produ
the desired effect. In order to be easily followed, w
use the continuous feedback theory recently propos
by Wiseman and Milburn [16], who well explained th
implications and limitations of this feedback. One has
take part of the stochastic output homodyne photocurr
[17] obtained from the continuous monitoring of th
meter modeb, and feed it back to the mirror dynamic
(for example, as a driving term) in order to modify th
evolution of the modea.

In the limiting case of a feedback delay time muc
shorter than the characteristic time of the mechani
mode, it is possible to obtain a Markovian equation f
the reduced density matrixr ­ TrbD in the presence of
feedback [16]. Thus, following Ref. [16], we get

Ùr ­ L r 2
G

2
fffX, fX, rgggg

1 K sieifrX 2 ie2ifXrd 1
K2

2hG
r , (6)

whereG ­ x2ygb (we have definedf ­ d 1 w, which
is the only relevant phase of theb mode influencing the
dynamics of the mechanical modea), K is a Liouville
superoperator describing the way in which the feedba
signal acts on the system of interest andh represents
the photodetector efficiency. This master equation is t
starting point of our discussion. The second term of t
right-hand side of Eq. (6) is the usual double-commuta
term associated with the measurement ofX, and it results
from the elimination of the radiation variables; the thir
term is the feedback term itself, and the fourth term is
diffusionlike term, which is an unavoidable consequen
of the noise introduced by the feedback itself.

The mirror is considered to be in a thermal ba
characterized by a damping constantgm, so that we have

L r ­ 2ivmfaya, rg 1
gm

4
fffa 1 ay, fay 2 a, rg1ggg

2
gm

2
kBT
h̄vm

fffa 1 ay, fa 1 ay, rgggg , (7)

where f , g1 means the anticommutator and the lim
kBT ¿ h̄vm is taken into account [18] and, due to th
frequency we are considering, is surely valid at room te
perature down to millikelvins at least. Moreover, sinc
the Liouville superoperatorK can only be of Hamilton-
ian form [16], we choose it asKr ­ gfa 2 ay, rgy2
[11,12], which means feeding back the measured hom
dyne photocurrent to the mechanical oscillator with
driving term in the Hamiltonian involving the mechani
cal quadrature orthogonal to the measured one;g is the
feedback gain related to the practical way of realizing t
loop. One could have chosen to feed the system with
generic phase-dependent quadrature, due to the homod
current; however, it will turn out that the above choic
gives the best and simplest result. Since the measu
689
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sions in Eq. (6) and rearranging the terms in an appro
ate way, we finally get the following master equation:
Ùr ­
g

2
sN 1 1d s2aray 2 ayar 2 rayad 1

g

2
Ns2ayra 2 aayr 2 raayd 2

g

2
Ms2ayray 2 ay2r 2 ray2d

2
g

2
Mps2ara 2 a2r 2 ra2d 2 ivmfaya, rg 2

√
g
4

sinf 1
gm

4

!
sfa2, rg 2 fay2, rgd , (8)
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whereg ­ gm 2 g sinf, and

N ­
1
g

"
gm

√
kBT
h̄vm

2
1
2

!
1

G

4
1

g2

4hG

1
g
2

sinf

#
,

M ­ 2
1
g

"
gm

kBT
h̄vm

1
G

4
2

g2

4hG
2 i

g
2

cosf

#
.

This Eq. (8) is very instructive because it clearly show
the effects of the feedback loop on the mirror mod
a. The proposed feedback mechanism, indeed, not o
introduces a driving term to the mirror’s momentum
quadrature, it also simulates the presence of a bath w
nonstandard fluctuations, characterized by an effect
damping constantg and by the coefficientsM and N ,
which are given in terms of the feedback paramete
[12]. For the positivity of the density matrix the externa
parameters should be chosen such thatjMj2 , NsN 1

1d. This can be checked with a unitary transformatio
giving Eq. (8) in a manifest Lindblad form [19] for the
above inequality. An interesting aspect of the effectiv
bath described by the first four terms in the righ
hand side of (8) is that it is characterized by phas
sensitive fluctuations, depending upon the experimenta
adjustable phasef.

Because of its linearity, the solution of Eq. (8) can ea
ily be obtained, as shown in Refs. [11], by using the no
mally ordered characteristic function [20] and assumi
the mirror initially in a thermal state at temperatureT , i.e.,
rs0d ­ s1 2 e2 h̄vmykBT d

P
n jnl knje2n h̄vmykBT , wherejnl

is the number state of the modea.
The stationary state is reached only if the paramet

g, f, vm, and gm satisfy the stability conditionsgm 2

g sinf . 0 and v2
m 2 gmg sinf . 0. For simplicity

we choosef ­ 2py2 from now on since this choice
turns out to be best. Under the stability conditions and
the long time limit st ! `d the variance of the position
quadrature operatorX ­ sa 1 aydy2 for the mirror is

kX2l ­
g2

8hG

g2
m 1 v2

m 1 gmg

sgm 1 gd sv2
m 1 gmgd

1

√
kBT

2h̄vm
1

G

8gm

!
gmv2

m

sgm 1 gd sv2
m 1 gmgd

,

(9)
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while for the orthogonal quadratureP ­ sa 2 aydy2i,
i.e., the mirror’s momentum, we get

kP2l ­
g2

8hG

v2
m

sgm 1 gd sv2
m 1 gmgd

1

√
kBT

2h̄vm
1

G

8gm

!
gm

g2 1 v2
m 1 gmg

sgm 1 gd sv2
m 1 gmgd

.

