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Starting from a deformed potential we construct separate bases of collective neutron and proton
rotational states by exact angular momentum projection. These rotational states are then coupled by
diagonalizing a residual pairing plus quadrupole interaction. Many new bands emerge that are not found
in the rotation of the usual BCS condensate, and may correspond to the geometrical scissors mode and
its generalizations. These excitation modes can be understood as rotational bands built ©h spin-
phonon excitations; they exhibit a nearly perfect dynamical33termion spectrum, even though there
is no explicit dynamical symmetry in our model. [S0031-9007(97)05162-4]

PACS numbers: 21.10.Re, 21.60.Cs, 21.60.Fw

The long-range neutron-proton interaction is the mairrestoring force [12], this oscillation is confined to a small
source of stabilization for heavy nuclear systems at finiteingle between the protons and neutrons (scissors motion).
deformation, as was realized long ago by de Shalit and his vibration, together with th@ andy vibrations, may
Goldhaber [1], Talmi [2], and by Federman and Pittelbe classified using group theoretical methods and belongs
[3]. Dobaczewskiet al.[4] further observed that the to the lowest collective excitations of the ground state, as
n-p part of the quadrupole-quadrupol@{Q) interaction  pointed out by lachello [13].
extracted from the Skyrme effective force is about 5 times Early shell model work of Bhatt, Parikh, and McGrory
larger than the:-n or the p-p parts, and that this effect [14] suggested that low-lying collective modes of lighter
is incorporated in models that assume equal neutronuclei could be described as coupling of collective states
and proton deformations. As a consequence of thi®f neutron and proton groups. Using the shell model to
implicit strong n-p interaction, a deformed nucleus in study deformed heavy nuclei microscopically is a desir-
most standard models corresponds to a rotating systeable but very difficult task because of large dimensional-
with neutron and proton single-particle potentials tightlyity and its related problems. The projected shell model
coupled in the corresponding orientation angles. Separa(®SM) provides one possible solution for this difficulty
rotations of neutrons and protons will thus cost large[15]. In this approach one first truncates the configura-
amounts of energy. (An example from model results [5]tion space with guidance from the deformed mean field
exhibiting independent rotations of neutrons and protondy selecting only the BCS vacuum plus a few quasipar-
has been asserted to be spurious [6].) ticles in the Nilsson orbitals around the Fermi surface,

However, small perturbations of nuclear shapes angerforms angular momentum projection to obtain a set
relative orientations around the equilibrium can give riseof laboratory-frame basis states, and finally diagonalizes
to physical states at low to moderate excitation energiesa shell-model Hamiltonian in this space. Since the de-
Classical examples of such motion incluge and v  formed mean field+ BCS vacuum already incorporates
vibrations [7], in which neutrons and protons undergostrong particle-hole and particle-particle correlations, this
vibrations as a collective system. These small-amplitudéruncation should be appropriate for the low-lying states
motions are not built into the ground state for theories likedominated by quadrupole and pairing collectivity. Indeed,
Hartree-Fock-Bogoliubov or BCS and one can only obtairthis approach has been very successful for ground band
the B8 and y vibrations by mixing a large set of multi- properties and near-yrast quasiparticle excitations in high-
quasi-particle states. A more efficient way to describespin physics [15].
these vibrational states is to build additional correlations However, in this formalism the vacuum is the usual
into the ground state, as, for example, in the random phadgCS condensate of neutrons and protons. Without quasi-
approximation (see, for example, Ref. [8]). particle excitations, one can obtain only the ground state

Classically, one may also consider small oscillationsband g band) after angular momentum projection. There
in the relative orientations of the neutron and protonis no room for studying any other collective excitations.
deformed fields [9,10]. The geometric picture may be In this paper we shall extend the PSM in order to
related to the two-rotor model [11]. Because of the strongstudy the motion in relative orientation angle between
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deformed neutron and proton fields in a microscopic way|a, 1) = |(1,;1,)I) (a distinguishes independent states
Instead of a single BCS vacuum, the angular momenturhaving the samé).

projection is now performed for separate neutron and In this way, a state with angular momentunneceives
proton deformed BCS vacua. Although the introductioncontributions from neutron and proton parts and the
of two separately projected BCS vacua seems to treatoupling between the two:

neutrons and protons as two independent systems, the ., ~, , . _ ) f el g

equal deformation used in the Nilsson calculation ofa’llHla’D = AT IDNHI T 1)

the basis and embedded in the two BCS vacua already = KLIHNL) + A8, 81,1

implies strong correlation between the two systems. The ) Ata .

pr(E}ected ne%tron and proton states are fir>1/ally coupled B X”«IV’I”)”QIQH(I”’I’T)I>' ()
through the diagonalization of a pairing plus quadrupol€eThe third term in Eq. (5) can be written explicitly as
interaction in this basis. This procedure gives the usual

