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Optomechanical Cooling of a Macroscopic Oscillator by Homodyne Feedback
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We propose a simple optomechanical model in which a mechanical oscillator quadrature could
be “cooled” well below its equilibrium temperature by applying a suitable feedback to drive the
orthogonal quadrature by means of the homodyne current of the radiation field used to probe its position.
[S0031-9007(97)04942-9]
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The problem of considering a macroscopic oscillator inity length, the resonant frequency of the cavity will be
terms of quantum mechanics is usually avoided because. = w./27 = nc/2L, wheren is an arbitrary integer
one can obtain the right results without using any quantunmumber andc the speed of light. Furthermore, we as-
mechanical hypotheses. When, however, one wishes ®ume that at the frequency of the impinging fieigl the
use it as a device to detect extremely small displacemenfsed mirror does not introduce any excess noise beyond
due to very weak forces, as in the gravitational wave dethe input field noise. We also assume that retardation ef-
tectors, one has to be careful in considering it as a merfects, due to the oscillating mirror in the intracavity field,
macroscopic object. Should one consider a macroscopi@&re negligible. We shall use a field intensity such that
oscillator as a quantum oscillator, once all other possibléhe correction to the radiation pressure force, due to the
noise sources were eliminated by using filters, screen®oppler frequency shift of the photons [6] on the moving
insulators, etc., the ultimate criterion one has to satisfymirror, is completely negligible. This means considering
is the one associated with the thermal noise [1,2]. Fothe damping coefficient of the oscillating mirror to be only
the harmonic oscillator it meansT < hw,/2, where due to the coupling with the thermal bath. Thus, we can
kp is the Boltzmann constanty,, the mechanical angu- write the Hamiltonian as
lar frequency, and” the temperature of the environment + 1 p? 1 5 2
in which the oscillator lives. This prohibitive limit, for H = ﬁwc<B B + 3) t o, Ty ment Tt Hin ,
macroscopic massive oscillators, is, however, only valid (1)

when the measurement time is of the order of the ¢
mechanical relaxation time,. The actual limit can be WhereB andB' are the boson operators of the resonant

expressed agkTr/Q, < /i [1]. In this case it is pos- Cavity mode;p and i are the momentum and the dis-
sible to consider a macroscopic mechanical oscillator aBlacement operators, respectively, from the equilibrium
a quantum oscillator even at liquid He temperature [3]POSition of the oscillating mirror with mass and oscil-
but very high mechanicaD,, = w,,7, factors and also lation frequencyum = w,/27. The mechamcal angular
short observation times should be considered. To hav€duencyw,, will be many orders of magnitude smaller
better results and, for instance, to detect millisecond duth@n®. to ensure that the number of photons generated by
ration bursts of gravitational waves from supernovae, ond€ Casimir effect [7] is completely negligible. We actu-
should measure out of resonance, as in VIRGO or |_|Goally_are in the _so—_called adiabatic approximation; i.e., the
proposals [4], or at lower temperatures, as in massive b&aVity round trip time of the photon is much shorter than
detector schemes [5]. The thermal fluctuations are, how€ mirror's period of oscillation. Hi, accounts for the
ever, the fundamental limitations, and, in order to reducdnteraction between the cavity mode and the oscillating

their effects, one usually should lower the environment'dnirror [8]. Since we have assumed no retardation effects,
temperature. H;,, simply represents the effect of the radiation pressure

In this Letter we present an alternative way of coolingforce which causes the instantaneous displacerheoit
the oscillator's observed quadrature which could be exth® mirror [9,10], and can be written as
perimentally accessible. o _pWeptp. t 1

We consider an empty Fabry-Perot cavity with one Hin i L BB AGBTB(A + AT, (2)
fixed mirror with transmittivity7, and one perfectly re- where we have introduced the dimensionless ladder opera-
flecting end mirror. The completely reflecting mirror cantors (A andA') for the oscillating mirror, and the coupling
move, undergoing harmonic oscillations damped by theonstant becomes = //iw?/2mw,,L*. The intracavity
coupling to a thermal bath in equilibrium at temperatureradiation field modeB is damped through the output fixed
T. The cavity resonances are calculated in the absengeirror at a ratey, = ¢T,/2L, while y,, is the mechanical
of the impinging field, hence, it is the equilibrium cav- damping rate,, << ).
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The above interaction (2) gives rise to nonlinear sto{15], but only the phase-dependent feedback produces
chastic equations whose linearization around the steadyie desired effect. In order to be easily followed, we
state is equivalent, in a frame rotating at the impinginguse the continuous feedback theory recently proposed
frequencyyy, to replace Eq. (1) with [9] by Wiseman and Milburn [16], who well explained the

