
VOLUME 80, NUMBER 4 P H Y S I C A L R E V I E W L E T T E R S 26 JANUARY 1998

d

672
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Starting from a deformed potential we construct separate bases of collective neutron and proton
rotational states by exact angular momentum projection. These rotational states are then coupled by
diagonalizing a residual pairing plus quadrupole interaction. Many new bands emerge that are not found
in the rotation of the usual BCS condensate, and may correspond to the geometrical scissors mode an
its generalizations. These excitation modes can be understood as rotational bands built on spin-1h̄
phonon excitations; they exhibit a nearly perfect dynamical SUs3d fermion spectrum, even though there
is no explicit dynamical symmetry in our model. [S0031-9007(97)05162-4]
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The long-range neutron-proton interaction is the ma
source of stabilization for heavy nuclear systems at fini
deformation, as was realized long ago by de Shalit a
Goldhaber [1], Talmi [2], and by Federman and Pitte
[3]. Dobaczewskiet al. [4] further observed that the
n-p part of the quadrupole-quadrupole (Q-Q) interaction
extracted from the Skyrme effective force is about 5 time
larger than then-n or the p-p parts, and that this effect
is incorporated in models that assume equal neutr
and proton deformations. As a consequence of th
implicit strong n-p interaction, a deformed nucleus in
most standard models corresponds to a rotating syst
with neutron and proton single-particle potentials tightl
coupled in the corresponding orientation angles. Separ
rotations of neutrons and protons will thus cost larg
amounts of energy. (An example from model results [5
exhibiting independent rotations of neutrons and proto
has been asserted to be spurious [6].)

However, small perturbations of nuclear shapes a
relative orientations around the equilibrium can give ris
to physical states at low to moderate excitation energie
Classical examples of such motion includeb and g

vibrations [7], in which neutrons and protons underg
vibrations as a collective system. These small-amplitu
motions are not built into the ground state for theories lik
Hartree-Fock-Bogoliubov or BCS and one can only obta
the b and g vibrations by mixing a large set of multi-
quasi-particle states. A more efficient way to describ
these vibrational states is to build additional correlation
into the ground state, as, for example, in the random pha
approximation (see, for example, Ref. [8]).

Classically, one may also consider small oscillation
in the relative orientations of the neutron and proto
deformed fields [9,10]. The geometric picture may b
related to the two-rotor model [11]. Because of the stron
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restoring force [12], this oscillation is confined to a sma
angle between the protons and neutrons (scissors moti
This vibration, together with theb andg vibrations, may
be classified using group theoretical methods and belo
to the lowest collective excitations of the ground state,
pointed out by Iachello [13].

Early shell model work of Bhatt, Parikh, and McGror
[14] suggested that low-lying collective modes of light
nuclei could be described as coupling of collective sta
of neutron and proton groups. Using the shell model
study deformed heavy nuclei microscopically is a des
able but very difficult task because of large dimension
ity and its related problems. The projected shell mod
(PSM) provides one possible solution for this difficult
[15]. In this approach one first truncates the configu
tion space with guidance from the deformed mean fie
by selecting only the BCS vacuum plus a few quasip
ticles in the Nilsson orbitals around the Fermi surfac
performs angular momentum projection to obtain a
of laboratory-frame basis states, and finally diagonaliz
a shell-model Hamiltonian in this space. Since the d
formed mean field1 BCS vacuum already incorporate
strong particle-hole and particle-particle correlations, th
truncation should be appropriate for the low-lying stat
dominated by quadrupole and pairing collectivity. Indee
this approach has been very successful for ground b
properties and near-yrast quasiparticle excitations in hi
spin physics [15].

However, in this formalism the vacuum is the usu
BCS condensate of neutrons and protons. Without qu
particle excitations, one can obtain only the ground st
band (g band) after angular momentum projection. The
is no room for studying any other collective excitations.