(10)

In the case of no coupling with the cavity mode, th
above variances for the macroscopic oscillator only co
sist in the thermal noise as one should expect. Wh
ever an indirect detection of the mirror position is mad
the back action noise is added. The latter, however
usually negligibly small compared with the previous on
Instead, by using the feedback with sufficient high ga
( g ¿ vmQm), we can setTeff ø Tv2

myg2 as an effective
temperature, and the mirror’s position quadrature varian
becomes

kX2l ø
kBTeff

2h̄vm
1

Gv2
m

8gmg2
1

g
8hG

. (11)

Although the feedback introduces excess noise, it a
gives a scale factor for the thermal noise term by means
Teff, so that with an appropriate choice of the paramete
the latter can be strongly reduced.

It is also noteworthy that the proposed phase-depend
feedback does not produce a proper squeezing; moreo
it can extract the thermal noise from the system, beca
the variance reduction occurs, for not extremely hi
values ofg, in both quadratures, as can be evicted fro
Eqs. (9) and (10). Hence, it acts as a refrigerator.

To better show the potentiality of this feedback mech
nism let us consider the spectrum of the position quad
ture. To this end the Fourier transforms of the stochas
equations connected with the master equation (8) are
ily written down [21]

ivX̃svd ­ vmP̃svd 2 gX̃svd 2
p

g X̃insvd ,

ivP̃svd ­ 2vmX̃svd 2 gmP̃svd 2
p

g P̃insvd ,
(12)

and the input noise operators have the following
correlations:

kX̃insvdX̃ins2v0dl ­
1
4 s2N 1 1 1 2RehMjddsv 2 v0d

kP̃insvdP̃ins2v0dl ­
1
4 s2N 1 1 2 2RehMjd

3 dsv 2 v0d
(13)

kX̃insvdP̃ins2v0dl ­
1
4 si 1 2 ImhMjddsv 2 v0d .
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DefiningSgsvd ­ kX̃svdX̃s2vdls, we get from Eqs. (12)

Sgsvd ­
g

4
1

jJsvdj2
fsg2

m 1 v2 1 v2
md s2N 1 1d

1 sg2
m 1 v2 2 v2

md2 RehMjg , (14)

where the subscripts indicates the symmetrized correla
tion andJsvd ­ fsiv 1 gd siv 1 gmd 1 v2

mg.
As a practical example we take the physical param

ters of the model presented in Ref. [10]. Taking the
values for granted, i.e.,m ­ 10 kg, nm ­ 10 Hz, gm ­
1 s21, L ­ 4 m, n0 ­ 5.82 3 1014 Hz, Tr ­ 0.02,
Pin ­ 10 W, we get G ø 200 s21, then x ø 104 s21.
This choice satisfies the relationgb ¿ x and all other
inequalities, and we further takeh ø 1 andT ­ 300 K.

Then, in Fig. 1 we show the (scaled) spectrum
Eq. (14) for various values ofg. The curve forg ­ 0
practically coincides with the spectrum of the mirror no
coupled to the cavity mode because of the smallne
of the back action noise. It comes out that for hig
values of the feedback gain the spectrum is practica
vanishing, while the peak at the mechanical resonan
frequency gradually disappears and one peak at z
frequency appears, with very small amplitude. With th
proposed feedback, a transition from a dissipative to
diffusive behavior of the oscillator is obtained by jus
varying the feedback gain. These results, although in
different context, are similar, but not equivalent, to tho
obtained in Ref. [15], where the feedback was used
the regulation of a microcantilever response and a dir
photodetection was used, instead of our phase-depen
scheme. Furthermore, the temperature of the bath w
assumed negligibly small.

Summarizing, we have proposed a feedback sche
based on an indirect measurement to reduce posit
quadrature uncertainty of a macroscopic oscillator. T
described mechanism could be useful in reducing the
fect of thermal noise in quadratures of macroscopic m
rors, as those devoted to the gravitational wave detect

FIG. 1. The quantitySgsvdys2pkX2lg­0d is plotted (in a
semilog scale) versusv for the following values ofg in s21:
(a) 0; (b) 1; (c) 10; (d) 102; (e) 103. We have used the values
of other parameters listed in the text.
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even at room temperatures. The feedback loop may co
sist in a transducer [2] which transforms the random op
cal signal in a stochastic electric signal which in turn ac
as a mechanical driving on the mirror’s momentum. Th
could be readily realized, but it is not the only way, by
using the feedback current to vary the potential of a c
pacitor formed by the oscillating mirror and a fixed plate
On the other hand, depending on the specific experime
tal realization of the feedback loop there could be som
limitations on the values ofg.

We think that the practical implementation of the
discussed model, even though in a situation far from th
oversimplified theoretical one, should be an interestin
challenge for an experimentalist, and it will turn ou
extremely useful in reducing the thermal fluctuation
without lowering the bath temperature.
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