. At A ol
ground band corresponding to a strongly coupled BCS«I”’I’T)IleQ’Tl(IV’I”)I>

condensate of neutrons and protons, but also leads to a = W21 1. 1,)I, 10,1 1))
new set of states arising from a more complex vacuum R , ;
that incorporates fluctuations in the relative orientation of XAz 11 O I 17,>/\/(21,, + D@+, (6)

then andp fields. _ where W is the 65 symbol.
The neutron and proton valence spaces and the inter- At each spin/, we diagonalize Eq. (5). We take as a

action strengths employed in the present Letter are thos&pical example the rotational nucleU€Er, without par-

of Ref. [15]. Our single particle space contains three Masicie number projection; results are shown in Fig. 1. The
jor shells (v = 4, 5, and 6) for neutrons andV(= 3,  |gyest band is the band, which is nearly identical to that
4, and 5) for protons; this space has been shown t0 bgt oarjier calculations [15] where no separation and recou-

sufficient for a quantitative description of rare-eagh ling of neutron and proton components was considered.
bands and bands built on a few quasiparticle excnatlong

[15]. The Hamiltonian [15] can be separated ifflo=

H, + H, + H,,, whereH, (r = v, ) is the pairing
plus quadrupole Hamiltonian [16], with inclusion of a 20 _3,_§ @47)
quadrupole-pairing force, o ke Ko ,__f—"“’j'
N N X N a 18] a..a.-0--0--%""
Hy = H2 = 777> 0110t e
. 16 K0 K2 f“_,-—::?""‘r_‘
A N A A e o--9-
- Gy PP, — G DY PIrpr, 1) ) G g8 )
1% _ . _.-§"©
A . 14 K=—1—.--°=-3_c__5__5-g-'3 v
H,z = —Xvr ZQVMQ;—L . (2) ; ¢ - 404
“ o 2 e 5 e
The interaction strengthg,, (r = » or «) are related £ Ko Ke2 __,K:‘i,——r‘:' PR
self-consistently to the deformatianby [15] 5 10"‘1'2 2 1 3 2 U pDegeneracy g
2 2 o --g~ G
Yor = ] se(hw,) _ 3) £ K g ¢
TT fiw,{Q0)y + hw{Qo)x 8 v-e 0 o @42)
Obviously, neutrons and protons are coupled by the self- __o_,g-'f" ¢
consistency condition. Following Ref. [15], the strength K=0 K= cg--o-"0" ¢
. . 610 . o--0-"V °
x»» Of the n-p quadrupole-quadrupole residual inter- 7 “6.1)
action is assumed to bg,, = (x,»x=»)"2. Similar __‘,,‘-"
parametrizations were used in earlier works [16]. 4 - __.__,__c——""
In the present initial investigation we shall not consider o--e--e-"¢
quasiparticle excitations. The quasiparticle vacua are 2 _‘_,.a“‘“’
defined after the BCS calculation throufh = 10, |0,). e ¢ }
The basis for the shell model diagonalization is obtained S LS IOPOY T2 el e
by angular momentum projection [15] onto the vacuum: 01 2 3 4 5 6 7 8 9 1011 1213 14
[y = N'P"|0) = N'[P"]0,) ® P'~10,)] Spin (h)
= N1, ® I,], 4) FIG. 1. Spectrum of collective excitations corresponding to

h Pl is th | t iecti t coupled rotation of neutrons and protons. Symbols represent
where /7 1S the angular momentum projection Operator ., cyjations using the projected shell model; lines are calculated

[17] and N’ is the normalization constant. Formally, using an SU(3) fermion dynamical symmetry model. The
the total wave function of Eq. (4) can be expressed asdegeneracy is indicated explicitly for (40, 4) states.
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In addition to theg band, many new excited bands emergestates can be seen clearly in the plot because of the
that are not found in the earlier calculations. These bandsigh degeneracy, but there is a one-to-one correspondence
exhibit a curvature similar to thg band, suggesting that between predicted SB) states and those observed in the
they have the ground band moment of inertia. PSM calculation. We have calculated the overlap of the
The strikingly regular pattern of Fig. 1, which contains PSM g-band wave functions with those obtained from
states up to 20 MeV in energy arl@/ in spin, can be an SU3) representatior{A,0) as a function of angular
understood as the manifestation of a nearly perfedB5U momentum. These overlaps are found to differ from
symmetry: all bands can be well reproduced by ani33U unity by only 4% or less, indicating a strong similarity
Fermion dynamical symmetry model [18] if the pro- of the PSM wave functions and $3%) symmetric wave
jected neutron and proton BCS vacuum states are consiflinctions. Details of these calculations will be discussed
ered to be two S(B) representations coupled through thein future publications.
0,-Q, interaction. Assuming:, andn, are the effec- One can see from Eq. (8) and the BV reduction
tive valence neutron number and proton number, respecules that the whole spectrum of Fig. 1 can be viewed
tively, a model Hamiltonian with S3)” ® SU3)™ O as a set of rotational bands built on different multi-
SU(3)"*™ dynamical symmetry can be written as follows phonon excitation states with the phonon enefgy =
[see Eq. (3.107) in Ref. [18]]: Kool — “11 and phonon spinli. For example, a
L eff 2w eff e eff pwtar 72 three-phonon system could have two states with energy
" AX” Cas + Xp Cas — x0p Cas™ + a5 (1) 30 o nd total spin & and 3i; a four-phonon system
where Cg,; are the SUB)” (7 = v, ) Casimir operators could have three states with energyow and total spin
for neutrons, protons, and the-p coupled symmetry 04, 2/, and47; and so on. This provides an alternative