In this paper we shall extend the PSM in order
study the motion in relative orientation angle betwe
© 1998 The American Physical Society
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deformed neutron and proton fields in a microscopic wa
Instead of a single BCS vacuum, the angular momentu
projection is now performed for separate neutron a
proton deformed BCS vacua. Although the introductio
of two separately projected BCS vacua seems to tr
neutrons and protons as two independent systems,
equal deformation used in the Nilsson calculation
the basis and embedded in the two BCS vacua alrea
implies strong correlation between the two systems. T
projected neutron and proton states are finally coupl
through the diagonalization of a pairing plus quadrupo
interaction in this basis. This procedure gives the usu
ground band corresponding to a strongly coupled BC
condensate of neutrons and protons, but also leads t
new set of states arising from a more complex vacuu
that incorporates fluctuations in the relative orientation
then andp fields.

The neutron and proton valence spaces and the in
action strengths employed in the present Letter are tho
of Ref. [15]. Our single particle space contains three m
jor shells (N ­ 4, 5, and 6) for neutrons and (N ­ 3,
4, and 5) for protons; this space has been shown to
sufficient for a quantitative description of rare-earthg
bands and bands built on a few quasiparticle excitatio
[15]. The Hamiltonian [15] can be separated intoĤ ­
Ĥn 1 Ĥp 1 Ĥnp , where Ht st ­ n, pd is the pairing
plus quadrupole Hamiltonian [16], with inclusion of a
quadrupole-pairing force,

Ĥt ­ Ĥ0
t 2

xtt

2

X
m

Q̂ym
t Q̂m

t

2 Gt
MP̂y

t P̂t 2 Gt
Q

X
m

P̂ym
t P̂m

t , (1)

Ĥnp ­ 2xnp

X
m

Q̂ym
n Q̂m

p . (2)

The interaction strengthsxtt (t ­ n or p) are related
self-consistently to the deformatione by [15]

xtt ­
2
3 esh̄vtd2

h̄vnkQ̂0ln 1 h̄vpkQ̂0lp

. (3)

Obviously, neutrons and protons are coupled by the se
consistency condition. Following Ref. [15], the strengt
xnp of the n-p quadrupole-quadrupole residual inter
action is assumed to bexnp ­ sxnnxppd1y2. Similar
parametrizations were used in earlier works [16].

In the present initial investigation we shall not conside
quasiparticle excitations. The quasiparticle vacua a
defined after the BCS calculation throughj0l ­ j0nl j0pl.
The basis for the shell model diagonalization is obtain
by angular momentum projection [15] onto the vacuum:

jIl ­ NIP̂I j0l ; NI fP̂In j0nl ≠ P̂Ip j0plgI

; NI fIn ≠ Ip gI , (4)

where P̂I is the angular momentum projection operato
[17] and NI is the normalization constant. Formally
the total wave function of Eq. (4) can be expressed
y.
m

nd
n

eat
the

of
dy

he
ed
le
al
S

o a
m
of

ter-
se

a-

be

ns

lf-
h
-

r
re

ed

r
,
as

ja, Il ­ jsIn; Ip dIl (a distinguishes independent states
having the sameI).

In this way, a state with angular momentumI receives
contributions from neutron and proton parts and th
coupling between the two:

ka, IjĤja0, Il ­ ksIn; IpdIjĤj sI 0
n; I 0

pdIl

­ fkInjĤnjI 0
nl 1 kIp jĤp jI 0

p lgdInI0
n
dIpI 0

p

2 xnpksIn ; IpdI jQ̂y
n Q̂p j sI 0

n; I 0
pdIl . (5)

The third term in Eq. (5) can be written explicitly as

ksIn ; IpdI jQ̂y
n Q̂p j sI 0

n; I 0
pdIl

­ W sIp2II 0
n; I 0

pInd kIn k Q̂n k I 0
nl

3 kIp k Q̂p k I 0
ply

q
s2In 1 1d s2I 0

p 1 1d , (6)

whereW is the 6-j symbol.
At each spinI, we diagonalize Eq. (5). We take as a

typical example the rotational nucleus,168Er, without par-
ticle number projection; results are shown in Fig. 1. The
lowest band is theg band, which is nearly identical to that
of earlier calculations [15] where no separation and recou
pling of neutron and proton components was considere

FIG. 1. Spectrum of collective excitations corresponding to
coupled rotation of neutrons and protons. Symbols represe
calculations using the projected shell model; lines are calculate
using an SU(3) fermion dynamical symmetry model. The
degeneracy is indicated explicitly for thes40, 4d states.
673
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In addition to theg band, many new excited bands emerg
that are not found in the earlier calculations. These ban
exhibit a curvature similar to theg band, suggesting that
they have the ground band moment of inertia.