H' = Abth + hoy,ata + L 3) implications and Iimitatiops of this feedback. One has to

take part of the stochastic output homodyne photocurrent

where now all the operators represent small fluctuaf17] obtained from the continuous monitoring of the
tions around steady state values; i.&,= B; + b  meter modeb, and feed it back to the mirror dynamics
and A = (A); + a. These are determined by, = (for example, as a driving term) in order to modify the
Vi 2mw, (A)s + (A))) = hwclBsl*/mwyL; By =  evolution of the mode:.
(BY, = /76 Bin/(5 — iA), with B, the classical field  In the limiting case of a feedback delay time much
characterizing the input laser powet, = hwolBin|>.  shorter than the characteristic time of the mechanical
The parameted represents the radiation phase shift duemode, it is possible to obtain a Markovian equation for
to the detuning and to the stationary displacement of théne reduced density matrix = Tr, D in the presence of

mirror, A = w. — wy — w.x,/L; further we have feedback [16]. Thus, following Ref. [16], we get
l =

i = XY W = rp - XX
whereX = (a + a')/2 is the mirror position quadrature, 2
Y, = (be'® + bTe '¢)/2 is the radiation quadrature . o X2
with ¢ = arg(B,), and y = —4G|Bs|. Equations (3) + Kie'’pX — ie”"*Xp) + 29T p, (6)
and (4) represent the starting point for further analysis of
our system. wherel’ = x?/v, (we have definedb = § + ¢, which

The mirror displacement induces a phase shift on thés the only relevant phase of tiiemode influencing the
radiation field, hence the latter can be used as a “meter” tdynamics of the mechanical modg, X is a Liouville
measure the mirror position quadratufe For simplicity, ~Superoperator describing the way in which the feedback
in Eq. (3) we assume we can skt= 0 by just varying Signal acts on the system of interest andrepresents
the cavity detuning. This setting allows us to write thethe photodetector efficiency. This master equation is the

evolution equation for the whole density operafbas starting point of our discussion. The second term of the
. right-hand side of Eq. (6) is the usual double-commutator
D=/LD — L [H!,,D] term associated with the measuremenkofand it results
h from the elimination of the radiation variables; the third

term is the feedback term itself, and the fourth term is a
diffusionlike term, which is an unavoidable consequence
where £ describes the damped dynamics of the mechanignc the noise mt_roduced_ by the feedba(_:k itself.
cal modea which is considered in thermal equilibrium The mirror- 1S conS|d¢red to be in a thermal bath
at temperaturel’. We also assume that the number Ofcharacterlzed by a damping consta, so that we have
thermal photons is negligibly small at optical frequency.
Following the treatment of Refs. [11,12], we assume that
the radiation modeb is heavily damped, so that due
Ym kT
to the large value ofy, > |y| the b mode always - —
will be near to its vacuum state (we are considering 2 hop
fluctuations around the steady stgg). This allows us where [, ]+ means the anticommutator and the limit
to adiabatically eliminate thé mode and to perform a kT > hw,, is taken into account [18] and, due to the
perturbative calculation in the small paramegety;, [13].  frequency we are considering, is surely valid at room tem-
The measurement of the quadratieis obtained by perature down to millikelvins at least. Moreover, since
performing a homodyne measurement [14] of a generithe Liouville superoperatof can only be of Hamilton-
quadrature of the meter mode i.e., Y_5 = (be ?® +  ian form [16], we choose it asKp = gla — at,p]/2
bte!?)/2 with 8 a phase connected to the local oscillator[11,12], which means feeding back the measured homo-
[14]. Because of the interaction (4) between the twodyne photocurrent to the mechanical oscillator with a
modes, one gets information dh by directly observing driving term in the Hamiltonian involving the mechani-
the modeb. The continuous monitoring of the mode cal quadrature orthogonal to the measured gnés the
via homodyne detection modifies the time evolution offeedback gain related to the practical way of realizing the
the whole system. loop. One could have chosen to feed the system with a
We are now able to apply a phase-dependent feedbaaeneric phase-dependent quadrature, due to the homodyne
loop to control the dynamics of the mechanical modecurrent; however, it will turn out that the above choice
of interesta. Other feedback schemes could be devisedjives the best and simplest result. Since the measured

+ %(21901)T — btoD — Dbth),  (5)

Lp=—iofata p] + %"[a +al,[at — a,pl+]

[a + at,[a + aT,p]], @
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quadrature of the mirror is its position, the feedback willsions in Eq. (6) and rearranging the terms in an appropri-
act as a drive for the momentum. Using the above expr|esaete way, we finally get the following master equation:

p= %(N + 1) Qapat — atap — pata) + %N(Za*pa —aatp — paa’) - %M(cheraJr —a'?p — pat?)