SUQB)" ™ (r = v + ). explanation of the degeneracy of the bands obtained
The eigenvalue of the lowest-order @Y Casimir by the PSM diagonalization. Comparing the (8Jand
operator for a given representatigh m) is C(I,m) = phonon classifications, we find that the @WJquantum

2(® + m? + Im + 31 + 3m). Assuming that the two numbers x and K in Fig. 1 may be interpreted as

BCS vacua correspond to the &) symmetric represen- the number of phonons and their allowed total spins,

tations(n,,0) and(n,,0), respectively, and that the per- respectively.

missible irreps of SB)”*™ correspond to the Littlewood  As long asf/iw.. is held constant, the spectrum is sen-

rule,(n — 2u, ) (0 = 0,1,2,...,n,), the spectrum can sitive to the effective valence particle numberonly

be obtained analytically as through small anharmonicities. For the present example,
_ eff the phonon energy decreases smoothly from 2.9 to

E = Bos = xup[C0n0) = Cln = 2, ]+ 0l T+ 1) 2.5 I\EI)eV as the p%)(/)non number increaseys from 1 to 7.
_ thw[l B 1} b oal(l + 1), () \P:Vhen n—®, io — hw», and the vibration becomes

armonic.
wheren = n, + n, is the total effective valence particle ~ The lowest excited band, the" band corresponding
number, fiw. = %n)(eff and E, is the ground state to a one-phonon excitation, warrants further discussion.

energy " In Fig. 2 we plot this band, together with the band

Egs = xi'C(n,,0) + x5 C(nz,0) — x5 C(n,0).

w—

) 4.5 o

The allowed quantum numbers are determined from the 4.0 - S
usual SW3) subgroup reduction rules for the fermion 35| v
dynamical symmetry model [18]. For example, a per- 168EY p—
missible SU3) representation for this particle number is 3.0} __3 -
(A, ) = (40,4), and this can have & = 0 band with ~

= — I 25| Th. i
1 =0,2,4,...,44,aK = 2 band withl = 2,3,4,...,43, [o)) 1+-band
and ak = 4 band withl = 4,5.6,...,41 [19]. 2 20| _

The parameters may be determined by fitting to the >
preceding PSM results: = 48, hw. = 2.9 MeV, and g 1.5+ 100 — 10 7
a = 0.013 MeV. This, coupled with Eqg. (9) and the S 10l |
reduction rules, gives the spectrum illustrated by dashed L & &
lines in Fig. 1. States are labeled by the(SUrrep labels 0.5 - & 6 .
(A, ») and the bandhead of each rotational band within 00l _‘6‘1 ‘é:
the irrep is labeled by the SB) quantum numberk. ’ " " 1
Degeneracies at each spin may be deduced by counting -0.5 | Exp. Th. 4
one for eachk band, except only even spins are present 10 g-band g-band

for K = 0 bands. We list the degeneracies of tHe, 4)
representation as an example in Fig. 1. Not all PSMFIG. 2. The ground and* collective excited bands it?3Er.
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from the PSM calculations and from experiment. Thethe present calculations to include quasiparticle excita-
excitations of thel®™ band relative to the ground state tions can provide a quantitative framework to settle the
depend on the interaction strengths used in the calculatioissue of whetheid * states are more properly viewed as
The good agreement of the calculatgdband with data collective excitations or as quasiparticle states.
(and similar results for many other calculations in this One of us (Y.S.) thanks K. Hara, P. Ring, J.
mass region [15]) suggests that the strengths we udeobaczewski, S. Pittel, and J.-y. Zhang for valuable
here are realistic. These excitations are due to aB8SU discussions. The Joint Institute for Heavy lon Research
coupling (n,,0) ® (n,,0) in which both neutron and has as member institutions the University of Tennessee,
proton intrinsic systems remain in the ground states; thu¥anderbilt University, and the Oak Ridge National Labo-
they must be related physically to relative motion betweematory; it is supported by the member institutions and by
neutrons and protons. We conclude that this may be théhe U.S. Department of Energy through Contract No. DE-
1" scissors mode band as previously suggested in othé'S05-76ER04936 with the University of Tennessee.
models [9-13]. Oak Ridge National Laboratory is managed by Lockheed
In these calculations we have not yet addressed thklartin Energy Research Corp. for the U.S. Department
observed fragmentation /1 strength for1™ states in of Energy under Contract No. DE-AC05-960R22464.
deformed nuclei [20]. Such fragmentation could indi- Theoretical nuclear physics research at Chung Yuan
cate that contributions from two-quasiparticle component€hristian University is supported by the National Science
must be taken into account [21-23], and there is con€ouncil of Republic of China.
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