The strikingly regular pattern of Fig. 1, which contain
states up to 20 MeV in energy and12h̄ in spin, can be
understood as the manifestation of a nearly perfect SUs3d
symmetry: all bands can be well reproduced by an SUs3d
Fermion dynamical symmetry model [18] if the pro
jected neutron and proton BCS vacuum states are cons
ered to be two SUs3d representations coupled through th
Qn-Qp interaction. Assumingnn and np are the effec-
tive valence neutron number and proton number, resp
tively, a model Hamiltonian with SUs3dn ≠ SUs3dp .
SUs3dn1p dynamical symmetry can be written as follows
[see Eq. (3.107) in Ref. [18] ]:

Ĥ ­ xeff
n Ĉn

su3 1 xeff
p Ĉp

su3 2 xeff
np Ĉn1p

su3 1 aĴ2, (7)

whereĈt
su3 are the SUs3dt (t ­ n, p) Casimir operators

for neutrons, protons, and then-p coupled symmetry
SUs3dn1p (t ­ n 1 p).

The eigenvalue of the lowest-order SUs3d Casimir
operator for a given representationsl, md is Csl, md ­
1
2 sl2 1 m2 1 lm 1 3l 1 3md. Assuming that the two
BCS vacua correspond to the SUs3d symmetric represen-
tationssnn , 0d and snp , 0d, respectively, and that the per-
missible irreps of SUs3dn1p correspond to the Littlewood
rule, sn 2 2m, md (m ­ 0, 1, 2, . . . , np), the spectrum can
be obtained analytically as

E 2 Eg.s. ­ xeff
np fCsn, 0d 2 Csn 2 2m, mdg 1 aIsI 1 1d

­ mh̄v`

∑
1 2

m 2 1
n

∏
1 aIsI 1 1d , (8)

wheren ­ nn 1 np is the total effective valence particle
number, h̄v` ­

3
2 nxeff

np , and Eg.s. is the ground state
energy

Eg.s. ­ xeff
n Csnn , 0d 1 xeff

p Csnp , 0d 2 xeff
np Csn, 0d .

(9)

The allowed quantum numbers are determined from t
usual SUs3d subgroup reduction rules for the fermion
dynamical symmetry model [18]. For example, a pe
missible SUs3d representation for this particle number is
sl, md ­ s40, 4d, and this can have aK ­ 0 band with
I ­ 0, 2, 4, . . . , 44, aK ­ 2 band withI ­ 2, 3, 4, . . . , 43,
and aK ­ 4 band withI ­ 4, 5, 6, . . . , 41 [19].

The parameters may be determined by fitting to th
preceding PSM results:n ­ 48, h̄v` ­ 2.9 MeV, and
a ­ 0.013 MeV. This, coupled with Eq. (9) and the
reduction rules, gives the spectrum illustrated by dash
lines in Fig. 1. States are labeled by the SUs3d irrep labels
sl, md and the bandhead of each rotational band with
the irrep is labeled by the SUs3d quantum numberK .
Degeneracies at each spin may be deduced by coun
one for eachK band, except only even spins are prese
for K ­ 0 bands. We list the degeneracies of thes40, 4d
representation as an example in Fig. 1. Not all PS
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states can be seen clearly in the plot because of t
high degeneracy, but there is a one-to-one corresponden
between predicted SUs3d states and those observed in the
PSM calculation. We have calculated the overlap of th
PSM g-band wave functions with those obtained from
an SUs3d representationsl, 0d as a function of angular
momentum. These overlaps are found to differ from
unity by only 4% or less, indicating a strong similarity
of the PSM wave functions and SUs3d symmetric wave
functions. Details of these calculations will be discusse
in future publications.