- %M*Qapa —a’p — pa*) — iwulata,p] -

wherey = vy,, — gsing, and

1 kgT 1 r g’
N=—| 19y, - =+ =+ ==
y hw, 2 4 4qT
g .
+ = sing |,
¢ s |
1 kgT r g’ g
M=-—|vy,—— +— — == — i3 cos
7|:y o, T 4 agr 1o C0%¢

; ®)

(£

| while for the orthogonal quadrature = (a — at)/2i,
i.e., the mirror's momentum, we get

P — g2 2

wm
8L (ym + &) (w2 + Ymg)
. ( keT T )
I e + ) (@2 + ymg)
(10)

2hiw,  8Ym
In the case of no coupling with the cavity mode, the

sing + 7—’") ([a® p] — [a™,p)).,

g2+a)§1 + Ym&

above variances for the macroscopic oscillator only con-

This Eq. (8) is very instructive because it clearly showssist in the thermal noise as one should expect. When-
the effects of the feedback loop on the mirror modeever an indirect detection of the mirror position is made,
a. The proposed feedback mechanism, indeed, not onle back action noise is added. The latter, however, is
introduces a driving term to the mirror’'s momentum ysyally negligibly small compared with the previous one.
quadrature, it also simulates the presence of a bath witfhstead, by using the feedback with sufficient high gain
nonstandard fluctuations, characterized by an effectivgg > w,0n), We can sele; = Tw? /g* as an effective
damping constanty and by the coefficientd/ and N,  temperature, and the mirror’s position quadrature variance
which are given in terms of the feedback parameter$ecomes
[12]. For the positivity of the density matrix the external kT e Tw?
parameters should be chosen such fhat> < N(NV + B ell o+ £
1). This can be checked with a unitary transformation 2hwm — 8Ymg §nl’
giving Eqg. (8) in a manifest Lindblad form [19] for the Although the feedback introduces excess noise, it also
above inequality. An interesting aspect of the effectivegives a scale factor for the thermal noise term by means of
bath described by the first four terms in the right-Tesr, SO that with an appropriate choice of the parameters,
hand side of (8) is that it is characterized by phasethe latter can be strongly reduced.

sensitive fluctuations, depending upon the experimentally Itis also noteworthy that the proposed phase-dependent
adjustable phasé. feedback does not produce a proper squeezing; moreover,

Because of its linearity, the solution of Eq. (8) can easdt can extract the thermal noise from the system, because
ily be obtained, as shown in Refs. [11], by using the northe variance reduction occurs, for not extremely high
mally ordered characteristic function [20] and assumingalues ofg, in both quadratures, as can be evicted from

the mirror initially in a thermal state at temperatdtgi.e.,,  Egs. (9) and (10). Hence, it acts as a refrigerator.
p(0) = (1 — e @on/ksTYS |n)(n|e nhon/ksT \where|n) To better show the potentiality of this feedback mecha-

is the number state of the mode nism let us consider the spectrum of the position quadra-
The stationary state is reached only if the parametertire. To this end the Fourier transforms of the stochastic
g, ¢, w,, andy,, satisfy the stability conditiong,, —  equations connected with the master equation (8) are eas-
gsing >0 and w2 — y,gsing > 0. For simplicity ily written down [21]
we choose¢ = —7 /2 from now on _since thig choice_ ioX(0) = w,P(w) — gX(0) — 7 Xin(w),
turns out to be best. Under the stability conditions and in - - - (12)
iwP(w) = —w,X(w) — ')/mP(w) - ﬁpin(a))s

the long time limit(r — «) the variance of the position
quadrature operatdf = (a + a')/2 for the mirror is and the input noise operators have the following
correlations:

(x?) =

(11)

2 ')’an + w:%z + Ymg&

) = sir (v + 2) (@2 + ymg) (Kin(@)Xin(—0)) = YN + 1 + 2Re{M)5(0 — )
m m m - . . _w, _ l -

n kgT I fymwan <P1n( )Pm( )> 4(2N + 1 /ZRC{M}) (13)
2hwn  8Ym ) (ym + ) (@} + ymg)’ X (0 — ')

©)  (Kin(@)Pin(—0)) = 1(i + 2 Im{M})é(w — ).
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Defining S, (w) = (X(0)X(—w))s, we get from Egs. (12) even at room temperatures. The feedback loop may con-
sist in a transducer [2] which transforms the random opti-

Sy(w) = FRESE [(v;, + @ + @) 2N + 1) cal signal in a stochastic electric signal which in turn acts

”2 ) 5 as a mechanical driving on the mirror's momentum. This

+ (v + @° — 0;,)2 Re{M}], (14)  could be readily realized, but it is not the only way, by

where the subscript indicates the symmetrized correla- using the feedback current to vary the potential of a ca-
tion and=E(w) = [(iw + g)(iw + v,) + ©2] pacitor formed by the oscillating mirror and a fixed plate.

As a practical example we take the physical parame©On the other hand, depending on the specific experimen-
ters of the model presented in Ref. [10]. Taking theirtal realization of the feedback loop there could be some

values for granted, i.em = 10 kg, »,, = 10 Hz, y,, = limitations on the values of. _
1s!, L=4m, vy =582x10%Hz, T, =0.02, We think that the practical implementation of the
Pin = 10 W, we getl’ =200s !, then y = 10* s!.  discussed model, even though in a situation far from the

This choice satisfies the relatiop, > y and all other oversimplified theoretical one, should be an interesting
inequalities, and we further take =~ 1 and7 = 300 K. challenge for an experimentalist, and it will turn out
Then, in Fig. 1 we show the (scaled) spectrum oféxtremely useful in reducing the thermal fluctuations
Eq. (14) for various values of. The curve forg = 0  Without lowering the bath temperature.
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