One can see from Eq. (8) and the SUs3d reduction
rules that the whole spectrum of Fig. 1 can be viewe
as a set of rotational bands built on different multi-
phonon excitation states with the phonon energyh̄v ­
h̄v`f1 2

m21
n g and phonon spin1h̄. For example, a

three-phonon system could have two states with energ
3h̄v and total spin 1̄h and 3̄h; a four-phonon system
could have three states with energy4h̄v and total spin
0h̄, 2h̄, and4h̄; and so on. This provides an alternative
explanation of the degeneracy of the bands obtaine
by the PSM diagonalization. Comparing the SUs3d and
phonon classifications, we find that the SUs3d quantum
numbers m and K in Fig. 1 may be interpreted as
the number of phonons and their allowed total spins
respectively.

As long ash̄v` is held constant, the spectrum is sen
sitive to the effective valence particle numbern only
through small anharmonicities. For the present exampl
the phonon energy decreases smoothly from 2.9
2.5 MeV as the phonon number increases from 1 to 7
When n ! `, h̄v ! h̄v`, and the vibration becomes
harmonic.

The lowest excited band, the11 band corresponding
to a one-phonon excitation, warrants further discussio
In Fig. 2 we plot this band, together with theg band

FIG. 2. The ground and11 collective excited bands in168Er.
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from the PSM calculations and from experiment. Th
excitations of the11 band relative to the ground state
depend on the interaction strengths used in the calculatio
The good agreement of the calculatedg band with data
(and similar results for many other calculations in thi
mass region [15]) suggests that the strengths we u
here are realistic. These excitations are due to an SUs3d
coupling snn , 0d ≠ snp , 0d in which both neutron and
proton intrinsic systems remain in the ground states; th
they must be related physically to relative motion betwee
neutrons and protons. We conclude that this may be t
11 scissors mode band as previously suggested in oth
models [9–13].

In these calculations we have not yet addressed t
observed fragmentation ofM1 strength for11 states in
deformed nuclei [20]. Such fragmentation could indi
cate that contributions from two-quasiparticle componen
must be taken into account [21–23], and there is co
troversy in the literature concerning whether these stat
are more economically described as collective modes
as quasiparticle states. An attempt to investigate this h
been reported recently by Shimano and Ikeda [24] and b
Heydeet al. [25].

The present results indicate that the PSM provides a m
croscopic framework in which collective modes that ma
be closely identified with those proposed in earlier geome
rical and algebraic descriptions emerge as the lowest e
citations. Furthermore, it is already well established tha
the PSM describes structures built on quasiparticle exc
tation very well. Therefore, the extension of the presen
calculations to a larger basis including two and possib
four quasiparticle excitations of then-p coupled vacuum
will provide a microscopic formalism in which collective
and quasiparticle degrees of freedom enter on an equ
footing. Such calculations are possible and are presen
being explored. We may expect that the long-debate
question of whether the observed11 states are collective or
two-quasiparticle in nature may then be resolved throug
quantitative calculation.

In conclusion, we have found many new collective
modes in a shell model diagonalization based on sep
rately projected neutron and proton Nilsson1 BCS vac-
uum states. We have shown that these modes may
classified systematically in a phonon spectrum with wea
anharmonicity. Among these states, the lowest11 band
at about 3 MeV may correspond to the scissors mod
predicted in the classical picture. The PSM is a she
model diagonalization method that does not explicitl
introduce any dynamical symmetries. However, the qua
titative agreement with the SUs3d fermion dynamical sym-
metry model provides an algebraic fermion classificatio
scheme for the states obtained from the PSM diagonaliz
tion, and suggests that the projected BCS vacuum for
well-deformed system has a very good effective fermio
SUs3d dynamical symmetry. This in turn implies a good
boson algebraic symmetry if Pauli effects may be ig
nored. Finally, we have proposed that the extension
e
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the present calculations to include quasiparticle excita-
tions can provide a quantitative framework to settle the
issue of whether11 states are more properly viewed as
collective excitations or as quasiparticle states.
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